Podcast
Questions and Answers
Kompozit bir fonksiyonun türevini bulmak için hangi kural kullanılır?
Kompozit bir fonksiyonun türevini bulmak için hangi kural kullanılır?
İki fonksiyonun çarpımının türevini bulmak için hangi kural kullanılır?
İki fonksiyonun çarpımının türevini bulmak için hangi kural kullanılır?
İki fonksiyonun bölünmesinin türevini bulmak için hangi kural kullanılır?
İki fonksiyonun bölünmesinin türevini bulmak için hangi kural kullanılır?
İki fonksiyonun toplamının türevini bulmak için hangi kural kullanılır?
İki fonksiyonun toplamının türevini bulmak için hangi kural kullanılır?
Signup and view all the answers
X^n şeklinde bir fonksiyonun türevini bulmak için hangi kural kullanılır?
X^n şeklinde bir fonksiyonun türevini bulmak için hangi kural kullanılır?
Signup and view all the answers
Fonksiyonunun türevini bulmak için hangi kuralı kullanılır: f(x) = 3x^2 * 2x^3?
Fonksiyonunun türevini bulmak için hangi kuralı kullanılır: f(x) = 3x^2 * 2x^3?
Signup and view all the answers
Eğer f(x) = (x^2 + 3x)^4 ise, f'(x) nedir?
Eğer f(x) = (x^2 + 3x)^4 ise, f'(x) nedir?
Signup and view all the answers
Eğer f(x) = (2x^2 + 1) / (x^2 - 3x) ise, f'(x) nedir?
Eğer f(x) = (2x^2 + 1) / (x^2 - 3x) ise, f'(x) nedir?
Signup and view all the answers
Eğer f(x) = 2x^3 + 3x^2 - 5x + 1 ise, f'(x) nedir?
Eğer f(x) = 2x^3 + 3x^2 - 5x + 1 ise, f'(x) nedir?
Signup and view all the answers
Eğer f(x) = (2x + 1) * (3x^2 - 2x) ise, f'(x) nedir?
Eğer f(x) = (2x + 1) * (3x^2 - 2x) ise, f'(x) nedir?
Signup and view all the answers
Eğer f(x) = (x^2 + 1) / (x^2 - 4x) ise, f'(x) nedir?
Eğer f(x) = (x^2 + 1) / (x^2 - 4x) ise, f'(x) nedir?
Signup and view all the answers
Eğer f(x) = (x^2 + 2x) * (3x - 2) ise, f'(x) nedir?
Eğer f(x) = (x^2 + 2x) * (3x - 2) ise, f'(x) nedir?
Signup and view all the answers
Study Notes
Derivation Rules
Chain Rule
- If
u = u(x)
andy = f(u)
, thendy/dx = (dy/du) * (du/dx)
- Used to find the derivative of a composite function
- Also known as the "function of a function" rule
Product Rule
- If
u = u(x)
andv = v(x)
, thend(uv)/dx = u * (dv/dx) + v * (du/dx)
- Used to find the derivative of a product of two functions
- Can be extended to find the derivative of a product of more than two functions
Quotient Rule
- If
u = u(x)
andv = v(x)
, thend(u/v)/dx = (u * (dv/dx) - v * (du/dx)) / v^2
- Used to find the derivative of a quotient of two functions
- Similar to the product rule, but with a fraction instead of a product
Sum Rule
- If
u = u(x)
andv = v(x)
, thend(u+v)/dx = du/dx + dv/dx
- Used to find the derivative of a sum of two functions
- Can be extended to find the derivative of a sum of more than two functions
Power Rule
- If
y = x^n
, thendy/dx = n * x^(n-1)
- Used to find the derivative of a function of the form
x^n
, wheren
is a constant - Can be used to find the derivative of more complex functions by combining it with other rules
Türev Kuralları
Zincir Kuralı
-
u = u(x)
vey = f(u)
isedy/dx = (dy/du) * (du/dx)
- Bir bileşik fonksiyonun türevini bulmak için kullanılır
- Ayrıca "fonksiyonun fonksiyonu" kuralı olarak da bilinir
Ürün Kuralı
-
u = u(x)
vev = v(x)
ised(uv)/dx = u * (dv/dx) + v * (du/dx)
- İki fonksiyonun ürününün türevini bulmak için kullanılır
- İkiden fazla fonksiyonun ürününün türevini bulmak için de uzatılabilir
Bölüm Kuralı
-
u = u(x)
vev = v(x)
ised(u/v)/dx = (u * (dv/dx) - v * (du/dx)) / v^2
- İki fonksiyonun bölümünün türevini bulmak için kullanılır
- Ürün kuralına benzer, ancak ürün yerine kesir kullanılır
Toplam Kuralı
-
u = u(x)
vev = v(x)
ised(u+v)/dx = du/dx + dv/dx
- İki fonksiyonun toplamının türevini bulmak için kullanılır
- İkiden fazla fonksiyonun toplamının türevini bulmak için de uzatılabilir
Üst Kuralı
-
y = x^n
isedy/dx = n * x^(n-1)
-
x^n
biçimindeki bir fonksiyonun türevini bulmak için kullanılır - Diğer kurallarla birleştirilerek daha kompleks fonksiyonlarının türevini bulmak için kullanılır
Türev Kuralları
Üstel Kural
-
f(x) = x^n
isef'(x) = nx^(n-1)
- Üssel bir ifadeye sahip herhangi bir fonksiyona uygulanabilir
-
u(x)
şeklinde bir fonksiyona uygulandığındau(x)
yerine geçirilir
Bölüm Kuralı
-
f(x) = u(x) / v(x)
isef'(x) = (u'(x)v(x) - u(x)v'(x)) / v(x)^2
- İki fonksiyonun bölümünden oluşan bir fonksiyonun türevini bulmak için kullanılır
- "Altın türevi çarpınca üstteki, üstteki çarpınca altın türevi, hepsi altının karesine bölünerek" hatırlanabilir
Toplam ve Fark Kuralı
-
f(x) = u(x) + v(x)
isef'(x) = u'(x) + v'(x)
-
f(x) = u(x) - v(x)
isef'(x) = u'(x) - v'(x)
- İki fonksiyonun toplaması veya farkı şeklinde ifade edilen bir fonksiyonun türevini bulmak için kullanılır
- Çoklu toplama veya fark içeren fonksiyonlara da uygulanabilir
Zincir Kuralı
-
f(x) = g(h(x))
isef'(x) = g'(h(x)) * h'(x)
- Kompozit bir fonksiyonun türevini bulmak için kullanılır
- Çoklu kompozisyon içeren fonksiyonlara da uygulanabilir
Çarpım Kuralı
-
f(x) = u(x)v(x)
isef'(x) = u'(x)v(x) + u(x)v'(x)
- İki fonksiyonun çarpımından oluşan bir fonksiyonun türevini bulmak için kullanılır
- "İlki türevi çarpı ikinci, ikinci türevi çarpı ilki" olarak hatırlanabilir
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Türev kuralları, bir fonksiyonun türevini bulmak için kullanılan yöntemlerdir. Zincir kuralı, çarpım kuralı ve bölüm kuralı gibi不同的 kurallar bulunur.