Podcast
Questions and Answers
Complex number $z=x+yi$ 的实部和虚部分别是?
Complex number $z=x+yi$ 的实部和虚部分别是?
如果函数 $f(z)$ 在点 $z_0$ 是解析的,那么它在 $z_0$ 的邻域内也是解析的?
如果函数 $f(z)$ 在点 $z_0$ 是解析的,那么它在 $z_0$ 的邻域内也是解析的?
柯西-黎曼方程的正确形式是什么?
柯西-黎曼方程的正确形式是什么?
柯西积分公式的正确形式是什么?
柯西积分公式的正确形式是什么?
Signup and view all the answers
如果函数 $f(z)$ 在点 $z_0$ 是极点,那么 $Res(f, z_0)$ 是什么?
如果函数 $f(z)$ 在点 $z_0$ 是极点,那么 $Res(f, z_0)$ 是什么?
Signup and view all the answers
什么是复平面中的闭合曲线?
什么是复平面中的闭合曲线?
Signup and view all the answers
Study Notes
Complex Analysis
Complex Numbers
- A complex number is a number of the form
z = x + yi
, wherex
andy
are real numbers andi
is the imaginary unit, satisfyingi^2 = -1
. - The set of complex numbers is denoted by
ℂ
. - The real and imaginary parts of a complex number
z
are denoted byRe(z)
andIm(z)
, respectively.
Functions of Complex Numbers
- A function
f(z)
of a complex variablez
is a function that maps each complex numberz
to a complex numberw
. - The function
f(z)
is said to be analytic at a pointz_0
if it is differentiable atz_0
and in a neighborhood ofz_0
. - Cauchy-Riemann Equations: A function
f(z) = u(x, y) + iv(x, y)
is analytic atz_0
if and only if it satisfies the Cauchy-Riemann equations:-
∂u/∂x = ∂v/∂y
-
∂u/∂y = -∂v/∂x
-
Contour Integration
- A contour is a piecewise-smooth curve in the complex plane.
- The contour integral of a function
f(z)
over a contourC
is denoted by∫_C f(z) dz
. - Cauchy's Integral Formula: If
f(z)
is analytic inside and on a contourC
, andz_0
is a point insideC
, then:-
f(z_0) = (1/2πi) ∫_C f(z)/(z-z_0) dz
-
Residue Theory
- The residue of a function
f(z)
at a pointz_0
is denoted byRes(f, z_0)
. - The residue theorem: If
f(z)
is analytic inside and on a contourC
, except at a pointz_0
insideC
, then:-
∫_C f(z) dz = 2πi Res(f, z_0)
-
- The residue of a function
f(z)
at a pole of ordern
can be calculated using:-
Res(f, z_0) = (1/(n-1)!) lim_(z→z_0) (d^(n-1)/dz^(n-1))((z-z_0)^n f(z))
-
Applications of Complex Analysis
- Complex analysis has applications in:
- Electrical engineering (e.g., circuit analysis)
- Signal processing (e.g., Fourier transform)
- Quantum mechanics (e.g., wave functions)
- Number theory (e.g., prime number theorem)
复分析
复数
- 复数是形如
z = x + yi
的数,其中x
和y
是实数,i
是虚单位,满足i^2 = -1
。 - 复数的集合记为
ℂ
。 - 复数
z
的实部和虚部分别记为Re(z)
和Im(z)
。
复变函数
- 复变函数
f(z)
是将每个复数z
映射到另一个复数w
的函数。 - 函数
f(z)
在点z_0
是可微分的当且仅当它在z_0
和z_0
的邻域内是可微分的。 - 柯西-黎曼方程:函数
f(z) = u(x, y) + iv(x, y)
在z_0
是可微分的当且仅当它满足柯西-黎曼方程:-
∂u/∂x = ∂v/∂y
-
∂u/∂y = -∂v/∂x
-
积分 along a contour
- 剖面是复平面中的 piecewise-smooth 曲线。
- 函数
f(z)
沿着剖面C
的积分记为∫_C f(z) dz
。 - 柯西积分公式:如果
f(z)
在剖面C
内部和边界上是可微分的,并且z_0
是C
内部的一点,那么:-
f(z_0) = (1/2πi) ∫_C f(z)/(z-z_0) dz
-
残余理论
- 函数
f(z)
在点z_0
的残余记为Res(f, z_0)
。 - 残余定理:如果
f(z)
在剖面C
内部和边界上是可微分的,除了点z_0
内部,那么:-
∫_C f(z) dz = 2πi Res(f, z_0)
-
- 如果函数
f(z)
在点z_0
有阶数为n
的极点,那么可以使用以下公式计算残余:-
Res(f, z_0) = (1/(n-1)!) lim_(z→z_0) (d^(n-1)/dz^(n-1))((z-z_0)^n f(z))
-
复分析应用
- 复分析在以下领域有应用:
- 电气工程(例如,电路分析)
- 信号处理(例如,傅里叶变换)
- 量子力学(例如,波函数)
- 数论(例如,素数定理)
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.