Calculate the values of x°, y°, z°, and w° in the provided geometric figures.

Question image

Understand the Problem

The question seeks to solve for the unknown angles labeled as x°, y°, z°, and w° in various geometric figures. This involves applying geometric principles such as the properties of angles, parallel lines, and triangles.

Answer

The angles are: $z^\circ = 30^\circ$, $v^\circ = 60^\circ$, $x^\circ = 60^\circ$, $y^\circ = 50^\circ$, $x^\circ = 77^\circ$, $w^\circ = 50^\circ$, $y^\circ = 26^\circ$, $w^\circ = 77^\circ$, and $y^\circ = 154^\circ$.
Answer for screen readers

The angles are:

  • $z^\circ = 30^\circ$
  • $v^\circ = 60^\circ$
  • $x^\circ = 60^\circ$
  • $y^\circ = 50^\circ$
  • $x^\circ = 77^\circ$ (in triangle f)
  • $w^\circ = 50^\circ$
  • $y^\circ = 26^\circ$ (in e)
  • $w^\circ = 77^\circ$ (in f)
  • $y^\circ = 154^\circ$ (in e)

Steps to Solve

  1. Calculate angle $z^\circ$ in (b)

In a parallelogram, opposite angles are equal. Thus,

[ z^\circ = 30^\circ ]

  1. Find angle $v^\circ$ in (c)

Using the fact that the sum of angles on a straight line is $180^\circ$, we have:

[ v^\circ + 120^\circ = 180^\circ \implies v^\circ = 60^\circ ]

  1. Determine angle $x^\circ$ in (c)

Since alternate interior angles are equal,

[ x^\circ = 60^\circ ]

  1. Calculate angle $y^\circ$ in (d)

The angles $y^\circ$ and $130^\circ$ are supplementary:

[ y^\circ + 130^\circ = 180^\circ \implies y^\circ = 50^\circ ]

  1. Find angle $x^\circ$ in (f)

Using the triangle sum theorem (the sum of angles in a triangle is $180^\circ$):

[ x^\circ + y^\circ + z^\circ = 180^\circ \implies x^\circ + 50^\circ + 53^\circ = 180^\circ ] [ x^\circ = 77^\circ ]

  1. Calculate angle $w^\circ$ in (f)

Using triangle sum theorem again:

[ w^\circ + 50^\circ + 53^\circ = 180^\circ \implies w^\circ = 77^\circ ]

  1. Find angle $w^\circ$ in (g)

Using properties of angles in a quadrilateral:

[ w^\circ + x^\circ + y^\circ + z^\circ = 360^\circ ] Substituting known angles:

[ w^\circ + 77^\circ + 50^\circ + 24^\circ = 360^\circ \implies w^\circ = 209^\circ ]

  1. Determine angle $y^\circ$ in (e)

Using the properties of parallel lines:

[ y^\circ = 26^\circ ]

  1. Calculate angle $v^\circ$ in (e)

Using the opposite angles theorem:

[ v^\circ = 154^\circ ]

The angles are:

  • $z^\circ = 30^\circ$
  • $v^\circ = 60^\circ$
  • $x^\circ = 60^\circ$
  • $y^\circ = 50^\circ$
  • $x^\circ = 77^\circ$ (in triangle f)
  • $w^\circ = 50^\circ$
  • $y^\circ = 26^\circ$ (in e)
  • $w^\circ = 77^\circ$ (in f)
  • $y^\circ = 154^\circ$ (in e)

More Information

These angles are derived using properties of angles in parallelograms, triangles, and relationships involving parallel lines and transversal segments.

Tips

  • Confusing alternate interior angles with corresponding angles.
  • Forgetting that the sum of angles in a triangle must equal $180^\circ$.
  • Miscalculating supplementary angles (the sum must be $180^\circ$).

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser