Given cos θ = 5/13 and 3π/2 ≤ θ ≤ 2π, find -8tan θ + tan² θ - 16.
Understand the Problem
The question involves using the given cosine value and the specified range of theta to calculate the expression -8tan(θ) + tan²(θ) - 16. This will require trigonometric identities and possibly the use of the Pythagorean theorem to find the tangent value.
Answer
The final answer is \( \frac{224}{25} \).
Answer for screen readers
The final answer is ( \frac{224}{25} ).
Steps to Solve
- Identify the given information
We have $ \cos θ = \frac{5}{13} $ and $ \frac{3\pi}{2} \leq θ \leq 2\pi $.
- Find sin θ using the Pythagorean identity
Using the identity $ \sin^2 θ + \cos^2 θ = 1 $, we can find $ \sin θ $: $$ \sin^2 θ = 1 - \cos^2 θ $$ Substituting the given cosine value: $$ \sin^2 θ = 1 - \left( \frac{5}{13} \right)^2 $$ Calculate: $$ \sin^2 θ = 1 - \frac{25}{169} = \frac{144}{169} $$ Thus, $ \sin θ = -\sqrt{\frac{144}{169}} = -\frac{12}{13} $ (since $\sin θ$ is negative in the fourth quadrant).
- Find tan θ
Using the definition of tangent: $$ \tan θ = \frac{\sin θ}{\cos θ} $$ Substituting the values we have: $$ \tan θ = \frac{-\frac{12}{13}}{\frac{5}{13}} = -\frac{12}{5} $$
- Calculate the expression -8tan θ + tan² θ - 16
We substitute $ \tan θ $ into the expression: $$ -8\tan θ + \tan^2 θ - 16 $$ Calculating each term:
- First term: $ -8\tan θ = -8 \left( -\frac{12}{5} \right) = \frac{96}{5} $
- Second term: $ \tan^2 θ = \left( -\frac{12}{5} \right)^2 = \frac{144}{25} $
- Constant term: $ -16 = -\frac{80}{5} = -\frac{400}{25} $
Combining all terms: $$ \frac{96}{5} + \frac{144}{25} - \frac{400}{25} $$
- Convert terms to have a common denominator
The common denominator is 25: $$ \frac{96 \cdot 5}{25} + \frac{144}{25} - \frac{400}{25} = \frac{480}{25} + \frac{144}{25} - \frac{400}{25} $$
- Combine the fractions
Combine the numerators: $$ \frac{480 + 144 - 400}{25} = \frac{224}{25} $$
The final answer is ( \frac{224}{25} ).
More Information
This calculation uses trigonometric identities and the Pythagorean theorem to find the values of sine and tangent from the given cosine value. Knowing the quadrant of the angle allows for proper signs in the trigonometric values.
Tips
- Not considering the sign of sine in the specified quadrant.
- Forgetting to square the tangent correctly.
- Failing to find a common denominator when combining fractions.
AI-generated content may contain errors. Please verify critical information