Podcast
Questions and Answers
Vilket av följande påståenden beskriver bäst skillnaden mellan kolstål och gjutjärn?
Vilket av följande påståenden beskriver bäst skillnaden mellan kolstål och gjutjärn?
- Kolstål innehåller endast järn och kol, medan gjutjärn innehåller andra legeringsämnen.
- Kolstål innehåller upp till 2% kol, medan gjutjärn innehåller mellan 2% och 5% kol. (correct)
- Kolstål innehåller alltid mer än 5% kol, medan gjutjärn innehåller mindre än 2%.
- Kolstål är alltid härdat, medan gjutjärn aldrig är det.
Magnetit och hematit är exempel på vanliga järnmalmer.
Magnetit och hematit är exempel på vanliga järnmalmer.
True (A)
Vilken äldsta metod används först för att reducera järnmalm?
Vilken äldsta metod används först för att reducera järnmalm?
Masugnsprocessen
I en masugn tillsätts sinter, kol och ______ som slaggbildande ämne.
I en masugn tillsätts sinter, kol och ______ som slaggbildande ämne.
Matcha följande ståltyper med deras huvudsakliga användningsområden:
Matcha följande ståltyper med deras huvudsakliga användningsområden:
Vilken process används för att ta bort inre spänningar i stål efter kallbearbetning?
Vilken process används för att ta bort inre spänningar i stål efter kallbearbetning?
Normalisering används för att öka kolhalten i stålets ytskikt.
Normalisering används för att öka kolhalten i stålets ytskikt.
Vad kallas den struktur som bildas i kolstål vid snabb avkylning vid härdning?
Vad kallas den struktur som bildas i kolstål vid snabb avkylning vid härdning?
Vid ______ tillförs kväve till stålets ytskikt för att öka slitstyrkan och hårdheten.
Vid ______ tillförs kväve till stålets ytskikt för att öka slitstyrkan och hårdheten.
Matcha följande värmebehandlingsprocesser med deras huvudsakliga effekt på stålets egenskaper:
Matcha följande värmebehandlingsprocesser med deras huvudsakliga effekt på stålets egenskaper:
Vilket grundämne är den huvudsakliga beståndsdelen i mässing?
Vilket grundämne är den huvudsakliga beståndsdelen i mässing?
Rödmetall är en legering som främst används för smide.
Rödmetall är en legering som främst används för smide.
Vilket metalliskt grundämne ger nysilver dess silvervita färg?
Vilket metalliskt grundämne ger nysilver dess silvervita färg?
Brons är en legering av koppar och ______.
Brons är en legering av koppar och ______.
Matcha följande legeringar med deras huvudsakliga användningsområden:
Matcha följande legeringar med deras huvudsakliga användningsområden:
Vilken process används för att utvinna aluminiumoxid från bauxit?
Vilken process används för att utvinna aluminiumoxid från bauxit?
Sekundäraluminium kräver mer energi för omsmältning jämfört med primäraluminium vid framställning.
Sekundäraluminium kräver mer energi för omsmältning jämfört med primäraluminium vid framställning.
Vad kallas aluminiumlegeringen med bäst hållfasthet?
Vad kallas aluminiumlegeringen med bäst hållfasthet?
Ett skyddande oxidskikt bildas på aluminium vid kontakt med ______.
Ett skyddande oxidskikt bildas på aluminium vid kontakt med ______.
Matcha följande aluminiumlegeringar med deras typiska användningsområden:
Matcha följande aluminiumlegeringar med deras typiska användningsområden:
Vilken metall används som skydd mot korrosion på kolstål?
Vilken metall används som skydd mot korrosion på kolstål?
Tenn är giftigt och får därför inte användas i kontakt med livsmedel.
Tenn är giftigt och får därför inte användas i kontakt med livsmedel.
Vad kallas fenomenet där tenn omvandlas till ett grått pulver vid låga temperaturer?
Vad kallas fenomenet där tenn omvandlas till ett grått pulver vid låga temperaturer?
[Blank] används i blyackumulatorer.
[Blank] används i blyackumulatorer.
Matcha följande metaller med deras huvudsakliga egenskaper eller användningsområden:
Matcha följande metaller med deras huvudsakliga egenskaper eller användningsområden:
Vilken metall är en viktig beståndsdel i rostfritt stål?
Vilken metall är en viktig beståndsdel i rostfritt stål?
Hårdmetall består huvudsakligen av metallkarbider som volframkarbid.
Hårdmetall består huvudsakligen av metallkarbider som volframkarbid.
Ge exempel på en produkt som tillverkas genom pulvermetallurgi.
Ge exempel på en produkt som tillverkas genom pulvermetallurgi.
Vid sintring av en presskropp får temperaturen aldrig överstiga de ingående materialens ______.
Vid sintring av en presskropp får temperaturen aldrig överstiga de ingående materialens ______.
Matcha följande material med deras typiska tillverkningsmetoder inom pulvermetallurgi:
Matcha följande material med deras typiska tillverkningsmetoder inom pulvermetallurgi:
Vilket provningsmetod används för att mäta hur stor spänning ett material tål?
Vilket provningsmetod används för att mäta hur stor spänning ett material tål?
Vid ett dragprov visar kurvans första del plastisk töjning.
Vid ett dragprov visar kurvans första del plastisk töjning.
Nämn ett hårdhetsprov som inte används för elastiska material.
Nämn ett hårdhetsprov som inte används för elastiska material.
Egenskapen som kallas ______, provas i en slagpendel.
Egenskapen som kallas ______, provas i en slagpendel.
Matcha följande begrepp från dragprov med deras beskrivning:
Matcha följande begrepp från dragprov med deras beskrivning:
Flashcards
Materialegenskaper
Materialegenskaper
Materialets egenskaper, inklusive fysikaliska, kemiska och mekaniska.
Gitterstruktur
Gitterstruktur
Den tredimensionella ordningen av atomer i metaller.
SIS
SIS
Organisationen för standardisering i Sverige.
CEN
CEN
Signup and view all the flashcards
ISO
ISO
Signup and view all the flashcards
CE-märkning
CE-märkning
Signup and view all the flashcards
ISO 9000
ISO 9000
Signup and view all the flashcards
ISO 14000
ISO 14000
Signup and view all the flashcards
Förstörande provning
Förstörande provning
Signup and view all the flashcards
Oförstörande provning
Oförstörande provning
Signup and view all the flashcards
Dragprov
Dragprov
Signup and view all the flashcards
Wöhlerdiagram
Wöhlerdiagram
Signup and view all the flashcards
Ultraljudsprovning
Ultraljudsprovning
Signup and view all the flashcards
Radiografisk provning
Radiografisk provning
Signup and view all the flashcards
Magnetpulverprovning
Magnetpulverprovning
Signup and view all the flashcards
Penetrantprovning
Penetrantprovning
Signup and view all the flashcards
Kolstål
Kolstål
Signup and view all the flashcards
Värmebehandling
Värmebehandling
Signup and view all the flashcards
Avspänningsglödgning
Avspänningsglödgning
Signup and view all the flashcards
Rekristallisationsglödgning
Rekristallisationsglödgning
Signup and view all the flashcards
Mjukglödgning
Mjukglödgning
Signup and view all the flashcards
Normalisering
Normalisering
Signup and view all the flashcards
Härdning
Härdning
Signup and view all the flashcards
Anlöpning
Anlöpning
Signup and view all the flashcards
Sätthärdning
Sätthärdning
Signup and view all the flashcards
Nitrerhärdning
Nitrerhärdning
Signup and view all the flashcards
Järn
Järn
Signup and view all the flashcards
Koppar
Koppar
Signup and view all the flashcards
Mässing
Mässing
Signup and view all the flashcards
Brons
Brons
Signup and view all the flashcards
Aluminium
Aluminium
Signup and view all the flashcards
Eloxering
Eloxering
Signup and view all the flashcards
Magnesium
Magnesium
Signup and view all the flashcards
Titan
Titan
Signup and view all the flashcards
Zink
Zink
Signup and view all the flashcards
Study Notes
- Text is about materials science, covering topics from material selection to environmental impact
Selecting Materials
- An example is provided about selecting the best materials for parts of an ironing board
- Considerations include heat resistance, friction, bending and moisture resistance
- The material for the board should not stain, let moisture through, or reflect heat
- The frame needs to have a stable and lightweight construction and resistant to rust
- Material should be affordable to keep the product competitive
- Achieving these manufacturing goals requires understanding material properties and processing
Material Properties
- Material properties are critical for material selection and broadly categorized as physical, chemical, and mechanical
- Physical properties include density, thermal expansion, heat conductivity, and resistivity
- Chemical properties include solubility and reactivity with other substances
- Mechanical properties include tensile strength, compressive strength, impact strength, torsion, fatigue strength, and how the material deforms under stress
Material Structure
- Material properties depend on material structure
- All materials are composed of atoms
- An element consists of only 1 type of atom
- Different atoms can combine to form chemical compounds, where atoms are held together by molecules
- Substances made of atoms or molecules are connected in different ways
- Metals have a crystalline structure, where atoms are arranged in a 3D pattern called a lattice
- Atoms are held together by an "electron cloud," which makes metals good electrical conductors
- These atomic lattices are large and form crystals/grains containing 10^15 - 10^25 atoms; the crystals give the metal it's properties
- Grains in a metallic microscope are often oriented differently and refract light differently, revealing grain boundaries
- Other materials such as wood and plastic are made of molecules held by electron pair bonds and/or ionic bonds
- In construction materials, atoms bond into long molecules - for example, with a mass of 1.6 x 10^-15 mg
- Wood has naturally structured long molecules, while plastic is created through polymerization of shorter molecules
Material Standards
- Material standards are important so parts fit, even if manufactured in different countries
- Standards ensure consistent quality, readability, and compliance and help businesses guarantee work is done correctly
- Standards are used in diverse fields, including metals, electrical components, drawings, testing, chemicals, measurement, and manufacturing
- The Swedish Standards Institute (SIS) standardizes products/services in Sweden
- SIS's role is to represent standardization nationally and internationally
- SIS Forum AB provides training and consultation, and SIS publishes standards
- Approximately 1500 new national, European (CEN), and global (ISO) standards are developed annually
Standard Organizations
- Various committees propose standards
- Proposals are further processed by European/International committees
- The European Committee for Standardization (CEN) manages all standards, except for electrical and telecommunications
- The European Committee for Electrotechnical Standardization (CENE-LEC) handles electrical standards
- The European Telecommunications Standards Institute (ETSI) handles telecommunication standards
Global Standard Organizations
- The International Organization for Standardization (ISO) handles all standards except electrical and telecommunications
- The International Electrotechnical Commission (IEC) handles electrical standards
- The International Telecommunications Union (ITU) handles standards related to telecommunications
Standard Classification
- Different texts discuss standardization
- Standards are divided into groups based on what they address
- Basic standards address general requirements in technology areas like terminology, measurement systems and math
- Product standards detail the properties of a product, like dimensions and strength
- Functional standards focus on a product's properties, like its purpose
- Construction standards describe dimensions and materials
- Standards for testing methods describe different methods for testing materials and products
- Standards for management systems deal with organizations, quality control, and environmental considerations
Swedish Standards
- Sweden previously used a numerical system with three groups of numbers to categorize standards
- SS stands for Swedish Standard
- The first two numbers relate to a specific area (ex: SS 14 for metallic material)
- Later numbers indicate material type and properties (SS 1415 xx = unalloyed steel)
- New standards are now coordinated with EU/ISO and will be marked with SS-EN or SS-ISO
European standards
- The EU tries to standardize products
- The goal of standardization is to see details of a material by looking at the product name
- The first part of the European Standard name (like SS-EN) varies by country
- The rest of the name remains consistent so the country code is often dropped
Standard Systems for Steel
- Steel follows an alphanumeric and a numerical standard
- These standards are SS-EN 10027-1 and SS-EN 10027-2
- SS-EN 10 027-1 classifies steel by application and properties (group 1) and chemical composition (group 2)
SS-EN 10 027-1 Classification system
- Group 1 uses a letter for steel type and numbers for properties (S355 J2 C), in the example, steel and yield strength, charpy test and forming
- Group 2 categorizes by alloy content using a chart
- Steel is designated as Unalloyed with manganese under 1%
- This excludes automatic steel, Alloyed with manganese up to 1% (including automatic steel)
- In this steel, no alloying element exceeds 5%
- Alloyed steel has at least one alloying element exceeding 5%
Other Standardization
- Other metals use similar standardization methods
- Aluminum has both numerical and chemical composition-based standards
- Numerical systems are the main approach, with chemical details as extra info
Markings
- CE marking shows an item follows standards and directives for safety
- Different levels of certification are possible, with or without the involvement of accredited 3rd parties
- ISO 9000 builds a leadership system by controlling all of an organization's functions (production, work)
- ISO 14000 is a series of standards for environmental management systems, including eco-management and audit schemes
Standard Certifications
- Certification (inspection) must be done by accredited companies
- Swedac (the Swedish Board for Technical Accreditation) handles this in Sweden
Material Testing
- Material testing is essential because construction materials can fail
- Examples of this failing can be seen with wing supports for planes, springs and bogies in train wagons
- Material testing seeks to be a complex process
- Complete material tests can be destructive (where the material is tested until broken) or non-destructive (ex: using radiography or ultrasound)
Destructive testing
- Destructive testing can not be used for materials after the material has been tested
- It uses a specific set of processes
Tensile Testing
- Testing for how much tension a material withstands
- The same amount of material used in a project is strained, measuring the point at which it breaks
- Stress values are measured in N/mm^2 and length increases are measured in mm
- Special rods are created for material tests and attached to a machine so it can measure strength
- The tool registers stress, length, and a writing implement graphs the data
Diagram Analysis
- The initial curve on a stress/strain diagram is elastic deformation, and the material returns if the stress is below the yield strength
- Plastic deformation is when the material does not return to its original shape
- The crystal structure is altered so that the material will likely fail
- Materials that will undergo use must remain in that elastic area
Hardness Testing
- Hardness testing involves pressing a hard ball/cone into the material and measuring the size of the impression
- This primarily tests the surface of a layer
- Common methods are Brinell, Vickers, and Rockwell testing
- It does not work on elastic materials like rubber, so you measure how far the test object falls
Hardness Measurement types and applications
- Brinell tests soft materials with steel balls measuring diameter and area of impression based on force
- Vickers tests hard and soft or thin objects and measures the diagonals of an impression on the object
- Rockwell provides additional options and uses a ball or diamond-shaped indentor
Impact Testing
- Some materials react differently when struck, tested using impact testing
- Impact testing uses a pendulum to strike a notched sample while measuring the energy required to break it
Impact Measurement
- Impact tests are performed by securing a test object and hitting with a weighted pendulum
- Energy absorption is measured, which relates to it's strength
- The impact resistance depends on temperature, making it essential to use low temperatures
Impact transition temperature
- Due to cooling, impact transition temperature may change
- Lower temperatures cause this reaction
- This testing is an important consideration when manufacturing components
Fatigue Testing
- Materials can break even if the math is correct and the design isn't always still
- Bridges and axles, for example, go through consistent rotation, so they need to be tested
- To find material characteristics in relation to fatigue, you can use a rotating test bar
- The bar is loaded down until the test finds that the sample falls apart
- Data is then graphed using a Wohler diagram
Non-Destructive Testing
- Involves techniques that preserve usability, such as ultrasound and radiography
- Ultrasound uses sound waves between 0.5-10MHz to locate internal cracks, recording signals on an oscilloscope
- Radiography projects radiation through a object, and a film on the far side detects cracks.
- Surface defects with magnetic materials can be found with magnetization and iron powder in oil
Liquid Penetration Testing
- A liquid with low viscosity is placed on non-magnetic materials, and the residue is wiped off after
- After it dries, the cracks can be seen through the residue
Iron and Steel
- Steel, an iron alloy with up to 2% carbon, is the most common metal used in construction
- Iron with >2% carbon is cast iron
- Alloy steels contain other metals like silicon, managanese, chromium, nickel, molybdenum and lead to enhance properties
- The most abundant iron ores are magnetite (Fe3O4) and hematite (Fe2O3); steel products are formed in two steps
- Iron ore is reduced using carbon, traditionally through a blast furnace, where sinter, carbon, and slag are added
- As the slag cools, the molten iron is separated and tapped for future oxidation in other processes to reduce carbon
Specialized Steel Production
- Iron sponge melts in various ovens and reduces oxide
- The product is unstable
- Corex-processes offer an alternative route to produce molten raw metal
- The processes include the usage of natural gas, carbon and oxygen
Steel Furnaces
- Converters tilt to add molten iron with oxygen or a mix with argon
- The Martin process used a chamber to refine additional metals
Steel Refinement
- Electric arc furnaces can make steel under vacuum conditions
- The steel can then be cast under carefully controlled conditions, where gas bubbles and non-homogenous materials can form
Material Properties
- Metallic lattices vary with the amount of carbon
- Properties of a material depend on various dimensions
- Alpha Iron, also known as Ferrite, exists below 910 degrees celcius and has a solution of about .05% carbon and can be easily resolved
- Gamma Iron, also known as Austenite, exists above 720 degrees celcius and can contain 2% carbon
- Cementite or Iron Carbide contain a mix of Iron and Carbon
- Pearlite or Ferrite is a derivative and contains different amounts of these products given carbon properties
Descriptive graph
- A diagram charts the content of these phases, including carbon
- Chemical composition is easier with high carbon
- Steel exists as alloy or nonalloy
- Those materials, alongside cast-iron can be used in the construction of other materials due to the use of alloys
Standard Steel
- Generic Structural Steel alloys generally involve a low quantity of carbon, making them suitable for buildings, bridges, lifts etc.
- Processing includes sheet metal, rods, forging and construction
- Machine Steel processes primarily involve machining with a medium level of carbon
- Spring, Screw or more secure designs are able to withstand larger products
- Hard Scaffolding involves both Alloy and Non-Alloy solutions, which are useful for small pieces or screws
Special steel properties
- Sätthärdningsstål is low-carbon for surface hardening, making it more durable
- Automatic steel consists of low carbon for machining
- Spring Steel is the most appropriate choice for high load, high flexibility and good returning of various materials
- Kallvalsad Tunnplåt often consists of a thin form factor for car bodies and certain uses
Heat Treatment
- Heat treatment changes steel by heating, holding, and cooling the material to alter it's characteristics
- Heat treatments can be used for hardening and resilience
- Different processes may affect carbon strength and heat/cooling levels
Annealing
- Annealing can be used for wire work where steel is heavily strained
- This means heating components to 500C-600C to allow the steel to normalize
- Recrystallization Annealing helps with structure
- A process heats up and normalizes the material, allowing materials to be thoroughly tempered
Steel processing
- Soft Annealing assists hard to manufacture levels, and the processing heats and cools the metal
- Normalizing is used in Steel and Forging, so heating the object returns it to normal size.
- Steel is normally heated between 750C-1050C, and then the air is allowed to freely circulate
Hardening Steel
- Hardening can be beneficial to many areas
- High carbon Steel is required and heated to harden
- This does not convert to cementite
- Martensite results from a higher volume of carbon and fast cooling around air
- The surface area is typically the most hardened area
Temper
- The hardening of the metal should cause less brittleness and heat the material upwards of a certain amount.
- A hardening treatment is done similarly to surface hardening
- Steel is heated in high carbon areas like Ammonia to a high temperate
Nitriding
- The process is very effective on small parts
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.