P(A ∩ B) और P(A ∪ B) का मान ज्ञात कीजिए। ay² = x³ के बिंदु (am², am³) पर प्रवणता ज्ञात कीजिए। बिंदु A(2, 3, 4), B(-1, -2, 1) तथा C(1, 2, 3) का उपयोग कीजिए। P(A ∩ B) और P(A ∪ B) का मान ज्ञात कीजिए। ay² = x³ के बिंदु (am², am³) पर प्रवणता ज्ञात कीजिए। बिंदु A(2, 3, 4), B(-1, -2, 1) तथा C(1, 2, 3) का उपयोग कीजिए।

Question image

Understand the Problem

प्रश्न में हमें एक समीकरण और तीन बिंदुओं A, B, और C दिए गए हैं। हमें बताए गए बिंदुओं पर प्रवणता और संभाव्यता की गणना करने को कहा गया है। यह एक गणितीय समस्या है जिसमें हमें बिंदुओं का अनुप्रस्थ और अदिश विवरण निकालना होगा।

Answer

The slope at the point $(am^2, am^3)$ is $\frac{3m}{2}$.
Answer for screen readers

The slope at the point $(am^2, am^3)$ is $\frac{3m}{2}$.

Steps to Solve

  1. Probability Calculation for A and B To find $P(A \cap B)$ and $P(A \cup B)$, we need to know the definitions:

    • $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
    • $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

    However, since we don't know the probabilities of A and B yet, we will need to find them or assume values to use this formula.

  2. Finding the Derivative for Slope Calculation We have the equation $ay^2 = x^3$. First, we need to differentiate it implicitly to find the slope.

    • Rearranging gives: $y^2 = \frac{x^3}{a}$
    • Differentiate both sides with respect to $x$ using implicit differentiation.

    The differentiation yields: $$ 2y \frac{dy}{dx} = \frac{3x^2}{a} $$

    Now, solving for $\frac{dy}{dx}$ we get: $$ \frac{dy}{dx} = \frac{3x^2}{2ay} $$

  3. Evaluate the Slope at the Point (am², am³) Substitute the values $(am^2, am^3)$ into the derivative to find the slope at this point:

    • Here, $x = am^2$ and $y = am^3$.
    • Now substitute these into the slope formula: $$ \frac{dy}{dx} = \frac{3(am^2)^2}{2a(am^3)} = \frac{3a^2m^4}{2a^2m^3} = \frac{3m}{2} $$
  4. Final Slope Interpretation Thus, the slope of the tangent line at the point $(am^2, am^3)$ is: $$ \text{slope} = \frac{3m}{2} $$

The slope at the point $(am^2, am^3)$ is $\frac{3m}{2}$.

More Information

This slope gives the rate of change of $y$ with respect to $x$ at the specific point. The probability calculations need additional information about events A and B for exact values.

Tips

  • Confusing $P(A \cap B)$ and $P(A \cup B)$; remember that $P(A \cap B)$ is the intersection and $P(A \cup B)$ is the union.
  • Incorrectly applying the derivative or not keeping track of implicit variables; carefully differentiate and substitute to avoid mistakes.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser