Find the angle between two vectors a and b with magnitudes √3 and 2, respectively having a·b = √6. What is direction cosine of a line which passes through the points (2,1,2) and (4... Find the angle between two vectors a and b with magnitudes √3 and 2, respectively having a·b = √6. What is direction cosine of a line which passes through the points (2,1,2) and (4,2,0)?

Question image

Understand the Problem

प्रश्न दो वेक्टरों के बीच का कोण निकालने और दो बिंदुओं (2,1,2) और (4,2,0) के बीच की रेखा के दिशा कोसाइन की गणना करने के लिए है। पहले भाग में हमें वेक्टरों के परिमाण दिए गए हैं और उनके बीच के स्केलर गुणनफल की जानकारी भी है। दूसरे भाग में हम दिशा कोसाइन खोज रहे हैं।

Answer

Angle: $\frac{\pi}{4}$; Direction Cosines: $\left( \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right)$.
Answer for screen readers

Angle between the vectors is $\frac{\pi}{4}$ and the direction cosines are $\left( \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right)$.

Steps to Solve

  1. Angle Between Two Vectors

To find the angle $\theta$ between two vectors $\mathbf{a}$ and $\mathbf{b}$, we use the formula: $$ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} $$ Given:

  • Magnitude of $\mathbf{a}$: $|\mathbf{a}| = \sqrt{3}$
  • Magnitude of $\mathbf{b}$: $|\mathbf{b}| = 2$
  • Dot product $\mathbf{a} \cdot \mathbf{b} = \sqrt{6}$

Substituting these values into the equation: $$ \cos \theta = \frac{\sqrt{6}}{\sqrt{3} \cdot 2} $$

  1. Calculate Cosine Value

Calculate the denominator: $$ \sqrt{3} \cdot 2 = 2\sqrt{3} $$ Now substitute: $$ \cos \theta = \frac{\sqrt{6}}{2\sqrt{3}} $$ Simplify further: $$ \cos \theta = \frac{\sqrt{6}}{\sqrt{12}} = \frac{\sqrt{6}}{2\sqrt{3}} = \frac{\sqrt{6}}{2\sqrt{3}} = \frac{\sqrt{2}}{2} $$

  1. Find Angle

To find $\theta$, we take the $\cos^{-1}$: $$ \theta = \cos^{-1} \left( \frac{\sqrt{2}}{2} \right) $$ This gives: $$ \theta = \frac{\pi}{4} $$


  1. Direction Cosines of the Line

To find the direction cosines for the line passing through the points $(2,1,2)$ and $(4,2,0)$, first find the direction vector $\mathbf{d}$ from these points: $$ \mathbf{d} = (4-2, 2-1, 0-2) = (2, 1, -2) $$

  1. Calculate Direction Cosines

Now, the direction cosines $\ell, m, n$ are given by: $$ \ell = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \quad m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \quad n = \frac{c}{\sqrt{a^2 + b^2 + c^2}} $$ where $a = 2, b = 1, c = -2$.

First, calculate the magnitude of the direction vector: $$ \sqrt{(2^2 + 1^2 + (-2)^2)} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 $$

  1. Final Direction Cosines

Substituting the values: $$ \ell = \frac{2}{3}, \quad m = \frac{1}{3}, \quad n = \frac{-2}{3} $$ Thus, direction cosines are: $$ \left( \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right) $$

Angle between the vectors is $\frac{\pi}{4}$ and the direction cosines are $\left( \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right)$.

More Information

The angle $\frac{\pi}{4}$ corresponds to 45 degrees. The direction cosines represent the ratios of the changes in each coordinate direction relative to the overall magnitude of the direction vector.

Tips

  • Not simplifying the cosine ratio correctly.
  • Forgetting to calculate the magnitude of the direction vector before finding the direction cosines.
  • Mixing up the coordinates when calculating the direction vector.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser