Gauss' Law and Electric Flux

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

How does the electric flux through a closed surface change if the net charge enclosed by the surface is zero?

  • The net electric flux is always negative.
  • The net electric flux is equal to the surface area.
  • The net electric flux is always positive.
  • The net electric flux is zero. (correct)

What happens to the electric flux through a box if the charge enclosed within the box is doubled, while the size of the box remains the same?

  • The electric flux is halved.
  • The electric flux remains the same.
  • The electric flux is doubled. (correct)
  • The electric flux becomes four times greater.

Under what condition is electric flux through a surface equal to zero, even when a uniform electric field is present?

  • When the surface is face-on to the electric field.
  • When the surface is tilted at a 45-degree angle to the electric field.
  • When the surface is edge-on to the electric field. (correct)
  • When the electric field is non-uniform.

What is the significance of recognizing symmetry when using Gauss's law to calculate electric fields?

<p>Recognizing symmetry simplifies the surface integral, making it easier to calculate the electric field. (D)</p> Signup and view all the answers

A closed surface contains both positive and negative charges. Which of the following statements is true regarding the electric flux through the surface?

<p>The electric flux depends on the algebraic sum of all charges enclosed by the surface. (B)</p> Signup and view all the answers

Considering a uniform electric field, how does tilting a surface from a face-on orientation by an angle $\phi$ affect the electric flux through it?

<p>The electric flux decreases as the angle $\phi$ increases due to the cosine factor. (B)</p> Signup and view all the answers

A disk of radius 0.10 m is oriented with its normal at 30 degrees to a uniform electric field E with a magnitude of $2.0 \times 10^3$ N/C. What modification will result in zero electric flux through the disk?

<p>Orienting the disk parallel to the electric field. (A)</p> Signup and view all the answers

If the net charge inside a box is zero, which of the following scenarios would result in zero net electric flux through the surface of the box?

<p>When there are an equal number of positive and negative point charges inside the box. (D)</p> Signup and view all the answers

What is the electric flux through a sphere of radius $r$ that encloses a charge of +3.0 nC?

<p>The electric flux is independent of $r$ (A)</p> Signup and view all the answers

How does the electric field (E) relate to electric flux ($\Phi$) in Gauss's Law?

<p>Electric flux is the the surface integral of the electric field dotted with the area vector. (B)</p> Signup and view all the answers

What does the dot product in the integral form of Gauss's law, $\oint \vec{E} \cdot d\vec{A}$, tell you about the relationship between the electric field $\vec{E}$ and the area vector $d\vec{A}$?

<p>It calculates how much of the electric field is parallel to the area at that point on surface. (B)</p> Signup and view all the answers

If Gauss's law is expressed as $ \Phi = \oint_S \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\epsilon_0}$, what does $q_{enc}$ represent?

<p>The total charge enclosed within the Gaussian surface S. (A)</p> Signup and view all the answers

According to Gauss's Law, what parameter affects electric flux?

<p>The charge inside the surface. (C)</p> Signup and view all the answers

A spherical Gaussian surface encloses a point charge +q centered within it. A second identical spherical Gaussian surface also encloses the same charge, but this time the charge is not centered. How does the electric flux through the second surface compare to that through the first?

<p>The flux through the second surface is the same. (B)</p> Signup and view all the answers

Two point charges, +q and -q, are positioned near each other. Which closed surface(s) will have net electric flux equal to zero?

<p>The surface encloses both +q and -q. (D)</p> Signup and view all the answers

Under electrostatic conditions, where does any excess charge reside on a conductor?

<p>The charge resides entirely on the surface of the conductor. (A)</p> Signup and view all the answers

Under electrostatic conditions, what is the electric field inside a conductor?

<p>The electric field is zero. (A)</p> Signup and view all the answers

How does the electric field outside a spherical conductor under electrostatic conditions compare to that of a point charge?

<p>The electric field looks just like it's from a point charge. (C)</p> Signup and view all the answers

In the context of Gauss' Law, what considerations are important when dealing with problems involving symmetry?

<p>Choosing a Gaussian surface where the electric field is uniform and either parallel or perpendicular simplifies calculations. (C)</p> Signup and view all the answers

An infinite positively charged wire has a charge density $\lambda$. If you construct a cylindrical Gaussian surface around the wire, what is the angle between the electric field E and the area vector dA at the end caps of the cylinder?

<p>90 degrees (C)</p> Signup and view all the answers

What is the purpose of the integration over area in the context of Gauss's law?

<p>To account for the two dimensions. (D)</p> Signup and view all the answers

When applying Gauss's Law to find the electric field due to an infinite line of charge, why is a cylindrical Gaussian surface typically chosen?

<p>To exploit the radial symmetry of the electric field around the line charge, simplifying the flux calculation. (A)</p> Signup and view all the answers

In the application of Gauss's law to find the electric field around an infinite wire with uniform charge density, which statement is true regarding the limits of integration for the angle $\theta$ in cylindrical coordinates?

<p>$\theta$ goes from 0 to $2\pi$. (A)</p> Signup and view all the answers

In the context of Gauss's law, what is the purpose of considering the closed surface when calculating the electric flux?

<p>A closed surface ensures that all electric field lines either enter or exit the surface, which is essential for calculating the net flux. (A)</p> Signup and view all the answers

What key conclusion can be drawn from Faraday's ice pail experiment regarding the nature of electric charge and conductors?

<p>Electric charge introduced inside a conducting container induces an equal and opposite charge on the container's inner surface, and the excess charge resides on the outer surface. (B)</p> Signup and view all the answers

How does electrostatic shielding, such as that provided by a Faraday cage, protect the interior from external electric fields?

<p>Free charges in the conducting material redistribute themselves to cancel out the external electric field inside the cage. (C)</p> Signup and view all the answers

How does the presence of an empty cavity within a conductor affect the electric field inside the cavity?

<p>The electric field inside the cavity is zero. (C)</p> Signup and view all the answers

Imagine applying Gauss's Law to a uniformly charged sphere. What is the utility of choosing a spherical Gaussian surface concentric with the charged sphere?

<p>This surface exploits E can be considered constant and parallel. (C)</p> Signup and view all the answers

What is the electric field just beneath the surface of the conductor, where there is a negative surface charge density?

<p>The electric field is zero. (A)</p> Signup and view all the answers

For which of the following charge distributions would Gauss's Law not be useful?

<p>The right circular cylinder of radius R and H with charge uniformly distributed over its surface. (C)</p> Signup and view all the answers

Consider a uniformly charged insulating sphere. How does the electric field within the sphere change with distance ( r ) from the center?

<p>It increases as ( r ) increases. (B)</p> Signup and view all the answers

If Gauss's Law is expressed as $ \Phi = \oint_S \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\epsilon_0}$, what describes $ \epsilon_0$?

<p>The permittivity. (C)</p> Signup and view all the answers

Why would knowledge of electric flux be useful?

<p>To find charge through a surface enclosing that charge. (C)</p> Signup and view all the answers

How does flux depend on the size of the sphere?

<p>Flux depends on only the charge inside and not the sphere radius. (C)</p> Signup and view all the answers

An imaginary cube of side L is in an electrical field (E). What is needed to find the flux?

<p>The total area and the electric field. (A)</p> Signup and view all the answers

Does doubling the size of a 'box' (a closed surface) change flux?

<p>No. (D)</p> Signup and view all the answers

Flashcards

Gauss' Law application

Electric field at a surface can be used to find charge within.

Electric Flux

Measure of electric field through a surface.

Positive Charge Flux

Positive charge produces outward electric flux.

Negative Charge Flux

Negative charge produces inward flux.

Signup and view all the flashcards

Zero Net Charge

No net electric flux through the surface.

Signup and view all the flashcards

Charge and Flux

Doubling charge doubles electric flux.

Signup and view all the flashcards

Changing Box Size

It does NOT change the total flux.

Signup and view all the flashcards

Electric Flux Formula

Ф = E * A * cos(θ); Unit is Nm²/C

Signup and view all the flashcards

Surface Edge-On

The flux is zero.

Signup and view all the flashcards

Gauss' Law Equation

Ф = ∫ E · dA = q_enclosed / ε₀

Signup and view all the flashcards

Gaussian Surface

A closed surface for Gauss' Law integration.

Signup and view all the flashcards

E · dA

Dot product (E is parallel to dA).

Signup and view all the flashcards

Closed Surface Integral

Integrate over a closed surface.

Signup and view all the flashcards

Gauss' Law: use case 1

Find flux for charge distribution.

Signup and view all the flashcards

Gauss' Law: use case 2

Find the enclosed charge.

Signup and view all the flashcards

Gauss' Law: use case 3

Find electric field (E).

Signup and view all the flashcards

Flux Through Sphere

Flux is independent of the size of the sphere.

Signup and view all the flashcards

Flux and Enclosed Charge

Flux depends only on enclosed charge.

Signup and view all the flashcards

Positive Flux

Positive enclosed charge gives positive flux.

Signup and view all the flashcards

Negative Flux

Negative enclosed charge gives negative flux.

Signup and view all the flashcards

Equal Flux

Zero net electric flux.

Signup and view all the flashcards

Charge on Conductor

Charge resides entirely on the surface.

Signup and view all the flashcards

E Field in Conductor

E field inside is zero.

Signup and view all the flashcards

Field of a Line Charge

Infinite line of charge with density λ.

Signup and view all the flashcards

Field of a Sheet

Infinite plane sheet of charge.

Signup and view all the flashcards

Faraday Cage

The interior is shielded from the field.

Signup and view all the flashcards

Study Notes

Gauss' Law

  • This lecture aims to demonstrate how to use electric fields to determine charge, to explain and calculate electric flux, to relate electric flux and charge, to calculate electric fields using Gauss's law, and to locate charge on a conductor.

Positive Charge and Electric Flux

  • Positive charge inside a box results in outward electric flux.
  • More charge corresponds to more flux.

Negative Charge and Electric Flux

  • Negative charge produces inward flux.
  • More negative charge leads to more inward flux.

Zero Net Charge

  • With zero net charge inside a box, there are three scenarios to consider.
  • There is no electric flux through the surface.

Factors Affecting Flux

  • Doubling the charge within a box doubles the flux.
  • Doubling the size of the box doesn't change the flux.

Uniform Electric Fields and Electric Flux Units

  • For a uniform electric field in space, the electric flux is denoted as Ф= È-Ã = EA cos(0°).
  • The units for electric flux [Ф] are N/C • m² or Nm²/C.

Calculating Electric Flux in Uniform Fields

  • When a surface is face-on to an electric field, E and A are parallel, the angle between them is 0.
  • The electric flux is ФE = È·Ã = EA.
  • When the surface is tilted at an angle Ñ„, the electric flux is ФE = È·Ã = EA cos Ñ„.
  • When the surface is edge-on to an electric field, E and A are perpendicular, and the angle is 90°.
  • The electric flux is ФE = È·Ã = EA cos 90° = 0.

Electric Flux Example

  • A disk of radius 0.10 m has a vector n at 30 degrees to E, and an electric field magnitude of 2.0 x 103 N/C.
  • Calculation of the electric flux: Ф = E·A = EA cos(30°), where A = Ï€r² = 0.0314 m².
  • The electric flux is Ф = 54 Nm²/C.

Electric Flux Through a Cube

  • An imaginary cube of side L in a uniform electric field E needs its flux calculated for each of its sides.

Electric Flux Through a Sphere

  • The electric flux through a sphere is defined by the integral Ф = ∫ E·dA.
  • Where E = kq/r² = 1/(4πε₀) q/r² and is parallel to dA everywhere on the surface.
  • The electric flux simplifies to Ф = ∫ E·dA = E ∫ dA = EA.
  • For a charge q = +3.0nC, the flux through a sphere of radius r=.20 m can be calculated.

Gauss' Law

  • Gauss' Law: Ф = ∫ E·dA = qenc / ε₀.
  • Electric flux produced by a charge can be calculated by integrating over a closed 2D surface.
  • E field is a vector
  • Dot product calculation: E·dA = ExdAx + EydAy + EzdAz = |E||dA|cosθ, with dA being an infinitesimal area element vector.
  • The formula uses the total amount of charge but only counts the charge inside the closed surface S.
  • Epsilon is the electrical permittivity of free space

Uses for Gauss’ Law

  • To find the electric flux through a surface enclosing a charge.
  • To find the total charge enclosed by a surface.
  • To find the E field for highly symmetric distributions.

Gauss’ Law for Spherical Surfaces

  • Flux through the sphere remains constant regardless of the sphere's size.
  • Flux is solely dependent on the enclosed charge.

Gauss' Law with Non-Spherical Surfaces

  • Flux remains independent of the surface and depends only on enclosed charge.

Positive and Negative Electric Flux

  • Positive electric flux is associated with enclosed positive charge.
  • Negative electric flux occurs if the charge is negative.

Spherical Gaussian Surface

  • A spherical Gaussian surface #1 encloses and is centered on a point charge +q.
  • A second spherical Gaussian surface #2 of the same size also encloses the charge but is not centered on it.
  • The electric flux through both surfaces is the same.

Conceptual Example: Flux

  • Flux A = +q/ε₀
  • Flux B = -q/ε₀
  • Flux C = 0
  • Flux D = 0
  • Net electric flux through surface C and surface D equal zero

Applications of Gauss' Law

  • Under electrostatic conditions, excess charge resides on a conductor's surface.
  • The electric field inside a conductor under electrostatic conditions is zero.
  • The field outside a spherical conductor looks like a point charge under electrostatic conditions.

Field of a Line Charge

  • Calculating E around an infinite positive wire with charge density λ involves using a closed cylindrical Gaussian surface.
  • Electric field E is orthogonal to dA at the end caps.
  • E is parallel(radially outwards) to dA on the cylinder.
  • E is constant in value everywhere on the cylinder at a distance r from the wire.
  • Integrating over the area involves two dimensions: dA = (rdθ) dl.
  • The limits of integration are: dθ goes from 0 to 2Ï€; dl goes from 0 to l (length of cylinder).
  • Flux = E x Surface area
  • Q(enc) = (charge density) x (length) = λ 1
  • Gauss' Law gives us the flux = E(2Ï€r) l = q/ε₀ = (λ l) /ε₀

Field of a Sheet of Charge

  • Calculation of the constant value of E involves the integration of E dot dA.

Charges on Conductors with Cavities

  • E = 0 inside a conductor
  • An empty cavity inside a conductor has no electric field and no charge on its inner surface.
  • Isolated charges inside a cavity induce opposite charge, canceling the field inside the conductor.
  • This phenomenon was observed during Faraday's icepail experiment, which confirmed Gauss's Law.

Van de Graaff Generator

  • The Van de Graaff generator operates on the same principle as Faraday's icepail experiment.

Electrostatic Shielding

  • A conducting box (a Faraday cage) shields from electric fields.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

Use Quizgecko on...
Browser
Browser