Podcast
Questions and Answers
What are the five requirements of good research when conducting desk research?
What are the five requirements of good research when conducting desk research?
Objective & Independent, Controllable, Reliability, Validity, Generalizability
Which type of research question examines differences and similarities?
Which type of research question examines differences and similarities?
Quantitative Research uses non-numerical data to explore complex phenomena.
Quantitative Research uses non-numerical data to explore complex phenomena.
False
Field research involves collecting new data directly from sources like ____, interviews, experiments, and observations.
Field research involves collecting new data directly from sources like ____, interviews, experiments, and observations.
Signup and view all the answers
What are observations?
What are observations?
Signup and view all the answers
What are the advantages of homogeneous focus groups?
What are the advantages of homogeneous focus groups?
Signup and view all the answers
Structured observations involve predefined categories and systematic recording.
Structured observations involve predefined categories and systematic recording.
Signup and view all the answers
The primary role of an observation guide is to provide a framework for __________ data collection.
The primary role of an observation guide is to provide a framework for __________ data collection.
Signup and view all the answers
Match the following terms with their definitions:
Match the following terms with their definitions:
Signup and view all the answers
What is the purpose of selective responses in research?
What is the purpose of selective responses in research?
Signup and view all the answers
What are the 3 requirements for causal relationships mentioned in the content?
What are the 3 requirements for causal relationships mentioned in the content?
Signup and view all the answers
What is a Likert-scale used for?
What is a Likert-scale used for?
Signup and view all the answers
How does a Likert-scale operationalize variables?
How does a Likert-scale operationalize variables?
Signup and view all the answers
Open questions in surveys provide quantifiable data.
Open questions in surveys provide quantifiable data.
Signup and view all the answers
Match the following designs with their descriptions:
Match the following designs with their descriptions:
Signup and view all the answers
What is the purpose of A/B testing?
What is the purpose of A/B testing?
Signup and view all the answers
Eye-tracking is a method for measuring where and for how long a person ______ at various parts of a visual environment.
Eye-tracking is a method for measuring where and for how long a person ______ at various parts of a visual environment.
Signup and view all the answers
What is a crucial step in preparing an in-depth interview?
What is a crucial step in preparing an in-depth interview?
Signup and view all the answers
Focus groups are used to gather diverse perspectives on a specific topic.
Focus groups are used to gather diverse perspectives on a specific topic.
Signup and view all the answers
What is pretesting?
What is pretesting?
Signup and view all the answers
Why do we pretest?
Why do we pretest?
Signup and view all the answers
What does bias mean?
What does bias mean?
Signup and view all the answers
What is social desirability bias?
What is social desirability bias?
Signup and view all the answers
Why do we do quantitative data analysis or statistics?
Why do we do quantitative data analysis or statistics?
Signup and view all the answers
What is an analysis plan?
What is an analysis plan?
Signup and view all the answers
What are center sizes in statistics?
What are center sizes in statistics?
Signup and view all the answers
What is the purpose of a frequency table?
What is the purpose of a frequency table?
Signup and view all the answers
What are examples of good tables?
What are examples of good tables?
Signup and view all the answers
What is a scatterplot used for?
What is a scatterplot used for?
Signup and view all the answers
When should you use a bar chart?
When should you use a bar chart?
Signup and view all the answers
How can you interpret bar charts?
How can you interpret bar charts?
Signup and view all the answers
Why use a horizontal bar chart?
Why use a horizontal bar chart?
Signup and view all the answers
What does a 100% stacked bar chart show?
What does a 100% stacked bar chart show?
Signup and view all the answers
When should you use a 100% stacked bar chart?
When should you use a 100% stacked bar chart?
Signup and view all the answers
When should you not use pie charts?
When should you not use pie charts?
Signup and view all the answers
When should you not use donut charts?
When should you not use donut charts?
Signup and view all the answers
How can you remove unnecessary noise in graphs?
How can you remove unnecessary noise in graphs?
Signup and view all the answers
How can you focus attention in graphs?
How can you focus attention in graphs?
Signup and view all the answers
What are characteristics of good graphs?
What are characteristics of good graphs?
Signup and view all the answers
What are characteristics of bad graphs?
What are characteristics of bad graphs?
Signup and view all the answers
Why is data used in journalism?
Why is data used in journalism?
Signup and view all the answers
Why should we be critical when reading data journalism?
Why should we be critical when reading data journalism?
Signup and view all the answers
Study Notes
Class 1: Introduction to Research
- Quality in research includes:
- Objectivity and independence: unbiased and impartial
- Controllability: transparent research execution and documentation
- Reliability: consistent results
- Validity: accurate measurement of concepts
- Generalizability: representative sample
- Research process:
- Formulation of problem definition and research question
- Critical literature review
- Methodology
- Data collection
- Data analysis
- Report and presentation
Class 2: Research Questions and Hypotheses
- Research question:
- A specific question that guides the research
- Formulated in a concrete way, involving variables
- Types of research questions:
- Descriptive: describes features of a concept
- Comparative: examines differences and similarities
- Evaluative: looks at advantages and disadvantages
- Explanatory: investigates causes and consequences
- Testing: assesses the effect of one variable on another
- Good research question:
- Clear, complete, and concise
- Comprised of a main question and possible sub-questions
- Feasible and specific
- Relevant and original
- Hypothesis:
- A preliminary statement indicating what the researcher expects to find
- Logically deduced from a theory or developed from observed facts
- Closely linked to the research question
- Good hypothesis:
- Precise, testable through research, and formulated before conducting the research
- Includes variables, the studied group, and the expected outcome
Class 2: Variables
- Variables:
- Characteristics or features that can vary among respondents or participants
- Directly linked to the research question and hypotheses
- How to identify variables:
- Break down the research question into specific elements that can be measured or observed
- Conceptualizing and operationalizing:
- Linking abstract concepts to measurable variables
- Conceptualization: developing clear, concise definitions
- Operationalization: defining how concepts will be measured or observed
- Levels of measurement:
- Determine how variables are quantified and analyzed
- Different levels of measurement: nominal, ordinal, interval, and ratio
Class 3: Desk Research
- Desk research:
- Analyzing existing information from sources like books, news media, and scientific articles
- Less expensive, but may include outdated, biased, or incomplete information
- How to conduct desk research:
- Identify key terms
- Gather information
- Store and categorize
- Process information
- Quick scan and critique
- Evaluating desk research:
- Check for objectivity, controllability, reliability, validity, and generalizability
Class 3: Referencing
- Referencing:
- Citing sources of information and ideas used in the research
- Acknowledging original authors and providing evidence for arguments
- Why do we do referencing?
- Give credit to original authors
- Provide evidence and support for arguments
- Allow readers to verify and follow up on sources
- Avoid plagiarism
Class 3: Field Research
- Field research:
- Collecting new data directly from sources like participants
- Specific to the researcher's needs, providing current, detailed information
- What is the difference between qualitative and quantitative research?
- Qualitative research: focuses on understanding deep insights, attitudes, and behaviors
- Quantitative research: involves numerical data to measure and analyze variables
Class 4: Quantitative Research
- Associations between variables:
- Identifying independent and dependent variables
- Independent variable: manipulated or categorized to observe its effect
- Dependent variable: measured and expected to change in response to the independent variable
- Correlation and causality:
- Correlation: indicates a relationship between variables, but does not imply causality
- Causality: implies a direct effect of one variable on another
- Experimental research:
- Involves manipulating the independent variable to observe its causal effect
- Identifying and controlling for confounding variables
Class 4: Survey
- Survey:
- A quantitative data collection method that involves spreading a questionnaire
- Structured, typically consisting of closed questions
- Likert-scale:
- Used in surveys to measure attitudes, beliefs, and perceptions
- Assigns numerical values to respondents' levels of agreement
- Criteria for a good survey:
- Simple and understandable language
- Free of double negation and ambiguous questions
- Objective, avoiding socially desirable answers
- Structured with a clear introduction, organized layout, and logically bundled topics
- Exhaustive and non-overlapping in answer options
- Types of surveys:
- Written
- Telephone
- Face-to-face
- Online
- Panel surveys
- Codebook and datamatrix:
- Help in organizing and analyzing survey data
- Codebook links each survey question to a code and each response option to a specific value
- Datamatrix represents the collected data in a structured format### Eye-Tracking
- Used to examine what captures the most attention of users or how users scan specific information
- Concepts linked to eye-tracking:
- Fixations: periods when the eyes are relatively stationary, focused on a particular point
- Heatmaps: visual representations of the most frequently viewed areas on a visual display
In-Depth Interviews
- Qualitative data collection method involving direct, one-on-one engagement with participants to explore their perspectives on a specific topic in detail
- When to use in-depth interviews:
- When detailed, deep insights are needed about a participant's thoughts, feelings, or behaviors
- When not to use in-depth interviews:
- When needing to generalize findings to a larger population or when quantitative data is required
- Advantages of in-depth interviews:
- Provides deep, rich qualitative data
- Flexibility in exploring new topics that arise during the interview
- Disadvantages of in-depth interviews:
- Time-consuming and resource-intensive
- Potential for interviewer bias
- Crucial steps in preparing an in-depth interview:
- Develop a clear research goal
- Create an interview guide
- Pre-test the guide
- Ensure informed consent is obtained from participants
- Developing an in-depth interview based on the specific research goal:
- Link research questions to variables, then to indicators, and finally to interview questions
Focus Groups
- Qualitative research method involving guided discussions with a small group of participants to gather diverse perspectives on a specific topic
- When to use focus groups:
- To explore complex behaviors, attitudes, and motivations
- To generate ideas and insights for further research
- When interaction between participants can provide deeper understanding
- When not to use focus groups:
- When quantitative data is needed
- When individual privacy and confidentiality are paramount
- When the topic is too sensitive for group discussion
- Advantages of focus groups:
- Generate rich, detailed data
- Allow interaction and discussion among participants, leading to deeper insights
- Cost-effective for gathering data from multiple people simultaneously
- Disadvantages of focus groups:
- Potential for groupthink, where participants conform to the majority view
- Difficult to generalize findings due to small, non-random samples
- Requires skilled moderation to manage group dynamics
Observations
- Systematic watching and recording of behaviors and events in their natural settings
- Research questions suitable for observations:
- Questions about how people behave in specific contexts
- Questions aiming to understand processes, interactions, and environmental influences
- Contexts where observations are applied:
- In natural settings like schools, workplaces, or public spaces
- In controlled environments like laboratories
- Structured vs unstructured observations:
- Structured: predefined categories and systematic recording
- Unstructured: open-ended and flexible, without predefined categories
- Participating vs non-participating observations:
- Participating: observer is actively involved in the context
- Non-participating: observer remains detached and does not interact with subjects
- Open vs covered observations:
- Open: subjects are aware they are being observed
- Covered: subjects are unaware of the observation
- Natural vs artificial observations:
- Natural: observations in real-world settings
- Artificial: observations in a controlled, experimental setting
- People vs automatic observations:
- People: observations conducted by human observers
- Automatic: observations made using technology, such as cameras or sensors
- Direct vs indirect observations:
- Direct: observing actual behavior as it occurs
- Indirect: observing evidence of behavior after it has occurred
Ethnography
- Qualitative research method involving immersive observation and participation in the daily life of the study subjects
- Advantages of ethnographical research:
- Provides deep, holistic insights
- Captures context and nuances
- Disadvantages of ethnographical research:
- Time-consuming
- Potential for observer bias
Qualitative Data Analysis
- Research steps/process of qualitative research:
- Data collection
- Data analysis
- Interpretation of findings
- Inductive vs deductive in qualitative data analysis:
- Inductive: developing theories based on observed data
- Deductive: testing existing theories through data
- Three steps of processing qualitative data:
- Open coding: identifying and categorizing basic units of meaning in the data
- Axial coding: finding relationships between open codes
- Selective coding: identifying the core category and integrating other categories around it
Generalizability
- The extent to which the results of a study can be applied to or across different populations, settings, and times beyond the specific conditions of the original study
- Importance of generalizability:
- Ensures the broader applicability and relevance of research findings
- Allows findings to be useful in various contexts and for different groups, enhancing the study's impact and value
- When is generalizability important?
- When research aims to inform policy or practice on a large scale
- In studies seeking to establish universal principles or theories
- When is generalizability less important?
- In exploratory or case studies focused on understanding specific contexts
- In qualitative research prioritizing depth over breadth
Sampling
- Possible ways of sampling:
- Simple random sampling
- Systematic sampling
- Stratified sampling
- Cluster sampling
- Quota sampling
- Targeted sampling
- Snowball sampling
- Convenience sampling
- Role/importance of a sampling frame:
- A sampling frame is a list of all members of the population from which the sample is drawn
- It is crucial for ensuring that the sample accurately represents the population
- Difference between aselect and select sampling:
- Aselect (random) sampling: every member of the population has an equal chance of being included
- Select (non-random) sampling: members are chosen based on specific criteria or convenience### Grouped Frequency Tables
- Used for large data sets with continuous variables
- Important aspects:
- Determine appropriate class intervals
- Ensure intervals are mutually exclusive
- Cover all data points
- Calculating frequencies:
- Absolute frequency: count of occurrences of each value
- Absolute cumulative frequency: cumulative count of occurrences up to a certain value
- Relative frequency: proportion of occurrences of each value
- Relative cumulative frequency: cumulative proportion of occurrences up to a certain value
Cross Tables
- A table showing the frequency distribution of variables simultaneously
- Used to explore relationships between two categorical variables
- Role of X and Y variables: X and Y represent the two variables being compared
Center Sizes (Measures of Central Tendency)
- Values that represent the center of a data set
- Calculated to summarize a data set with a single representative value
- Link to measurement level: determines which measure is appropriate (e.g., mean for interval/ratio, median for ordinal)
- Link to normal distribution: mean, median, and mode are equal in a perfectly normal distribution
Measures of Central Tendency
- Modus (Mode): most frequently occurring value
- How to find: identify the value with the highest frequency
- When to use: for nominal data or when the most common category is of interest
- Median: middle value when data is ordered
- How to find: arrange data in ascending order and find the middle value
- When to use: for ordinal data or when data is skewed
- Mean: average of all values
- How to find: sum all values and divide by the number of values
- When to use: for interval/ratio data with a normal distribution
Data in Daily Life
- Leaving data traces in daily life: digital footprints created through interactions with digital devices and online services
- Examples of a data-driven world: personalized advertising, recommendations on streaming services, smart home devices, and big data analytics in healthcare, finance, and urban planning
- Open data: data freely available for anyone to use, reuse, and redistribute without restrictions
Reporting Quantitative Results
- In-text reporting: used when having a limited amount of numerical data to share
- Effective for highlighting key numbers directly within the text
- Tables: used when presenting a broad range of data or comparing data points
- How to use: organize clearly with labeled columns and rows, provide a title and legend, and avoid clutter and excessive use of borders and colors
- Good tables: present data clearly and concisely, with appropriate labels and a clear structure, and without unnecessary detail
Data Visualization
- Heatmaps: graphical representations of data where individual values are represented as colors
- Used to visualize the distribution and intensity of data across a given space
- Link to tables: both present data, but heatmaps use color to represent data intensity
- What to consider: color scale, avoiding too many colors, and normalizing data if necessary
- Interpreting heatmaps: understanding the color gradient and what it represents
- Graphs: visual representations of data designed to show relationships, patterns, and trends
- Different graphs for different goals:
- Bar charts for categorical data comparisons
- Line graphs for showing trends over time
- Scatter plots for showing relationships between two variables
- Different graphs for different goals:
- Scatterplots: display the relationship between two continuous variables
- When to use: exploring potential relationships or correlations between two variables
- Interpreting scatterplots: looking for patterns, trends, clusters, and outliers
- Lineplots: display data points over a continuous range, typically time
- When to use: showing trends or changes over time
- Interpreting lineplots: examining the slope of the lines to understand the direction and rate of change
- Bar charts: represent categorical data with rectangular bars
- When to use: comparing values across different categories
- Interpreting bar charts: comparing the lengths or heights of the bars
- 100% stacked bar charts: show the relative percentage of multiple data series in stacked bars, with each bar totaling 100%
- When to use: comparing the proportional contributions of different categories while keeping the total constant at 100%
Data Journalism
- Using data in journalism: providing evidence-based reporting, uncovering trends, and supporting investigative stories
- Being critical when reading data journalism: checking data sources, methodology, and potential biases in data collection and presentation
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
This quiz covers the principles of quality research, including objectivity, independence, controllability, and reliability. Understand the importance of unbiased research and its applications.