Simplify each expression and factor each polynomial below completely.
![Question image](https://assets.quizgecko.com/question_images/SMRre4flVsidL7OTX8PnARkFhXugeZPMYCExUAjV.jpg)
Understand the Problem
The question involves simplifying expressions and factoring polynomials based on polynomial functions as outlined in a test study guide.
Answer
1. $-\frac{2}{3} m^7$ 2. $-56a^4 + 10a^3 + 32a^2 - 6a$ 3. $-35a^4 + 12a^3 + 5a^2 + 6a - 6$ 4. $x^4 - 2x + 2$ 5. $(-3x + 21a)(3a - 6)$ 6. $3a^4 - 2a^3$ 7. $30x^2$ 8. $3^n - 147$ 9. $(4a - 7b)(16a^2 + 28ab + 49b^2)$ 10. $3w(216 + 343w^{n-1})$ 11. $2c^3(16c - 81)$ 12. $pq(216 - p)$
Answer for screen readers
- $-\frac{2}{3} m^7$
- $-56a^4 + 10a^3 + 32a^2 - 6a$
- $-35a^4 + 12a^3 + 5a^2 + 6a - 6$
- $x^4 - 2x + 2$
- $(-3x + 21a)(3a - 6)$
- $3a^4 - 2a^3$
- $30x^2$
- $3^n - 147$
- $(4a - 7b)(16a^2 + 28ab + 49b^2)$
- $3w(216 + 343w^{n-1})$
- $2c^3(16c - 81)$
- $pq(216 - p)$
Steps to Solve
-
Simplify the first expression
For the expression $\frac{-4m^3}{6} \cdot m^4$, first simplify the fraction: $$ \frac{-4}{6} = -\frac{2}{3} $$ Now, combine the powers of $m$: $$ m^3 \cdot m^4 = m^{3+4} = m^7 $$ Thus, the simplified expression is: $$ -\frac{2}{3} m^7 $$
-
Expand the second expression
For $(8a^2 - 6a)(1 - 4a - 7a^2)$, use the distributive property (FOIL): [ 8a^2(1) + 8a^2(-4a) + 8a^2(-7a^2) - 6a(1) - 6a(-4a) - 6a(-7a^2) ]
This gives: $$ 8a^2 - 32a^3 - 56a^4 - 6a + 24a^2 + 42a^3 $$
Combine like terms: $$ -56a^4 + (8a^2 + 24a^2) + (-32a^3 + 42a^3) - 6a $$ So, $$ -56a^4 + 32a^2 + 10a^3 - 6a $$
-
Expand the third expression
For $(6a - 7a^2 + 1)(5a^2 + 2a - 2)$: [ 6a(5a^2) + 6a(2a) + 6a(-2) - 7a^2(5a^2) - 7a^2(2a) - 7a^2(-2) + 1(5a^2) + 1(2a) + 1(-2) ] Combine like terms: $$ -35a^4 + 12a^3 + 6a + 5a^2 - 14a^2 - 6 $$
-
Simplify the fourth expression
For $(x^4) - 2(x - 1)$: Distribute $-2$: $$ x^4 - 2x + 2 $$
-
Expand the fifth expression
For $(3a - 6)(x^2 - x + 7)$: $$ 3a(x^2) - 3a(x) + 21a - 6(x^2) + 6(x) - 6(7) $$ Combine: $$ 3ax^2 - 3ax + 21a - 6x^2 + 6x - 42 $$
-
Combine like terms in the sixth expression
For $8a^4 - 5a^4 - 2a^3$: $$ (8 - 5)a^4 - 2a^3 = 3a^4 - 2a^3 $$
-
Combine terms in the seventh expression
For $9x^2 + 21x^2$: $$ (9 + 21)x^2 = 30x^2 $$
-
Simplify the eighth expression
For $3^n - 147$, it remains as is: $$ 3^n - 147 $$
-
Factor the ninth expression
For $64a^2 - 343b^3$, this is a difference of cubes: $$ (4a - 7b)(16a^2 + 28ab + 49b^2) $$
-
Combine like terms in the tenth expression
For $648w + 1029w^n$, factor out $3w$: $$ 3w(216 + 343w^{n-1}) $$
-
Factor the eleventh expression
For $32c^4 - 162c^3$, factor out $2c^3$: $$ 2c^3(16c - 81) $$
-
Factor the twelfth expression
For $216pq - p^2q$, factor out $pq$: $$ pq(216 - p) $$
- $-\frac{2}{3} m^7$
- $-56a^4 + 10a^3 + 32a^2 - 6a$
- $-35a^4 + 12a^3 + 5a^2 + 6a - 6$
- $x^4 - 2x + 2$
- $(-3x + 21a)(3a - 6)$
- $3a^4 - 2a^3$
- $30x^2$
- $3^n - 147$
- $(4a - 7b)(16a^2 + 28ab + 49b^2)$
- $3w(216 + 343w^{n-1})$
- $2c^3(16c - 81)$
- $pq(216 - p)$
More Information
The answers involve simplifying polynomial expressions, factoring, and recognizing special forms like the difference of cubes. These skills are essential in algebra, especially in higher-level math.
Tips
- Forgetting to combine like terms after expansion.
- Misapplying the distributive property when expanding polynomials.
- Incorrectly factoring out the greatest common factor.
AI-generated content may contain errors. Please verify critical information