Simplify each expression and factor each polynomial below completely.

Question image

Understand the Problem

The question involves simplifying expressions and factoring polynomials based on polynomial functions as outlined in a test study guide.

Answer

1. $-\frac{2}{3} m^7$ 2. $-56a^4 + 10a^3 + 32a^2 - 6a$ 3. $-35a^4 + 12a^3 + 5a^2 + 6a - 6$ 4. $x^4 - 2x + 2$ 5. $(-3x + 21a)(3a - 6)$ 6. $3a^4 - 2a^3$ 7. $30x^2$ 8. $3^n - 147$ 9. $(4a - 7b)(16a^2 + 28ab + 49b^2)$ 10. $3w(216 + 343w^{n-1})$ 11. $2c^3(16c - 81)$ 12. $pq(216 - p)$
Answer for screen readers
  1. $-\frac{2}{3} m^7$
  2. $-56a^4 + 10a^3 + 32a^2 - 6a$
  3. $-35a^4 + 12a^3 + 5a^2 + 6a - 6$
  4. $x^4 - 2x + 2$
  5. $(-3x + 21a)(3a - 6)$
  6. $3a^4 - 2a^3$
  7. $30x^2$
  8. $3^n - 147$
  9. $(4a - 7b)(16a^2 + 28ab + 49b^2)$
  10. $3w(216 + 343w^{n-1})$
  11. $2c^3(16c - 81)$
  12. $pq(216 - p)$

Steps to Solve

  1. Simplify the first expression

    For the expression $\frac{-4m^3}{6} \cdot m^4$, first simplify the fraction: $$ \frac{-4}{6} = -\frac{2}{3} $$ Now, combine the powers of $m$: $$ m^3 \cdot m^4 = m^{3+4} = m^7 $$ Thus, the simplified expression is: $$ -\frac{2}{3} m^7 $$

  2. Expand the second expression

    For $(8a^2 - 6a)(1 - 4a - 7a^2)$, use the distributive property (FOIL): [ 8a^2(1) + 8a^2(-4a) + 8a^2(-7a^2) - 6a(1) - 6a(-4a) - 6a(-7a^2) ]

    This gives: $$ 8a^2 - 32a^3 - 56a^4 - 6a + 24a^2 + 42a^3 $$

    Combine like terms: $$ -56a^4 + (8a^2 + 24a^2) + (-32a^3 + 42a^3) - 6a $$ So, $$ -56a^4 + 32a^2 + 10a^3 - 6a $$

  3. Expand the third expression

    For $(6a - 7a^2 + 1)(5a^2 + 2a - 2)$: [ 6a(5a^2) + 6a(2a) + 6a(-2) - 7a^2(5a^2) - 7a^2(2a) - 7a^2(-2) + 1(5a^2) + 1(2a) + 1(-2) ] Combine like terms: $$ -35a^4 + 12a^3 + 6a + 5a^2 - 14a^2 - 6 $$

  4. Simplify the fourth expression

    For $(x^4) - 2(x - 1)$: Distribute $-2$: $$ x^4 - 2x + 2 $$

  5. Expand the fifth expression

    For $(3a - 6)(x^2 - x + 7)$: $$ 3a(x^2) - 3a(x) + 21a - 6(x^2) + 6(x) - 6(7) $$ Combine: $$ 3ax^2 - 3ax + 21a - 6x^2 + 6x - 42 $$

  6. Combine like terms in the sixth expression

    For $8a^4 - 5a^4 - 2a^3$: $$ (8 - 5)a^4 - 2a^3 = 3a^4 - 2a^3 $$

  7. Combine terms in the seventh expression

    For $9x^2 + 21x^2$: $$ (9 + 21)x^2 = 30x^2 $$

  8. Simplify the eighth expression

    For $3^n - 147$, it remains as is: $$ 3^n - 147 $$

  9. Factor the ninth expression

    For $64a^2 - 343b^3$, this is a difference of cubes: $$ (4a - 7b)(16a^2 + 28ab + 49b^2) $$

  10. Combine like terms in the tenth expression

    For $648w + 1029w^n$, factor out $3w$: $$ 3w(216 + 343w^{n-1}) $$

  11. Factor the eleventh expression

    For $32c^4 - 162c^3$, factor out $2c^3$: $$ 2c^3(16c - 81) $$

  12. Factor the twelfth expression

    For $216pq - p^2q$, factor out $pq$: $$ pq(216 - p) $$

  1. $-\frac{2}{3} m^7$
  2. $-56a^4 + 10a^3 + 32a^2 - 6a$
  3. $-35a^4 + 12a^3 + 5a^2 + 6a - 6$
  4. $x^4 - 2x + 2$
  5. $(-3x + 21a)(3a - 6)$
  6. $3a^4 - 2a^3$
  7. $30x^2$
  8. $3^n - 147$
  9. $(4a - 7b)(16a^2 + 28ab + 49b^2)$
  10. $3w(216 + 343w^{n-1})$
  11. $2c^3(16c - 81)$
  12. $pq(216 - p)$

More Information

The answers involve simplifying polynomial expressions, factoring, and recognizing special forms like the difference of cubes. These skills are essential in algebra, especially in higher-level math.

Tips

  • Forgetting to combine like terms after expansion.
  • Misapplying the distributive property when expanding polynomials.
  • Incorrectly factoring out the greatest common factor.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser