Podcast Beta
Questions and Answers
¿Cuál de las siguientes distribuciones indica una concentración significativa de valores alrededor de la media?
Los estudios inferenciales permiten describir un conjunto de datos sin establecer relaciones entre variables.
False
¿Qué tipo de escala se utiliza para datos categóricos que pueden ser ordenados?
Ordinales
El grado de concentración de los valores de una variable alrededor de la zona central se conoce como __________.
Signup and view all the answers
Emparejar el tipo de estudio con su descripción:
Signup and view all the answers
¿Qué es el marco muestral?
Signup and view all the answers
La aleatoriedad implica la existencia de un patrón constante en los eventos.
Signup and view all the answers
¿Cuál es la fórmula para calcular la probabilidad?
Signup and view all the answers
La __________ es una medida de la asimetría en una distribución.
Signup and view all the answers
Relaciona las fórmulas con sus significados:
Signup and view all the answers
Study Notes
Conceptos Básicos de Estadística
- La estadística se encarga de identificar, recolectar, sistematizar, procesar y analizar datos para hacer predicciones.
- Las muestras deben ser representativas en tamaño y seleccionadas de forma aleatoria.
Aleatoriedad
- Refleja la falta de un patrón constante o previsibilidad en los eventos.
Marco Muestral
- Consiste en una lista de elementos de la población a estudiar, conocidos como unidades muestrales.
Muestreo
- Se utiliza una fórmula para calcular el tamaño de la muestra necesaria:
$$n_o=\frac{2^2PQ}{d^2}$$
$$n=\frac{n_o}{1+\frac{n_o-1}{N}}$$ - Variables relevantes:
- P: probabilidad de ocurrencia
- Q: probabilidad de no ocurrir
- d: margen de error
- N: tamaño de la población
Probabilidad
- Se calcula como:
$$\frac{casos\ favorables}{casos\ posibles}\times100$$ - Fórmula general: $$z=\frac{X - \mu}{\sigma}$$
Donde:- M: media
- σ: desviación estándar
Simetría y Cortosis
- La simetría mide el sesgo en la distribución; una distribución simétrica tiene sesgo 0.
- Cortosis indica la concentración de los valores alrededor del promedio:
- Distribuciones: platicúrtica, mesocúrtica, leptocúrtica.
Clasificación de Estudios Estadísticos
- Descriptivos: analizan datos a través de medidas numéricas, tablas y gráficos.
- Inferenciales: establecen relaciones y comparaciones en la población estudiada.
- Paramétricos: asumen conocimiento sobre la distribución de la variable.
- No paramétricos: analizan datos sin suposiciones sobre la distribución.
Escalas de Medición
- Nominales: datos categóricos sin orden.
- Ordinales: datos categóricos con orden.
- Intervalo: magnitudes en una escala definida, el cero es relativo.
- Razón: datos numéricos con un cero absoluto representando cantidades reales.
Estadística Descriptiva
- Tabulación de datos en tablas de frecuencia y contingencia.
- Medidas de tendencia central: media, mediana, moda.
- Medidas de dispersión: rango, desviación estándar, varianza.
- Gráficos: puntos, líneas, barras, círculos, caja de bigotes, histogramas.
Tipos de Probabilidades
- Discreta: número contable finito de eventos.
- Continua: cantidad infinita de valores en un rango.
Distribuciones de Probabilidad
- Uniforme discreta: todos los eventos tienen la misma probabilidad.
- Bernoulli: variable con dos posibles resultados (éxito o fracaso).
- Binomial: número de éxitos en experimentos independientes.
- Poisson: probabilidad de un número de eventos en un intervalo de tiempo.
- Multinomial: varios eventos excluyentes en ensayos múltiples.
Axiomas de Probabilidad
- La probabilidad de un evento siempre es mayor o igual a cero.
- La probabilidad de que ocurra al menos un evento es igual a 1.
- La probabilidad de múltiples eventos se suma si son mutuamente excluyentes.
Probabilidad Condicional
- P(A|B) se define como la probabilidad de A dado que B ha ocurrido: $$P(A|B)=\frac{P(A \cap B)}{P(B)}$$
Función de Densidad de Probabilidad
- Herramienta para analizar distribuciones de variables aleatorias continuas.
- En probabilidad continua, la probabilidad de un valor exacto es 0.
Distribuciones Especiales
- Normal: distribución continua con forma de campana, simétrica respecto a la media.
- Lognormal: modelos asimétricos con valores solo positivos.
- Pearson/Chi cuadrado: analiza la independencia y varianza de las variables.
- t de Student: compara medias muestrales.
- F de Snedecor: compara variabilidad entre grupos.
Teoría de la Supervivencia
- Analiza el tiempo hasta que ocurre un evento, utilizando distribuciones como exponencial y de Weibull.
Formulas de Distribuciones
- Exponencial: $$P(X=x) = λε^{-λx} \text{ para } x \geq 0$$
- Beta: $$P(X=x) = x^{α-1}(1-x)^{β-1}$$
- Gamma: $$F(x) = ∫_0^x \frac{(λy)^{α-1} e^{-λy}}{Γ(α)} dy$$
- Weibull: $$P(X=x)=λα(λx)^{α-1} e^{-(λx)^{α}}$$
Distribuciones de Negativa, Geométrica e Hipergeométrica
- Binomial negativa: $$P(X = x) = (\ ^x_{-1}) p^r(1-p)^{x-r}$$
- Geométrica: $$P[X = x] = (1-p)^{x-1} \cdot p$$
- Hipergeométrica: $$P[X = x] = \frac{(\ ^k_x)(\ ^{N-K}_{n-x})}{(\ ^N_n)}$$
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Este quiz abarca los conceptos fundamentales de la estadística, centrándose en el muestreo y la aleatoriedad. Se exploran temas como la muestra representativa, el marco muestral y las fórmulas relacionadas. Ideal para estudiantes que desean profundizar en la recolección y análisis de datos.