Ecuaciones de Primer Grado
10 Questions
4 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

¿Cuál es la forma general de una ecuación lineal en una variable?

  • ax + b = 0 (correct)
  • a + bx = 0
  • ax^2 + b = 0
  • a + b = 0
  • ¿Cuál de las siguientes afirmaciones es correcta sobre las soluciones de ecuaciones lineales?

  • Las ecuaciones lineales siempre tienen dos soluciones.
  • Una ecuación lineal puede tener una solución única, infinitas soluciones o ninguna solución. (correct)
  • Una ecuación puede tener siempre al menos una solución.
  • Una ecuación puede tener soluciones irracionales pero no enteras.
  • Si tienes la ecuación 3x + 2 = 2x + 5, ¿cuál es el primer paso para resolverla?

  • Restar 2 de ambos lados.
  • Restar 2x de ambos lados. (correct)
  • Multiplicar ambos lados por 3.
  • Sumar 3 a ambos lados.
  • ¿Qué indica la ecuación 5x + 1 = 5x + 3?

    <p>La ecuación no tiene solución.</p> Signup and view all the answers

    ¿Cuál de los siguientes pasos se debe realizar primero para resolver la ecuación 4(x + 2) = 28?

    <p>Aplicar la propiedad distributiva.</p> Signup and view all the answers

    Al resolver 2x - 4 = 10, ¿cuál es el resultado final para x?

    <p>x = 6</p> Signup and view all the answers

    Si una ecuación tiene un coeficiente de variable igual a cero, ¿qué tipo de solución puede tener?

    <p>O no tiene solución o tiene infinitas soluciones.</p> Signup and view all the answers

    ¿Cuál operación ayuda a simplificar la ecuación 6/2x = 3?

    <p>Multiplicar ambos lados por 2</p> Signup and view all the answers

    Al aplicar la propiedad distributiva en la ecuación 4(2x + 3) = 28, ¿cuál es la expresión resultante?

    <p>8x + 12</p> Signup and view all the answers

    ¿Qué operación realizas para resolver la ecuación 5x - 3 = 2x + 6?

    <p>Restar 2x de ambos lados</p> Signup and view all the answers

    Study Notes

    Equations of the First Degree

    • Equations of the first degree are algebraic equations where the highest exponent of the variable is 1. They are also known as linear equations.
    • The general form of a linear equation in one variable (x) is ax + b = 0, where 'a' and 'b' are constants, and 'a' ≠ 0.
    • To solve a linear equation, the goal is to isolate the variable (x) on one side of the equation.

    Solving Linear Equations

    • Combining Like Terms: Simplify both sides of the equation by combining any terms that have the same variable and exponent.
    • Adding or Subtracting: Add or subtract the same value from both sides of the equation to isolate the variable term.
    • Multiplication or Division: If the variable is multiplied or divided by a constant, perform the opposite operation on both sides of the equation to isolate the variable.
    • Distributive Property: If parentheses are present, apply the distributive property to eliminate them before proceeding with the other steps.
    • Example: Solve 2x + 5 = 11; Subtract 5 from both sides: 2x = 6; Divide both sides by 2: x = 3

    Types of Solutions

    • Unique Solution: A linear equation has one unique solution if the coefficient of the variable (x) is not zero.
    • No Solution: A linear equation has no solution if the variable terms cancel out and the constant terms are unequal. For example, 2x + 3 = 2x + 7.
    • Infinite Solutions: A linear equation has infinite solutions if both sides of the equation are identical when simplified. For example, 2(x + 1) = 2x + 3 (simplifies to 2x + 2 = 2x + 2).
    • Important Note: Equations can involve fraction coefficients. Multiplying both sides by the least common denominator (LCD) of the fractions can make solving easier, removing the fractions.

    Applications of Linear Equations

    • Linear equations are used in numerous applications, including:
      • Geometry: Calculating areas, perimeters, and angle measures.
      • Business: Modeling costs, revenues, and profits.
      • Physics: Describing motion, force, and work.
      • Everyday Problems: Solving practical situations involving unknown values, such as calculating ingredient amounts for a recipe or time needed to complete a task.

    Key Concepts

    • Variable: A symbol (usually a letter) that represents an unknown numerical value.
    • Constant: A fixed numerical value.
    • Equation: A mathematical statement that shows the equality of two expressions.
    • Solution: The value of the variable that makes the equation true.
    • Equivalent Equations: Equations that have the same solution.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Este cuestionario se centra en las ecuaciones de primer grado, también conocidas como ecuaciones lineales. Explora la forma general de estas ecuaciones, así como los métodos para resolverlas paso a paso. Utiliza ejemplos prácticos para aplicar el concepto.

    More Like This

    Algebra II Unit 2 Flashcards
    19 questions

    Algebra II Unit 2 Flashcards

    RevolutionaryDulcimer avatar
    RevolutionaryDulcimer
    Linear Equations and Polynomial Expressions
    25 questions
    Equações do Primeiro Grau e Propriedades
    8 questions
    Use Quizgecko on...
    Browser
    Browser