Let a̅ = -i - j + k, a̅.b̅ = 1 and a̅ × b̅ = i - j. Then a̅ - 6b̅ is equal to:

Question image

Understand the Problem

The question is asking for the evaluation of the expression a̅ - 6b̅ given the vectors and and their properties. We need to substitute the known values and perform the necessary calculations to find the result.

Answer

$$ \mathbf{a} - 6\mathbf{b} = -5\mathbf{i} + 7\mathbf{j} - \mathbf{k} $$
Answer for screen readers

$$ \mathbf{a} - 6\mathbf{b} = -5\mathbf{i} + 7\mathbf{j} - \mathbf{k} $$

Steps to Solve

  1. Identify the given vectors and properties

The problem gives the vector
$$ \mathbf{a} = -\mathbf{i} - \mathbf{j} + \mathbf{k} $$
along with the inner product and cross product:
$$ \mathbf{a} \cdot \mathbf{b} = 1 $$
$$ \mathbf{a} \times \mathbf{b} = \mathbf{i} - \mathbf{j} $$

  1. Find the expression for $\mathbf{b}$

From the cross product, we can infer some properties about $\mathbf{b}$.
Let $$ \mathbf{b} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} $$.

Using the property of the dot product:
$$ \mathbf{a} \cdot \mathbf{b} = (-1)(x) + (-1)(y) + (1)(z) = -x - y + z = 1 $$
This gives us our first equation:
$$ z - x - y = 1 \quad \text{(1)} $$

  1. Use the cross product to find another equation

The cross product is computed as follows:
$$ \mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \
-1 & -1 & 1 \
x & y & z
\end{vmatrix} $$

Calculating the determinant, we find that:
$$ \mathbf{a} \times \mathbf{b} = \left((-1)z - (1)(y)\right)\mathbf{i} - \left((-1)z - (1)(x)\right)\mathbf{j} + \left((-1)(y) - (-1)(x)\right)\mathbf{k} $$
That simplifies to:
$$ = (-z - y)\mathbf{i} - (-z - x)\mathbf{j} + (x - y)\mathbf{k} $$

We know this should equal:
$$ \mathbf{i} - \mathbf{j} $$
This gives us two additional equations:

  1. $-z - y = 1 \quad \text{(2)}$

  2. $z + x = 1 \quad \text{(3)}$

  3. Solve the system of equations

We now have three equations:

  1. ( z - x - y = 1 ) (from step 2)
  2. ( -z - y = 1 ) (from step 3)
  3. ( z + x = 1 ) (from step 3)

From equation (2):
$$ y = -z - 1 $$

Substituting ( y ) from equation (2) into equation (1) gives:
$$ z - x - (-z - 1) = 1 $$
Which simplifies to:
$$ 2z - x + 1 = 1 \implies x = 2z $$

Substituting ( x ) back into equation (3):
$$ z + 2z = 1 \implies 3z = 1 \implies z = \frac{1}{3} $$

Now substituting ( z ) back to find ( x ) and ( y ):
$$ x = 2 \cdot \frac{1}{3} = \frac{2}{3} $$
$$ y = -\frac{1}{3} - 1 = -\frac{4}{3} $$

Thus, we find
$$ \mathbf{b} = \frac{2}{3} \mathbf{i} - \frac{4}{3} \mathbf{j} + \frac{1}{3} \mathbf{k} $$

  1. Substituting in the expression $\mathbf{a} - 6\mathbf{b}$

Now substitute ( \mathbf{b} ) back into the original expression:
$$ \mathbf{a} - 6\mathbf{b} = (-\mathbf{i} - \mathbf{j} + \mathbf{k}) - 6\left(\frac{2}{3} \mathbf{i} - \frac{4}{3} \mathbf{j} + \frac{1}{3} \mathbf{k}\right) $$

Distributing gives:
$$ = -\mathbf{i} - \mathbf{j} + \mathbf{k} - 4\mathbf{i} + 8\mathbf{j} - 2\mathbf{k} $$
Combine like terms:
$$ = (-1 - 4)\mathbf{i} + (-1 + 8)\mathbf{j} + (1 - 2)\mathbf{k} $$
$$ = -5\mathbf{i} + 7\mathbf{j} - \mathbf{k} $$

$$ \mathbf{a} - 6\mathbf{b} = -5\mathbf{i} + 7\mathbf{j} - \mathbf{k} $$

More Information

The answer shows how vector subtraction and scalar multiplication affect the components of vectors. In vector algebra, operations like these are commonly used in physics and engineering.

Tips

  1. Miscalculating the cross product: It's crucial to compute the determinant correctly. Double-check each coefficient.
  2. Not substituting back correctly: Ensure all values are replaced properly in final calculations.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser