¿Cuáles son las raíces del polinomio x² - 5x + 25?

Question image

Understand the Problem

La pregunta pide encontrar las raíces del polinomio cuadrático dado: x² - 5x + 25. Esto implica utilizar la fórmula cuadrática o completar el cuadrado para hallar los valores de x que satisfacen la ecuación.

Answer

$x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2}i$
Answer for screen readers

b) $x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2}i$

Steps to Solve

  1. Identify the coefficients

The given quadratic polynomial is $x^2 - 5x + 25$. Comparing this with the general form of a quadratic equation $ax^2 + bx + c = 0$, we have $a = 1$, $b = -5$, and $c = 25$.

  1. Apply the quadratic formula

The quadratic formula is given by:

$$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$

Plugging in the values of $a$, $b$, and $c$, we get:

$$ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(25)}}{2(1)} $$

  1. Simplify the expression

Simplify the expression under the square root:

$$ x = \frac{5 \pm \sqrt{25 - 100}}{2} $$

$$ x = \frac{5 \pm \sqrt{-75}}{2} $$

  1. Express the square root of a negative number in terms of $i$

Since $\sqrt{-1} = i$, we can rewrite $\sqrt{-75}$ as $\sqrt{75} \cdot i$. Also, $\sqrt{75} = \sqrt{25 \cdot 3} = 5\sqrt{3}$. Therefore:

$$ x = \frac{5 \pm 5\sqrt{3}i}{2} $$

  1. Separate into two roots

The two roots are:

$$ x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2}i $$

b) $x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2}i$

More Information

The roots of the quadratic equation are complex conjugates. This means the quadratic equation does not intersect the x-axis.

Tips

  • Incorrectly applying the quadratic formula.
  • Making errors when simplifying the square root of a negative number. For example, not extracting the $i$ from $\sqrt{-75}$.
  • Incorrectly identifying the coefficients $a$, $b$, and $c$ from the given quadratic equation.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser