Factorizar o descomponer en dos factores: 1. x²-y² 2. a²-1 3. a²-4 4. 9-b² 5. 1-4m² 6. 16-n² 7. a²-25 8. 1-y² 9. 4a²-9 10. 25-36x⁴ 11. 1-49a²b² 12. 4x²-81y⁴ 13. a²b⁸-c² 14. 100-x²y... Factorizar o descomponer en dos factores: 1. x²-y² 2. a²-1 3. a²-4 4. 9-b² 5. 1-4m² 6. 16-n² 7. a²-25 8. 1-y² 9. 4a²-9 10. 25-36x⁴ 11. 1-49a²b² 12. 4x²-81y⁴ 13. a²b⁸-c² 14. 100-x²y⁶ 15. a¹⁰-49b¹² 16. 25x²y⁴-121 17. 100m²n⁴-169y⁶ 18. a²m⁴n⁶-144 19. 196x²y⁴-225z¹² 20. 256a¹²-289b⁴m¹⁰ 21. 1-9a²b⁴c⁶d⁸

Understand the Problem
El problema consiste en factorizar o descomponer en dos factores las expresiones algebraicas dadas. Esto implica identificar patrones como diferencia de cuadrados (a² - b² = (a + b)(a - b)) y aplicar las propiedades algebraicas para expresar cada polinomio como un producto de dos factores.
Answer
1. $(x + y)(x - y)$ 2. $(a + 1)(a - 1)$ 3. $(a + 2)(a - 2)$ 4. $(3 + b)(3 - b)$ 5. $(1 + 2m)(1 - 2m)$ 6. $(4 + n)(4 - n)$ 7. $(a + 5)(a - 5)$ 8. $(1 + y)(1 - y)$ 9. $(2a + 3)(2a - 3)$ 10. $(5 + 6x^2)(5 - 6x^2)$ 11. $(1 + 7ab)(1 - 7ab)$ 12. $(2x + 9y^2)(2x - 9y^2)$ 13. $(ab^4 + c)(ab^4 - c)$ 14. $(10 + xy^3)(10 - xy^3)$ 15. $(a^5 + 7b^6)(a^5 - 7b^6)$ 16. $(5xy^2 + 11)(5xy^2 - 11)$ 17. $(10mn^2 + 13y^3)(10mn^2 - 13y^3)$ 18. $(am^2n^3 + 12)(am^2n^3 - 12)$ 19. $(14xy^2 + 15z^6)(14xy^2 - 15z^6)$ 20. $(16a^6 + 17b^2m^5)(16a^6 - 17b^2m^5)$ 21. $(1 + 3ab^2c^3d^4)(1 - 3ab^2c^3d^4)$
Answer for screen readers
- $(x + y)(x - y)$
- $(a + 1)(a - 1)$
- $(a + 2)(a - 2)$
- $(3 + b)(3 - b)$
- $(1 + 2m)(1 - 2m)$
- $(4 + n)(4 - n)$
- $(a + 5)(a - 5)$
- $(1 + y)(1 - y)$
- $(2a + 3)(2a - 3)$
- $(5 + 6x^2)(5 - 6x^2)$
- $(1 + 7ab)(1 - 7ab)$
- $(2x + 9y^2)(2x - 9y^2)$
- $(ab^4 + c)(ab^4 - c)$
- $(10 + xy^3)(10 - xy^3)$
- $(a^5 + 7b^6)(a^5 - 7b^6)$
- $(5xy^2 + 11)(5xy^2 - 11)$
- $(10mn^2 + 13y^3)(10mn^2 - 13y^3)$
- $(am^2n^3 + 12)(am^2n^3 - 12)$
- $(14xy^2 + 15z^6)(14xy^2 - 15z^6)$
- $(16a^6 + 17b^2m^5)(16a^6 - 17b^2m^5)$
- $(1 + 3ab^2c^3d^4)(1 - 3ab^2c^3d^4)$
Steps to Solve
- Recognize the difference of squares pattern
The difference of squares factorization pattern is $a^2 - b^2 = (a + b)(a - b)$. We need to identify $a$ and $b$ in each given expression and apply the pattern.
- Factor $x^2 - y^2$
Here, $a = x$ and $b = y$. Therefore, $x^2 - y^2 = (x + y)(x - y)$.
- Factor $a^2 - 1$
Here, $a = a$ and $b = 1$. Therefore, $a^2 - 1 = (a + 1)(a - 1)$.
- Factor $a^2 - 4$
Here, $a = a$ and $b = 2$. Therefore, $a^2 - 4 = (a + 2)(a - 2)$.
- Factor $9 - b^2$
Here, $a = 3$ and $b = b$. Therefore, $9 - b^2 = (3 + b)(3 - b)$.
- Factor $1 - 4m^2$
Here, $a = 1$ and $b = 2m$. Therefore, $1 - 4m^2 = (1 + 2m)(1 - 2m)$.
- Factor $16 - n^2$
Here, $a = 4$ and $b = n$. Therefore, $16 - n^2 = (4 + n)(4 - n)$.
- Factor $a^2 - 25$
Here, $a = a$ and $b = 5$. Therefore, $a^2 - 25 = (a + 5)(a - 5)$.
- Factor $1 - y^2$
Here, $a = 1$ and $b = y$. Therefore, $1 - y^2 = (1 + y)(1 - y)$.
- Factor $4a^2 - 9$
Here, $a = 2a$ and $b = 3$. Therefore, $4a^2 - 9 = (2a + 3)(2a - 3)$.
- Factor $25 - 36x^4$
Here, $a = 5$ and $b = 6x^2$. Therefore, $25 - 36x^4 = (5 + 6x^2)(5 - 6x^2)$.
- Factor $1 - 49a^2b^2$
Here, $a = 1$ and $b = 7ab$. Therefore, $1 - 49a^2b^2 = (1 + 7ab)(1 - 7ab)$.
- Factor $4x^2 - 81y^4$
Here, $a = 2x$ and $b = 9y^2$. Therefore, $4x^2 - 81y^4 = (2x + 9y^2)(2x - 9y^2)$.
- Factor $a^2b^8 - c^2$
Here, $a = ab^4$ and $b = c$. Therefore, $a^2b^8 - c^2 = (ab^4 + c)(ab^4 - c)$.
- Factor $100 - x^2y^6$
Here, $a = 10$ and $b = xy^3$. Therefore, $100 - x^2y^6 = (10 + xy^3)(10 - xy^3)$.
- Factor $a^{10} - 49b^{12}$
Here, $a = a^5$ and $b = 7b^6$. Therefore, $a^{10} - 49b^{12} = (a^5 + 7b^6)(a^5 - 7b^6)$.
- Factor $25x^2y^4 - 121$
Here, $a = 5xy^2$ and $b = 11$. Therefore, $25x^2y^4 - 121 = (5xy^2 + 11)(5xy^2 - 11)$.
- Factor $100m^2n^4 - 169y^6$
Here, $a = 10mn^2$ and $b = 13y^3$. Therefore, $100m^2n^4 - 169y^6 = (10mn^2 + 13y^3)(10mn^2 - 13y^3)$.
- Factor $a^2m^4n^6 - 144$
Here, $a = am^2n^3$ and $b = 12$. Therefore, $a^2m^4n^6 - 144 = (am^2n^3 + 12)(am^2n^3 - 12)$.
- Factor $196x^2y^4 - 225z^{12}$
Here, $a = 14xy^2$ and $b = 15z^6$. Therefore, $196x^2y^4 - 225z^{12} = (14xy^2 + 15z^6)(14xy^2 - 15z^6)$.
- Factor $256a^{12} - 289b^4m^{10}$
Here, $a = 16a^6$ and $b = 17b^2m^5$. Therefore, $256a^{12} - 289b^4m^{10} = (16a^6 + 17b^2m^5)(16a^6 - 17b^2m^5)$.
- Factor $1 - 9a^2b^4c^6d^8$
Here, $a = 1$ and $b = 3ab^2c^3d^4$. Therefore, $1 - 9a^2b^4c^6d^8 = (1 + 3ab^2c^3d^4)(1 - 3ab^2c^3d^4)$.
- $(x + y)(x - y)$
- $(a + 1)(a - 1)$
- $(a + 2)(a - 2)$
- $(3 + b)(3 - b)$
- $(1 + 2m)(1 - 2m)$
- $(4 + n)(4 - n)$
- $(a + 5)(a - 5)$
- $(1 + y)(1 - y)$
- $(2a + 3)(2a - 3)$
- $(5 + 6x^2)(5 - 6x^2)$
- $(1 + 7ab)(1 - 7ab)$
- $(2x + 9y^2)(2x - 9y^2)$
- $(ab^4 + c)(ab^4 - c)$
- $(10 + xy^3)(10 - xy^3)$
- $(a^5 + 7b^6)(a^5 - 7b^6)$
- $(5xy^2 + 11)(5xy^2 - 11)$
- $(10mn^2 + 13y^3)(10mn^2 - 13y^3)$
- $(am^2n^3 + 12)(am^2n^3 - 12)$
- $(14xy^2 + 15z^6)(14xy^2 - 15z^6)$
- $(16a^6 + 17b^2m^5)(16a^6 - 17b^2m^5)$
- $(1 + 3ab^2c^3d^4)(1 - 3ab^2c^3d^4)$
More Information
Each of these factorizations follows the difference of squares pattern: $A^2 - B^2 = (A + B)(A - B)$
Tips
A common mistake is not recognizing the perfect squares within the terms, especially when coefficients or exponents are involved. For example, in $4x^2 - 9$, one might forget that $4x^2 = (2x)^2$ and $9 = 3^2$. Also, pay close attention to signs; the formula applies to a difference, not a sum, of squares.
AI-generated content may contain errors. Please verify critical information