Fracciones: Multiplicación, Simplificación y División
10 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Cuál es el resultado de multiplicar las fracciones (\frac{2}{3}) y (\frac{3}{4}) y luego simplificar la fracción resultante?

  • \(\frac{1}{6}\)
  • \(\frac{2}{3}\)
  • \(\frac{6}{12}\)
  • \(\frac{1}{2}\) (correct)
  • ¿Cuál es el paso número 2 para multiplicar fracciones?

  • Dividir los numeradores y denominadores
  • Multiplicar los numeradores y denominadores
  • Sumar los numeradores y denominadores
  • Simplificar la fracción resultante (correct)
  • ¿Qué es el resultado de dividir el numerador y el denominador de una fracción por su máximo divisor común?

  • Una fracción equivalente
  • Un número entero
  • La fracción original
  • La fracción simplificada (correct)
  • ¿Cuál es la fórmula para multiplicar dos fracciones?

    <p>(\frac{a}{b}) × (\frac{c}{d}) = (\frac{ac}{bd})</p> Signup and view all the answers

    ¿Cuál es el propósito de simplificar una fracción?

    <p>Reducir la fracción a su forma más simple</p> Signup and view all the answers

    ¿Cuál es el resultado de simplificar la fracción (\frac{24}{36})?

    <p>(\frac{1}{2})</p> Signup and view all the answers

    Al multiplicar (\frac{5}{6}) por (\frac{3}{4}), ¿cuál es el resultado?

    <p>(\frac{15}{24})</p> Signup and view all the answers

    ¿Cómo se divide (\frac{7}{8}) entre (\frac{4}{5}) utilizando el algoritmo de invertir y multiplicar?

    <p>(\frac{35}{32})</p> Signup and view all the answers

    Si se divide (\frac{10}{15}) simplificándolo primero, ¿cuál es el resultado?

    <p>(\frac{2}{3})</p> Signup and view all the answers

    ¿Qué operación se aplica para simplificar una fracción antes de dividirla?

    <p>Simplificación</p> Signup and view all the answers

    Study Notes

    Fractions: Understanding Multiplication, Simplification, and Division

    Fractions are a fundamental concept in mathematics, representing parts of a whole. They are essential for understanding and solving various problems in various fields, including science, engineering, and everyday life. In this article, we will discuss the subtopics of fractions, focusing on multiplication, simplification, and division.

    Multiplication of Fractions

    Multiplication of fractions involves multiplying the numerators of two fractions and the denominators of two fractions. The result is a new fraction with a different numerator and denominator. For example, if we have two fractions (\frac{3}{4}) and (\frac{2}{5}), we can multiply them to get (\frac{6}{20}) or (\frac{3}{10}).

    The rules for multiplying fractions are as follows:

    1. Multiply the numerators: (\frac{a}{b}) × (\frac{c}{d}) = (\frac{ac}{bd})
    2. Simplify the resulting fraction, if possible.

    Simplification of Fractions

    Simplification of fractions involves reducing the fraction to its simplest form. This is done by dividing both the numerator and the denominator by their greatest common divisor (GCD). The GCD is the largest number that divides both the numerator and the denominator.

    For example, if we have the fraction (\frac{12}{18}), we can simplify it by dividing both the numerator and the denominator by their GCD, which is 6:

    [\frac{12}{18} = \frac{\frac{12}{6}}{\frac{18}{6}} = \frac{2}{3}]

    Division of Fractions

    Division of fractions involves dividing one fraction by another. This is done using the invert-and-multiply algorithm, which involves inverting the divisor and then multiplying the dividend by the inverted divisor.

    For example, if we have the division (\frac{5}{4}) ÷ (\frac{2}{3}), we can apply the invert-and-multiply algorithm:

    [\frac{5}{4} \div \frac{2}{3} = \frac{5}{4} \times \frac{3}{2} = \frac{15}{8}]

    In this result, (\frac{15}{8}) is the quotient of the division, with a different denominator than either the divisor or the dividend.

    In conclusion, fractions are a crucial part of mathematics, and understanding their properties and operations is essential for solving various mathematical problems. By learning about multiplication, simplification, and division of fractions, we can better understand how to work with fractions in different contexts.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Aprende sobre las operaciones fundamentales con fracciones, como la multiplicación, simplificación y división. Descubre cómo multiplicar numeradores y denominadores, simplificar fracciones a su forma más simple y dividir fracciones usando el algoritmo de invertir y multiplicar.

    Use Quizgecko on...
    Browser
    Browser