Podcast
Questions and Answers
0.001 est un nombre réel.
0.001 est un nombre réel.
True
0.000000001 est un nombre irrationnel.
0.000000001 est un nombre irrationnel.
True
0.00000000000000001 est un nombre rationnel.
0.00000000000000001 est un nombre rationnel.
False
0.000000000000000000000001 est un nombre réel.
0.000000000000000000000001 est un nombre réel.
Signup and view all the answers
0.0000000000000000000000000000001 est un nombre rationnel.
0.0000000000000000000000000000001 est un nombre rationnel.
Signup and view all the answers
0.000000000000000000000000000001 est un nombre réel.
0.000000000000000000000000000001 est un nombre réel.
Signup and view all the answers
Un nombre entier peut être négatif.
Un nombre entier peut être négatif.
Signup and view all the answers
La propriété de divisibilité par zéro s'applique à tous les entiers, y compris zéro.
La propriété de divisibilité par zéro s'applique à tous les entiers, y compris zéro.
Signup and view all the answers
Le produit de deux nombres est toujours le même, peu importe l'ordre des nombres.
Le produit de deux nombres est toujours le même, peu importe l'ordre des nombres.
Signup and view all the answers
Une fraction peut être exprimée comme le quotient de deux nombres entiers.
Une fraction peut être exprimée comme le quotient de deux nombres entiers.
Signup and view all the answers
Tous les nombres rationnels sont des nombres entiers.
Tous les nombres rationnels sont des nombres entiers.
Signup and view all the answers
π est un exemple de nombre irrationnel.
π est un exemple de nombre irrationnel.
Signup and view all the answers
Study Notes
Number Properties
Numbers form the foundation of mathematical understanding. They can be categorized into several types based on their properties and uses. Here's a brief overview of some key number properties:
Integer
An integer is any whole number, positive or negative, including zero. Integers have two unique properties, namely divisibility by zero and the commutativity property. An example of an integer expression includes -8 * |-6| = 48 and -9 * (-4) = 36.
Divisibility by Zero Property
An integer is divisible by zero if its quotient with division by zero is defined and equal to exactly one. For example, 10 ÷ 0 = 0, where 0 is both the dividend and the divisor. This rule holds true for all integers except zero itself.
Commutativity Property
The order of the numbers does not affect the result when multiplying or adding them. For instance, 2 + 3 = 3 + 2 and 5 × 9 = 9 × 5.
Fraction
A fraction is a type of number that can be expressed as a quotient of two integers. Fractions have properties such as commutativity, associativity, and the distributive property. For example, (3/4) * (2/5) = (2/5) * (3/4).
Rational Number
A rational number is any number that can be expressed as the quotient of two integers. Rational numbers include integers, fractions, and the decimal expansions of rational numbers.
Irrational Number
An irrational number is a real number that cannot be expressed as a finite decimal or a fraction. Examples of irrational numbers include √2 and π.
Real Number
A real number is any number that can be expressed as a decimal expansion, a fraction, a terminating or non-terminating repeating decimal, or an integer. Real numbers include integers, fractions, and irrational numbers.
Imaginary Number
An imaginary number is a number that can be expressed in the form a*i, where a is a real number and i is the imaginary unit, which is the square root of -1. Imaginary numbers have properties such as addition, subtraction, multiplication, and division. Examples of imaginary numbers include 3i and -4i.
Complex Number
A complex number is a number that can be expressed in the form a + bi, where a is a real number and b is an imaginary number. Complex numbers have properties such as addition, subtraction, multiplication, and division. Examples of complex numbers include 5 + 2i and -3 + 4i.
0.001
0.001 is a real number that can be expressed as the decimal expansion 0.001 or as the fraction 1/1000. It is also an irrational number because it has an infinite, non-repeating decimal expansion.
0.000000001
0.000000001 is a real number that can be expressed as the decimal expansion 0.000000001 or as the fraction 1/1,000,000,000. It is also an irrational number because it has an infinite, non-repeating decimal expansion.
0.00000000000000001
0.00000000000000001 is a real number that can be expressed as the decimal expansion 0.00000000000000001 or as the fraction 1/1,000,000,000,000,000. It is also an irrational number because it has an infinite, non-repeating decimal expansion.
0.000000000000000000000001
0.000000000000000000000001 is a real number that can be expressed as the decimal expansion 0.000000000000000000000001 or as the fraction 1/1,000,000,000,000,000,000. It is also an irrational number because it has an infinite, non-repeating decimal expansion.
0.0000000000000000000000000000001
0.0000000000000000000000000000001 is a real number that can be expressed as the decimal expansion 0.0000000000000000000000000000001 or as the fraction 1/1,000,000,000,000,000,000,000. It is also an irrational number because it has an infinite, non-repeating decimal expansion.
0.000000000000000000000000000000001
0.000000000000000000000000000000001 is a real number that can be expressed as the decimal expansion 0.000000000000000000000000000000001 or as the fraction 1/1,000,000,000,000,000,000,000,000. It is also an irrational number because it has an infinite, non-repeating decimal expansion.
0.00000000000000000000000000000000001
0.00
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Explorez les différentes propriétés des nombres, y compris les entiers, les fractions, les nombres rationnels et irrationnels, les nombres réels, imaginaires et complexes, et des exemples de nombres décimaux infinis. Découvrez comment ces différentes catégories de nombres se comportent et interagissent entre elles.