Loi Normale en Statistique

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Quel est le pourcentage d’événements couverts à ±1 écart-type du centre dans une loi normale?

  • 75.0%
  • 80.5%
  • 64.2% (correct)
  • 90.0%

Quelle est la formule utilisée pour modéliser la densité de probabilité d'une loi normale?

  • $f(x) = \frac{1}{\mu \sqrt{2\pi}} e^{-\frac{(x - \sigma)^2}{2\mu^2}}$
  • $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}$ (correct)
  • $f(x) = \frac{1}{\sigma^2} e^{-\frac{(x - \mu)^2}{\sigma}}$
  • $f(x) = \frac{2}{\sigma} e^{-\frac{|x - \mu|}{\sigma}}$

Quel est l'effet de l'additivité des lois normales?

  • La somme de deux lois normales ne suit aucune loi spécifique.
  • La somme de deux lois normales suit une loi exponentielle.
  • La somme de deux lois normales suit une loi normale. (correct)
  • La somme de deux lois normales suit une loi uniforme.

Qu'est-ce que le théorème central limite (TCL) indique concernant la moyenne de n variables indépendantes?

<p>La moyenne suit une loi normale pour grands n. (D)</p> Signup and view all the answers

Que signifie le risque α dans le contexte d'une hypothèse statistique?

<p>C'est la probabilité de se tromper si on accepte une deuxième hypothèse. (B)</p> Signup and view all the answers

La loi normale est considérée comme exacte dans quel contexte?

<p>Pour des variables continues seulement. (C)</p> Signup and view all the answers

Lorsque la vraie distribution se centre à droite, qu'indique cette situation par rapport à la valeur observée Vo?

<p>Il est nécessaire d'accepter que les variables suivent une loi différente. (B)</p> Signup and view all the answers

Quelle proportion d'événements se situe à ±3 écarts-types du centre dans une loi normale?

<p>99.7% (A)</p> Signup and view all the answers

Quel est le risque ɑ souvent accepté dans les tests d'hypothèses?

<p>5% (D)</p> Signup and view all the answers

Que signifie rejeter l’hypothèse nulle dans une étude?

<p>Accepter l'hypothèse alternative. (B)</p> Signup and view all the answers

Quelle valeur de la variable centrée réduite est comparée à 1.96 dans un test bilatéral?

<p>1.96 (D)</p> Signup and view all the answers

Quel est l'objectif principal lors du calcul du risque ɑ?

<p>Évaluer la probabilité de se tromper. (C)</p> Signup and view all the answers

Dans un échantillon de 24 pièces, quelle est la probabilité théorique d'une pièce défectueuse mentionnée?

<p>10% (B)</p> Signup and view all the answers

Quel est le critère pour conclure qu'un pourcentage de pièces défectueuses a été amélioré?

<p>Comparer avec une probabilité théorique. (B)</p> Signup and view all the answers

Quelle loi est utilisée pour déterminer la probabilité d'avoir des pièces défectueuses dans un échantillon?

<p>Loi binomiale. (C)</p> Signup and view all the answers

Quelle condition doit être remplie pour rejeter le lot de pièces à partir d'un échantillon significatif?

<p>Si la valeur moyenne s'écarte d'au moins 1.96 fois la valeur attendue. (D)</p> Signup and view all the answers

Flashcards

Loi normale

La loi normale est une distribution de probabilité continue utilisée pour modéliser des phénomènes naturels résultant de multiples événements aléatoires.

Densité de Probabilité de la Loi Normale

La densité de probabilité de la loi normale est donnée par la formule : 1 / (σ√(2π)) * exp(-(x - μ)² / (2σ²)) où μ est l'espérance et σ est l'écart type.

Variable aléatoire suivant une loi normale

Une variable aléatoire X suit une loi normale si sa distribution est représentée par la loi normale.

Approximation de la loi normale

La loi normale est une approximation valable pour les variables discrètes dans certains cas.

Signup and view all the flashcards

Propriétés de la loi normale

64.2% des événements se situent à ±1 écart type du centre de la distribution normale. 91.4% des événements se situent à ±2 écarts types du centre. 95.6% des événements se situent à ±3 écarts types du centre.

Signup and view all the flashcards

Additivité des lois normales

La somme de deux lois normales est également une loi normale avec une espérance égale à la somme des espérances et une variance égale à la somme des variances.

Signup and view all the flashcards

Théorème Central Limite (TCL)

Le Théorème Central Limite (TCL) stipule que la moyenne d'un grand nombre de variables indépendantes et identiquement distribuées tend vers une loi normale, quelle que soit la distribution des variables individuelles.

Signup and view all the flashcards

Risque ɑ

Le risque ɑ est la probabilité de rejeter l'hypothèse nulle alors qu'elle est vraie. C'est la probabilité de se tromper en concluant que la valeur observée est incompatible avec la distribution de référence.

Signup and view all the flashcards

Risque ɑ accepté

On utilise généralement un risque ɑ de 5%. Cela signifie qu'on accepte un risque de 5% de rejeter l'hypothèse nulle alors qu'elle est vraie.

Signup and view all the flashcards

Calculer le risque ɑ

La valeur Z permet de trouver la probabilité associée à une valeur donnée d'une variable centrée réduite. Cette valeur est utilisée pour calculer le risque ɑ.

Signup and view all the flashcards

Loi binomiale

Probabilité d'avoir un nombre donné de succès dans un échantillon, sachant la probabilité de succès pour un seul essai et la taille de l'échantillon.

Signup and view all the flashcards

Probabilité théorique

La probabilité théorique d'avoir un succès dans un seul essai. Par exemple, la probabilité qu'une pièce soit défectueuse.

Signup and view all the flashcards

Probabilité de succès

Probabilité d'avoir un nombre spécifiques de succès dans un échantillon, en utilisant la loi binomiale.

Signup and view all the flashcards

Test de fréquence

Comparaison entre la probabilité théorique et la probabilité observée pour déterminer si l'hypothèse nulle est vraie ou fausse.

Signup and view all the flashcards

Conclusion sur la probabilité réelle

Le test de fréquence permet de déterminer si la probabilité réelle d'un événement est significativement différente de la probabilité théorique.

Signup and view all the flashcards

Study Notes

Rappel : La Loi Normale

  • Modélise des phénomènes naturels issus de multiples événements aléatoires.
  • La densité de probabilité d'une loi normale, avec une espérance μ et un écart type σ, est donnée par la formule : f(x) = (1 / (σ√(2π))) * e^(-(x-μ)² / (2σ²)).
  • La variable aléatoire X suit une loi normale notée X~N(μ, σ²).
  • La loi normale est exacte pour des variables continues, mais peut servir d'approximation pour des variables discrètes dans certains cas.
  • La variance est représentée par σ².

Propriétés de la Loi Normale

  • 64.2% des événements se situent à ±1 écart-type du centre.
  • 91.4% des événements se situent à ±2 écarts-types du centre.
  • 95.6% des événements se situent à ±3 écarts-types du centre.
  • Pour corréler une valeur de σ avec une probabilité, utilisez un tableau de la loi normale avec la variable centrée réduite.
    • Z = (X - μ) / σ

Additivité des Lois Normales

  • Si X₁ ~ N(μ₁, σ₁) et X₂ ~ N(μ₂, σ₂), alors X₁ + X₂ ~ N(μ₁ + μ₂, σ₁² + σ₂²).
  • La somme des variances se propage.

Théorème Central Limite (TCL)

  • Pour n variables indépendantes et identiquement distribuées (i.i.d), avec une espérance μ et un écart type σ, la moyenne de ces variables suit approximativement une loi normale N(μ,σ²/n), surtout pour grandes valeurs de n.
  • Peu importe la loi de distribution des variables initiales, cette approximation devient de plus en plus précise avec des n importants.

Risque α - Latéral/Bilatéral

  • Méthode pour déterminer si une valeur observée (V₀) est compatible avec une hypothèse.
  • Risque α latéral: Probabilité de se tromper en acceptant une hypothèse alternative où la vraie distribution de densité de probabilité est déplacée vers la droite (ou la gauche dans un cas bilatéral).
  • Risque α bilatéral: Probabilité de se tromper en acceptant une hypothèse alternative où la vraie distribution de densité de probabilité est déplacée soit vers la droite ou soit vers la gauche.

Quel Risque α Accepter ?

  • Généralement, un risque alpha de 5% est admis.
  • Pour rejeter une hypothèse, on compare la valeur de la variable centrée réduite (Z) issue de l'observation à des seuils spécifiques (1.96 pour un test bilatéral, 1.64 pour un test unilatéral) basés sur le risque α choisi.

Tests de Fréquence : La Loi Binomiale

  • La loi binomiale décrit la probabilité d'obtenir k événements (ex: pièces défectueuses) sur n essais, connaissant la probabilité p d'un seul événement.
  • P(X=k) = (n k) * p^k * (1-p)^(n-k)
  • Cette formule est utilisée pour tester si une fréquence observée diffère significativement d'une fréquence théorique.

Une Multitude de Tests Statistiques

  • Présentation de tests statistiques utilisés pour diverses comparaisons (moyennes, variances, fréquences), selon le type de variables (qualitatives, quantitatives) et le nombre d'échantillons.
    • Tests univariés: tests sur une seule variable.
    • Tests bivariés : tests sur deux variables.

La Puissance d'un Test

  • La puissance d'un test est la probabilité de correctement rejeter une fausse hypothèse. Elle augmente avec la taille de l'échantillon et la différence entre les groupes.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

La loi normale PDF

More Like This

Use Quizgecko on...
Browser
Browser