Podcast
Questions and Answers
¿Qué característica debe tener una función recursiva para evitar la recursión infinita?
¿Qué característica debe tener una función recursiva para evitar la recursión infinita?
- Debe ejecutarse en un entorno de hardware específico.
- Debe tener elementos que permitan cerrarla lógicamente. (correct)
- Debe depender únicamente de variables globales.
- Debe tener al menos una invocación a otra función externa.
¿En qué consiste la aplicación de la recursividad en la generación de gráficos fractales?
¿En qué consiste la aplicación de la recursividad en la generación de gráficos fractales?
- En aplicar transformaciones lineales a una imagen.
- En generar imágenes aleatorias mediante funciones matemáticas.
- En dibujar figuras geométricas básicas de manera repetitiva.
- En crear figuras compuestas por versiones más simples de la misma figura original. (correct)
¿Cuál es el papel del 'Stack Segment' en la ejecución de funciones recursivas?
¿Cuál es el papel del 'Stack Segment' en la ejecución de funciones recursivas?
- Asignar memoria para los parámetros formales y variables locales de cada invocación. (correct)
- Optimizar el rendimiento del procesador.
- Gestionar la comunicación con dispositivos externos.
- Almacenar el código ejecutable de la función.
En el contexto de coordenadas de pantalla, ¿dónde se ubica el origen del sistema de coordenadas?
En el contexto de coordenadas de pantalla, ¿dónde se ubica el origen del sistema de coordenadas?
Según la descripción del Stack Segment, ¿qué significa que funcione bajo la modalidad LIFO (Last In - First Out)?
Según la descripción del Stack Segment, ¿qué significa que funcione bajo la modalidad LIFO (Last In - First Out)?
¿Qué dos grupos de datos almacena cada instancia recursiva en el 'stack segment' al ser ejecutada?
¿Qué dos grupos de datos almacena cada instancia recursiva en el 'stack segment' al ser ejecutada?
¿Qué implicación tiene, en términos de memoria, el uso de una versión recursiva en comparación con una versión iterativa de un algoritmo?
¿Qué implicación tiene, en términos de memoria, el uso de una versión recursiva en comparación con una versión iterativa de un algoritmo?
En el contexto de la función de Ackermann, ¿qué caso base se define cuando $m = 0$?
En el contexto de la función de Ackermann, ¿qué caso base se define cuando $m = 0$?
De acuerdo con la información proporcionada, ¿cuál de los siguientes algoritmos de ordenamiento tiene un rendimiento aceptable solo si el tamaño del arreglo es pequeño?
De acuerdo con la información proporcionada, ¿cuál de los siguientes algoritmos de ordenamiento tiene un rendimiento aceptable solo si el tamaño del arreglo es pequeño?
¿Cuál es la principal diferencia entre el peor caso y el caso promedio en el análisis de algoritmos?
¿Cuál es la principal diferencia entre el peor caso y el caso promedio en el análisis de algoritmos?
Según la notación Big O, ¿qué significa que un algoritmo tenga un tiempo de ejecución de O(log(n))?
Según la notación Big O, ¿qué significa que un algoritmo tenga un tiempo de ejecución de O(log(n))?
¿Qué tipo de algoritmos tienen una complejidad de tiempo de ejecución de O(2ⁿ)?
¿Qué tipo de algoritmos tienen una complejidad de tiempo de ejecución de O(2ⁿ)?
¿Cuál es el comportamiento asintótico en el mejor caso del algoritmo de ordenamiento Burbuja (Intercambio Directo) según la información proporcionada?
¿Cuál es el comportamiento asintótico en el mejor caso del algoritmo de ordenamiento Burbuja (Intercambio Directo) según la información proporcionada?
En el contexto de las estructuras de datos, ¿cómo se define una estructura de datos 'lineal'?
En el contexto de las estructuras de datos, ¿cómo se define una estructura de datos 'lineal'?
¿Cuál es la característica principal de una pila (Stack) en cuanto al orden de acceso a sus elementos?
¿Cuál es la característica principal de una pila (Stack) en cuanto al orden de acceso a sus elementos?
¿Cómo se denomina al proceso de agregar un elemento al tope de una pila (Stack)?
¿Cómo se denomina al proceso de agregar un elemento al tope de una pila (Stack)?
En la estructura de datos Cola (Queue), ¿cómo se determina el orden en que se procesan los elementos?
En la estructura de datos Cola (Queue), ¿cómo se determina el orden en que se procesan los elementos?
Considerando la definición de árbol binario, ¿qué condición deben cumplir sus subconjuntos de elementos?
Considerando la definición de árbol binario, ¿qué condición deben cumplir sus subconjuntos de elementos?
En la terminología de árboles binarios, ¿cómo se denomina a los nodos inmediatamente debajo de un nodo dado 'x'?
En la terminología de árboles binarios, ¿cómo se denomina a los nodos inmediatamente debajo de un nodo dado 'x'?
En un árbol binario de búsqueda, ¿qué se realiza para encontrar una 'clave' específica?
En un árbol binario de búsqueda, ¿qué se realiza para encontrar una 'clave' específica?
En el recorrido de árboles binarios, ¿qué estructura de datos se utiliza para almacenar las direcciones de los nodos visitados en orden LIFO?
En el recorrido de árboles binarios, ¿qué estructura de datos se utiliza para almacenar las direcciones de los nodos visitados en orden LIFO?
¿En qué tipo de recorrido de un árbol binario se visita cada nodo cuando se vuelve a él desde la izquierda?
¿En qué tipo de recorrido de un árbol binario se visita cada nodo cuando se vuelve a él desde la izquierda?
En el contexto de los grafos, ¿qué representa un 'arco'?
En el contexto de los grafos, ¿qué representa un 'arco'?
En la teoría de grafos, ¿cómo se define que dos vértices son 'adyacentes'?
En la teoría de grafos, ¿cómo se define que dos vértices son 'adyacentes'?
¿Qué indica el 'Grado de Entrada' de un nodo en un grafo dirigido?
¿Qué indica el 'Grado de Entrada' de un nodo en un grafo dirigido?
En un grafo, ¿qué característica distingue a un 'grafo cíclico'?
En un grafo, ¿qué característica distingue a un 'grafo cíclico'?
¿Qué representa la matriz de adyacencia en la implementación matricial de un grafo dirigido?
¿Qué representa la matriz de adyacencia en la implementación matricial de un grafo dirigido?
¿Cuál es una recomendación para evitar el peor caso en el algoritmo Quicksort al seleccionar el 'pivot'?
¿Cuál es una recomendación para evitar el peor caso en el algoritmo Quicksort al seleccionar el 'pivot'?
¿Cuál de las siguientes estrategias de resolución de problemas se basa en aplicar ideas intuitivas y directas, aunque normalmente produce algoritmos de mal rendimiento?
¿Cuál de las siguientes estrategias de resolución de problemas se basa en aplicar ideas intuitivas y directas, aunque normalmente produce algoritmos de mal rendimiento?
Flashcards
¿Qué es recursividad?
¿Qué es recursividad?
Objeto o concepto que aparece en su propia definición.
¿Condiciones para la recursividad?
¿Condiciones para la recursividad?
La función debe tener al menos una invocación a sí misma y condiciones de control para interrumpir el proceso.
¿Qué es un bosque recursivo?
¿Qué es un bosque recursivo?
Conjunto vacío de árboles o uno o más árboles agrupados con otro bosque.
¿Qué es un Stack Segment?
¿Qué es un Stack Segment?
Signup and view all the flashcards
¿Qué almacena el Stack Segment?
¿Qué almacena el Stack Segment?
Signup and view all the flashcards
¿Cómo funciona el Stack Segment?
¿Cómo funciona el Stack Segment?
Signup and view all the flashcards
¿Qué es una función recursiva?
¿Qué es una función recursiva?
Signup and view all the flashcards
Recursión
Recursión
Signup and view all the flashcards
¿Qué es Divide y Vencerás?
¿Qué es Divide y Vencerás?
Signup and view all the flashcards
¿Qué es Algoritmos Ávidos?
¿Qué es Algoritmos Ávidos?
Signup and view all the flashcards
¿Qué es Backtracking?
¿Qué es Backtracking?
Signup and view all the flashcards
¿Qué es Programación Dinámica?
¿Qué es Programación Dinámica?
Signup and view all the flashcards
Estrategias de resolución
Estrategias de resolución
Signup and view all the flashcards
Fuerza Bruta
Fuerza Bruta
Signup and view all the flashcards
Shellsort
Shellsort
Signup and view all the flashcards
Heapsort
Heapsort
Signup and view all the flashcards
Burbuja (Intercambio Directo)
Burbuja (Intercambio Directo)
Signup and view all the flashcards
Quicksort
Quicksort
Signup and view all the flashcards
Analisis de Algoritmos
Analisis de Algoritmos
Signup and view all the flashcards
Notación Big O
Notación Big O
Signup and view all the flashcards
Estructuras nativas
Estructuras nativas
Signup and view all the flashcards
Estructuras abstractas
Estructuras abstractas
Signup and view all the flashcards
Abstracción de Datos
Abstracción de Datos
Signup and view all the flashcards
Abstracción Funcional
Abstracción Funcional
Signup and view all the flashcards
Postorden
Postorden
Signup and view all the flashcards
Grafos
Grafos
Signup and view all the flashcards
Grafo dirigido
Grafo dirigido
Signup and view all the flashcards
Grafo no dirigido
Grafo no dirigido
Signup and view all the flashcards
Grafo ponderado
Grafo ponderado
Signup and view all the flashcards
Grafo dirigido:matriz
Grafo dirigido:matriz
Signup and view all the flashcards
Study Notes
Recursiveness
- Describes a definition where the object or concept being defined appears in the definition itself.
Applications
- It is employed is image and fractal graphics processing
- It is used during traversal and processing of non-linear data structures, like trees and graphs.
Conditions
- The functions must have self-invocation in its action block
- Control conditions should interrupt the recursive process, if trivial or base problem situations are reached.
- A well-structured recursive definition avoids infinite recursion by logically including elements that close it.
Recursive Definition of the Concept of Forest
- A forest is a set of trees that may be empty.
- A forest may contain one or more trees grouped with another forest.
Code Block Analysis
- This recursive version is simpler and more compact than a cycle-based version.
- The recursive version requires stack memory for each invocation.
- The iterative approach is more convenient.
Fractal Graphics
- Refer to a fractal figure composed of smaller versions of the original figure
Screen Coordinates
- The coordinate system's origin is in the screen's or window's upper-left corner.
- Lower-numbered rows are closer to the top edge than higher-numbered rows.
Ackermann Function
- A mathematical function defined recursively with rapid growth.
- The function accepts two non-negative integer arguments denoted as m and n.
- It returns n + 1 if m = 0.
- It returns A(m-1, 1) if m > 0 and n = 0.
- It returns A(m - 1, A(m, n - 1)) if m > 0 and n > 0.
Stack Segment
- A block of memory automatically allocated for a function upon invocation, whether recursive or not.
- Within this block, all formal parameters and local variables are created and stored before execution begins
Operation as a Stack
- The stack segment operates as a data stack with LIFO modality i.e. Last In - First Out
- The latest data is stored at the top of the stack segment.
- Internal support for function invocation, recursive or not
- It fills up as the cascade of invocations develops
- As the return process occurs, it empties
- Each recursive instance stores the return address, as well as the local variables, in the stack segment.
- As cascading recursive invocations develop, the stack segment fills up, but begins to empty as an instance finalizes.
Factorial
- Factorial of n, denoted as n!, is defined as 1 if n = 0, or n * factorial(n-1) if n > 0.
Potency
- Potency of a raised to the power of n, denoted as potencia(a, n), is defined as 1 if n = 0.
- Potencia = a * potencia(a, n-1) if n>0
Product
- The product of a and b, denoted as producto(a, b), is defined as 0 if either a or b is 0, otherwise a + producto(a, b-1).
Fibonacci
- F(n) is defined as 1 if( integer n = 1 or n = 0).
- F(n) F(n-1) + F(n-2) if (integer n>1).
- Iterative version has acceptable complexity, constant memory usage, and linear time
- Recursive version has optimal code complexity, proportional to n memory usage, and undefined time complexity
Version Comparison
- Iterative version has a linear time
- Recursive version has exponential time, where the process is of order 1.8η.
Ordering Algorithms
- Types include Simple/Direct and Compound/Improved algorithms
- Simple/Direct algorithms have poor execution time if the array size n is large, but have acceptable performance if n is small.
Simple or Direct Algorithms
- Include Direct Exchange (Bubble), Direct Selection, and Direct Insertion
Compound or Improved Algorithms
- Include Quick Sort, Heap Sort and Decreasing Increments Sort (Shellsort).
Direct Exchange (Bubble/Bubblesort)
- Compares each element with the next in n passes.
- Each pass moves larger elements towards the end of the array.
- A "cut flag" stops the process if no swaps occur in a pass, saving time.
Direct Selection
- Identifies the smallest element from the analyzed elements in n passes
- These elements are moved to the pivot position.
Direct Insertion (or Simple Insertion)
- Involves assuming the array has an initially ordered subset containing only the first element.
- Involves adding new elements to the group in n passes
Shellsort
- Algorithm improves upon Direct Insertion by creating ordered subsets with elements at distance h > 1 initially.
- The process terminates with h = 1.
- When h = 1, the algorithm becomes a simple insertion sort, guaranteeing an ordered array.
- The performance depends on the decreasing increment series selected.
- Worst-case execution time is O(n1.5).
- Subsets analyzed contain almost the same elements if the distance is decreasing.
- There is no good organization of the array before the last pass
- Decreasing increments are assumed to be in the form [5 – 3-1].
Heapsort
- Find the smallest or largest elements successively to move the value to a final location.
- The search for the smallest or largest value is very fast.
- It’s efficient in execution time for both average and worst cases.
- The heap or group of ordering is built with the vector being ordered, without the use of extra memory.
Algorithm Analysis Definition
- A branch of Computer Science focused on techniques to measure algorithmic efficiency.
Factors Influencing Efficiency
- Execution time
- Memory usage
- Source code complexity
Difference Between Worst and Average Case
- The worst case is the most unfavorable input data configuration for the algorithm.
- The average case describes a random configuration of data
Big O Notation
- Represents an upper bound on the execution time
- Expresses the performance of an algorithm
- time
- space
- parameter
Functions and Execution Times
- O(1) is constant
- O(log(n)) is logarithmic
- O(n) is linear
- O(n*log(n)) involves processing each partition without discarding.
- O(n²) is quadratic
- O(n³) is cubic
- O(2ⁿ) is exponential
Exponential Algorithms
- Must explore all combinations of solutions.
- The number of solutions increases exponentially.
Forms of Function Growth
- O(1) < O(log(n)) < O(n) < O(n*log(n)) < O(n²) < O(n³) < O(2ⁿ)
Formalization of Big O Notation
- Polynomial function in n of degree k is of order nk e.g f(n) = 5n³ + 2n² + n = O(n³).
- If f(n) = 2n+10 and g(n) = 2n, then 2n+10 = O(2n).
- logb(n) = O(log(n)).
Exhaustive Counting
- Seeks to determine an expression or formula that rigorously expresses the number of critical operations performed by an algorithm.
Asymptotic Analysis
- Aims to determine the general behavior of a function for very large values of the problem size.
Complexity Order
- Refers to a set or family of mathematical functions with similar asymptotic behavior.
- The most characteristic function of that set is the simplest.
Intractable Problems
- In complexity theory, a problem for which only algorithms with exponential execution time are known
Asymptotic Behavior of Main Sorting Algorithms
- Bubble Sort has O(n²) time in the worst case
- Direct Selection has O(n²) time in the worst case
- Direct Insertion has O(n²) time in the worst case
- Quicksort has O(n*log(n)) in the average case, and O(n²) in the worst case.
- Heapsort has O(n*log(n)) in the average case
- Shellsort has O(n1.5)
Typical Notations
- Big O represents an upper bound on execution time by providing the best upper bound
- Omega represents that execution time or memory space is occupied by an algorithm
- Theta indicates that a function f behaves above and below in the same way that multiples of another function g, meaning f can be bounded both superiorly and inferiorly by multiples of g.
- Little O is similar to O(), but considers only the stricter minor relationship.
If simple sort algorithms all have O(n²) execution time in the worst case
- Explain effective measurements if the execution times are different when facing the same array
- Big O notation rescues the most significant term in the expression that calculates performance
- Discards constants and other terms that might not coincide in the three algorithms
Shellsort Algorithm Characteristics include
- Complex to analyze performance mathematically
- Time of execution for the worst case is O(n1.5)
- An improvement of the Direct Insertion algorithm
- Consists of forming ordered subsets with elements at a distance h > 1 in the first phases, finishing with h = 1 in the last.
Linear Structures
- Includes Stacks and Queues
Structures
- Native structures come with the language (tuples, ranges, strings, lists, etc.).
- Abstract structures don't come with the language (class Book).
Structure Type
- Linear data is stacks and queues
- It includes a unique immediate successor element (or none if it's the last)
- and a unique immediate predecessor element (or none if it's the first).
- Non-linear includes trees and graphs
- Elements may have more than one immediate successor or predecessor
Abstraction Mechanism Decomposition Includes
- Data Abstraction seeks to capture the most relevant data set to represent an abstract type.
- Functional Abstraction seeks to determine the relevant set of processes to implement given functions
Stacks
- Linear structure where elements are stacked on top of each other from the first
- The last element inserted is at the top
- A sequence of data is processed in the reverse order of its input
- LIFO (Last In – First Out) - last in, first out
Queues
- Linear structure in which elements are organized behind each other
- They exist at the beginning and/or end
- Inserting an element add() means new components end up last in the queue.
- Removing an element remove() means only the first one can be eliminated.
- Data sequence is processed int he same order that it entered
- FIFO (First In – First Out) means first in, first out
Class of Stacks and class of Queues
- It goes over how to implement both of these using pseudo code
Non-Linear Structures: Binary Search Trees
- Data structure that can be empty or contain an element/ node known as the tree root.
- Two subsets of elements can be detached from the root node, if the root node exists, displaying these characteristics:
- Both subsets have an empty intersection.
- Both subsets are binary trees.
- They are designated as left subtree and right subtree.
Main Terms
- Links/Arcs are references or pointers, variables to contain a memory location or array indices.
- Given a node x, the two nodes connected to it with two arcs are called sons of x.
- Arcs determine a node's parent
Node Rules
- In a binary tree, no node can have more than one parent.
- Every node can have two sons, one son, or no son.
- Level is the number of arcs that must be followed to reach the given node, counting from the root arc.
- Height is the number of the tree's maximum level.
- Search includes comparing by level to find a key
- The search algorithm is O(log(n)) in the worst-case scenario, if the arc’s height h is O(log(n)).
- If the arc is a diagonal or a level n zigzag, worst-case scenario will be O(n).
- Show algorithm execution time in the worst-case is O(log(n)), just if minimum tree heigh h = O(log(n)).
Binary Tree Traversal
- While traversing the tree, a stack may be used that allows the LIFO storage of nodal directions.
- When you need to restore that node direction after processing one of its sons, it will be directly accessible at the top of the stack.
Preorder
- Each node is visited upon first arrival
- Each node of the arc will be touched 3 times when traversing
- Recorrido: { 1, 5, 13, 18, 15, 3, 20 }
Entroreden
- Each node will be visited after the left side
- Recorrido: { 13, 5, 18, 1, 3, 15, 20 }
Postorden
- Each node is visited when it returns on the right side
- Recorrido: { 13, 18, 5, 3, 20, 15, 1 }
Arc Construction Requirements
- In order to build a arc you need 2:
- Preorden and entroorden
- Postorden and entroorden
Conditions needed to take the Recorrido in preorden from a Binary search arc with a number in order minor to major?
- Only if the arc is diagonal
- Only if is diagonal with every node
What happen if the add section changes the condition that the root to the right may be bigger or equal?
- The arc will have a diagonal structure with null left links if all the roots that may be equal links insert on it
- Two or more equal claves are separated by 2 links
Unbalanced search arc
- On this arcs the seeking time will be the worst is going to O(n)
Balanced search arc
- Arcs binary are going to be the minimal if his height is the minimal as possible with the mount de nodes
Non-Linear Structures: Graphs
- Graph is a non-linear data structure, consisting of a set of n nodes and a set of m arcs.
- An arc connects any two vertices.
- A graph can have subgraphs not connected by arcs
- A graph can have isolated nodes with no incident arcs.
- A vertex may exist, but may not be necessarily either a start or end point for any arc.
- Two nodes a and b of a graph (directed or not) can have multiple paths of different lengths that unite them.
- Two vertices are said to be adjacent if an arc joins them, regardless of the direction of that arc.
Path Definition of Graphs
- The distance between A and B is k if there’s a sequence of k arcs to get from A ending at B
- If there's a path linking a vertex back into itself, a cycle exists, the graph is cyclic
Characteristics of Graphs
- Grade is the amount of arcs that have to be touched to get them
- Entre Grade - Entry grade is and amount of arcs so you come upon at the end that is directed
- Fuera Grade - Outside Grade is an arcs amount so you come upon at the end that is directed
Types of graphs include
- Directed graphs
- Non-directed graphs
- Weighted graphs
Directed Graphs
- The arcs indicate relations between nodes
- Every arc's sense has 2 points
- A start node
- A arrival node
- Some graph types include sociograms, pipeline systems, and university carreer modeling.
Non-Directed Graphs
- The arc connects the 2 vertices
- It can be understood when you can use the graph both direction
- Model the route plan between cities/locations
Weighted Graphs
- Each arc has an associated value, weight.
Matrix Implementation of Graphs
- For a graph where the rows represent the path's starting vertices, and the columns represent the arc's ending vertices.
- For a directed graph, the matrix is symmetrical where each time the arc has (A, B) the matrix is also going to (B, A).
- The matrix it's in the diagonally area where and matrix ady[x][y] is always the value, that is always the one in ady[y][x]
- Reflexive Matrix: Every vertex has itself
- Transitive Matrix: Every auto cycle.
Weighted Graph
- A matrix has to point to an object where that represents what's needed for the arc.
- A way to implements a chart in a matrix form.
Divide and Conquer
- Quicksort algorithm to speed up Bubblesort
Quicksort Algorithm
- It speeds up quick the number
- Charles Antony Richard Hoare created it
- Quickshort does the change quicker
Basic Algorithm
- First pass is the central element or Pivot is taken, the element between these are reorganized
- Second Pass: Re-pass
- Third Pass: Are back again - Re-pass
Average Case
- The Altura is an Algorithm: O(n*log(n).
- The run time is O(n*(log(n)).
Worst Case
- O(n*log(n))
- Always select the pivot from the menor that has.
Keys to Avoid
- Calculate the average that's between the elements.
Pivot Note
- Don't use element zero.
- Because it might be in the peores algorithm and it might turn the almost case in to the "Ordered".
Divide and Conquer Main Code with the Run Time
- Shows the O formula
Calculate the Average
- Shows a example in code on how to calculate.
- Wilhelm Ackerman studied at the Göttingen university
- Fibonnaci's real name is Leonardo Pisano.
Resolution Strategies of Problems
- A collection of techniques that can help find a problem solution
- Results are not guaranteed
- A problem can be solved with multi- resolution strategies
Force Brutal
- Applied with direct intuitive ideals, a simple way to coding
- It might get a good amount of memory
- Problem in travel, Algorithm in Ordenation
Recursive
- The property lets an process invoke itself or multiples times as part of an solution - Image processing, Fractal chart
Backtracking(Going back)
- Solution on how to test and error
- Algorithm in chess or sudoku
- In optimizing the combination
Algorithms avid
- This algorithm applies by an heuristics
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.