Sistem Persamaan Linier 3 Variabel
6 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Apa bentuk umum dari sistem persamaan linier dengan tiga variabel?

  • a1x + b1y + c1z = d1
  • a1x + b1y + c1z = d1, a2x + b2y + c2z = d2, a3x + b3y + c3z = d3 (correct)
  • a1x + b1y + c1z + d1 = 0
  • a1x - b1y - c1z = d1
  • Apa yang dapat digunakan untuk menentukan konsistensi dan kemandirian sistem persamaan linier dengan tiga variabel?

  • Rank dari matriks koefisien (correct)
  • Metode matriks
  • Metode substitusi
  • Metode eliminasi
  • Bagaimana sistem persamaan linier dengan tiga variabel dapat direpresentasikan?

  • Dalam bentuk tabel
  • Dalam sistem koordinat dua dimensi
  • Dalam sistem koordinat tiga dimensi (correct)
  • Dalam bentuk grafik
  • Apa nama metode yang digunakan untuk menyelesaikan sistem persamaan linier dengan tiga variabel dengan cara menambah atau mengurangi persamaan untuk menghilangkan satu variabel?

    <p>Metode eliminasi</p> Signup and view all the answers

    Apa yang dimaksud dengan sistem persamaan linier dengan tiga variabel yang konsisten?

    <p>Sistem yang memiliki penyelesaian unik</p> Signup and view all the answers

    Berapa banyak metode yang dapat digunakan untuk menyelesaikan sistem persamaan linier dengan tiga variabel?

    <p>3</p> Signup and view all the answers

    Study Notes

    Introduction

    • A system of linear equations with three variables is a set of three linear equations that involve three variables.
    • The goal is to find the values of the three variables that satisfy all three equations.

    General Form

    • The general form of a system of linear equations with three variables is:
    a1x + b1y + c1z = d1
    a2x + b2y + c2z = d2
    a3x + b3y + c3z = d3
    
    • Where a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, and d3 are constants, and x, y, and z are the variables.

    Solution Methods

    • There are several methods to solve a system of linear equations with three variables, including:
      1. Substitution Method: Solve one equation for one variable, and then substitute that expression into the other two equations.
      2. Elimination Method: Add or subtract equations to eliminate one variable, and then solve for the remaining variables.
      3. Matrix Method: Use matrices to represent the system of equations, and then solve using matrix operations.

    Consistency and Independence

    • A system of linear equations with three variables can be:
      • Consistent: Has a unique solution.
      • Inconsistent: Has no solution.
      • Dependent: Has infinitely many solutions.
    • The consistency and independence of the system can be determined by finding the rank of the coefficient matrix.

    Graphical Representation

    • A system of linear equations with three variables can be represented graphically in a 3D coordinate system.
    • Each equation represents a plane in 3D space, and the solution to the system is the point of intersection of the three planes.
    • If the system is inconsistent, the planes do not intersect. If the system is dependent, the planes intersect in a line or a plane.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Pelajari tentang sistem persamaan linier dengan tiga variabel, termasuk bentuk umum, metode penyelesaian, konsistensi dan independensi, serta representasi grafis. Quiz ini membantu Anda memahami konsep-konsep dasar dalam sistem persamaan linier.

    Use Quizgecko on...
    Browser
    Browser