Bayes Estimator: Bernoulli and Beta Distribution

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the name for different versions of the same gene?

  • Allele (correct)
  • Genotype
  • Phenotype
  • Chromosome

Where are two copies of the same gene found in a cell?

  • Cytoplasm
  • Mitochondria
  • In the nucleus (correct)
  • Ribosome

What is called the genetic makeup of an individual?

  • Allele
  • Phenotype
  • Chromosome
  • Genotype (correct)

What term describes the observable characteristics of an individual, resulting from the interaction of its genotype with the environment?

<p>Phenotype (C)</p> Signup and view all the answers

Which of the following must be present in a double copy to be the source of a character?

<p>Recessive allele (B)</p> Signup and view all the answers

What are the molecules that serve as markers on the surface of red blood cells, determining blood groups called?

<p>Antigens A and B (A)</p> Signup and view all the answers

Which allele is unable to produce any molecules?

<p>Allele O (C)</p> Signup and view all the answers

How many blood groups in humans exist?

<p>Four blood groups (C)</p> Signup and view all the answers

Which of the following is the dominant allele in rhesus?

<p>Rh+ (D)</p> Signup and view all the answers

What is the name of the protein present in skin cells responsible for the fluroescence of some mice?

<p>GFP (D)</p> Signup and view all the answers

Flashcards

What is a karyotype?

A photographic representation of all the chromosomes of a cell, arranged in pairs and by decreasing size.

Genes in a cell?

The two copies of the same gene in a cell carry information that can be identical or different.

What is an allele?

Each different version of the same gene is called an allele and determines a form of hereditary characteristic.

Identical alleles?

If the two alleles are identical, only one form of the trait appears.

Signup and view all the flashcards

What is codominance?

The two alleles both participate in the expression of the characteristic; they are said to be codominant.

Signup and view all the flashcards

What is a Dominant allele?

Only one expresses itself and is at the origin of the form of the hereditary characteristic (called the dominant allele), and the other does not express itself

Signup and view all the flashcards

Recessive Allele Expression?

An allele will only cause a character to appear if present in two copies

Signup and view all the flashcards

What is a genotype?

An individual's set of alleles constitutes their genotype, which determines their phenotype.

Signup and view all the flashcards

Individual Genotypes?

Each individual has a unique genotype, which explains the genetic diversity of individuals of a species and thus the diversity of phenotypes.

Signup and view all the flashcards

Blood group alleles?

There exist three versions called alleles A, B and O

Signup and view all the flashcards

Study Notes

Lecture 24 - Nov. 15, 2023: Bayes Estimator

  • Bayes Estimator minimizes the Bayesian Risk.
    • The formula for Bayes Estimator is $\hat{\theta_B}(x) = \underset{\theta}{\operatorname{argmin}} \int L(\theta, \hat{\theta}) \pi_{\theta|X=x}(\theta) d\theta$ with $\pi_{\theta|X=x}(\theta)$ as the posterior distribution.
  • If the Loss Function is $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$ (squared error risk), the Bayes Estimator simplifies to the posterior mean.
    • $ \hat{\theta_B}(x) = E[\theta|X=x] $.

Example of Bayes Estimator with Bernoulli and Beta Distribution

  • Given $X_i \overset{iid}{\sim} Bernoulli(\theta), i = 1, \dots, n$ and $\theta \sim Beta(a, b)$.
  • The Bayes Estimator of $\theta$ under squared error risk can be found.
  • Likelihood is given by $ p(x|\theta) = \theta^{n\bar{x}} (1 - \theta)^{n - n\bar{x}} $.
  • Prior distribution is $\pi(\theta) = \frac{\theta^{a-1} (1 - \theta)^{b-1}}{B(a, b)}$.
  • Posterior distribution is $\theta|x \sim Beta(n\bar{x} + a, n - n\bar{x} + b)$.
  • The Bayes Estimator is then $ \hat{\theta_B}(x) = \frac{n\bar{x} + a}{n + a + b} $, which can be expressed as a weighted average of the MLE and Prior Mean.
    • With the formula as $ \hat{\theta_B}(x) = w \cdot MLE + (1 - w) \cdot Prior Mean$ where $w = \frac{n}{n + a + b}$.

Conjugate Prior Defined

  • A prior distribution is a conjugate prior for the likelihood function if the posterior distribution is in the same family as the prior distribution.
  • The Beta distribution serves as the conjugate prior for the Bernoulli likelihood function

Example of Bayes Estimator with Normal Distribution

  • Given $X_i \overset{iid}{\sim} N(\theta, \sigma^2), i = 1, \dots, n$ and $\theta \sim N(\mu, \tau^2)$.
  • The Bayes Estimator of $\theta$ under squared error risk can be found.
  • Likelihood is $p(x|\theta) = (\frac{1}{\sqrt{2\pi\sigma^2}})^n e^{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}} e^{-\frac{n(\bar{x} - \theta)^2}{2\sigma^2}}$.
  • Prior distribution is $\pi(\theta) = \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{(\theta - \mu)^2}{2\tau^2}}$.
  • Posterior distribution is $\theta|x \sim N(\frac{n\tau^2 \bar{x} + \sigma^2 \mu}{n\tau^2 + \sigma^2}, \frac{\sigma^2 \tau^2}{n\tau^2 + \sigma^2})$.
    • The Bayes Estimator is $ \hat{\theta_B}(x) = \frac{n\tau^2 \bar{x} + \sigma^2 \mu}{n\tau^2 + \sigma^2} = w \cdot MLE + (1 - w) \cdot Prior Mean$.
    • With the weight as $w = \frac{n\tau^2}{n\tau^2 + \sigma^2}$.

Remarks on Bayes Estimator

  • The Bayes Estimator approximates to the MLE where the prior is "weak"
  • The Bayes Estimator is generally a shrinkage estimator, shrinking the MLE towards the prior mean.
  • With many data points the Bayes Estimator will be close to the MLE

Asymptotic Property of Bayes Estimator

  • Under regularity conditions, the posterior distribution is asymptotically normal.
    • $\theta|x \overset{\cdot}{\sim} N(\hat{\theta}_{MLE}, I(\theta)^{-1})$ where $I(\theta)$ is the Fisher Information.
  • The Bayes Estimator is consistent and asymptotically efficient.

Física

Vectors

Sum of Vectors

  • Represented by placing vectors sequentially, preserving magnitude, direction, and sense.
  • The resultant vector connects the origin of the first to the end of the last.
  • Components from each axis are summed independently, following by magnitude calculated using the Pythagorean theorem and direction using the tangent function.

Product of Vectors

  • Scalar product results in a real number as $ \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos{\theta} $.
  • Vector product yields another vector with magnitude calculated $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin{\theta}$.

Cinemática

Uniform Rectilinear Motion (MRU)

  • Velocity is constant and trajectory is a straight line.
  • Defined by $ v = \frac{\Delta x}{\Delta t} $ and $ x = x_0 + v \cdot t $.

Uniformly Varied Rectilinear Motion (MRUV)

  • With constant acceleration and trajectory along a straight line..
  • Formulas are $ a = \frac{\Delta v}{\Delta t} $, $ v = v_0 + a \cdot t $, $ x = x_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2 $ and $ v^2 = v_0^2 + 2 \cdot a \cdot \Delta x $.

Vertical Throw and Free Fall

  • Special MRUV cases with acceleration due to gravity $ g = 9,8 m/s^2 $.
  • Vertical throw has initial velocity differing from zero, while free fall starts from rest.

Uniform Circular Motion (MCU)

  • Trajectory is a circumference and its angular speed is constant.
  • Defined by relations such as $ \omega = \frac{\Delta \theta}{\Delta t} $, $ \theta = \theta_0 + \omega \cdot t $, $ v = \omega \cdot r $, and $ a_c = \frac{v^2}{r} = \omega^2 \cdot r $.

Uniformly Varied Circular Motion (MCUV)

  • With constant angular acceleration.
  • Characterized by equations mirroring MRUV but for angular parameters: $\alpha = \frac{\Delta \omega}{\Delta t}$, $ \omega = \omega_0 + \alpha \cdot t $, $ \theta = \theta_0 + \omega_0 \cdot t + \frac{1}{2} \cdot \alpha \cdot t^2 $, and $ \omega^2 = \omega_0^2 + 2 \cdot \alpha \cdot \Delta \theta $.

Oblique Throw

  • A combination of MRU horizontally and MRUV vertically

Trabajo y Energía

Work

  • Work done by a force is the force times the displacement times the cosine of the angle between them or $ W = \vec{F} \cdot \Delta \vec{x} = |\vec{F}| \cdot |\Delta \vec{x}| \cdot \cos{\theta}$

Kinetic Energy

  • Energy due to the motion describes $ E_c = \frac{1}{2} \cdot m \cdot v^2.$

Potential Energy

  • Energy due to position, either gravitational $ E_p = m \cdot g \cdot h. $ or elastic $ E_p = \frac{1}{2} \cdot k \cdot \Delta x^2. $

Theorem of Work and Energy

  • states that the net work equals a body's change in kinetics or $W_{neto} = \Delta E_c$

Conservation of mechanical energy

  • In an isolated system where only conservative forces act, mechanical energy is constant and is described as $ E_m = E_c + E_p = constante$

Potencia

  • Power measures how quickly work gets done $ P = \frac{W}{\Delta t}$

Impulso y Cantidad de Movimiento

Impulse

  • Calculated by product force over interval or $ \vec{I} = \vec{F} \cdot \Delta t $ and is.

Quantity of Motion

  • Is is vector measuring mass related by the velocity $ \vec{p} = m \cdot \vec{v}$.

Teorema del impulso y la cantidad de movimiento

  • Connects impulse equal change momentum or $ \vec{I} = \Delta \vec{p} $

Conservación de la cantidad de movimiento

  • For conservation within isolated has equation $ \vec{p}_{total} = constante $

Estática

Concurrent Forces

  • Force sum acting body result zero express condition $ \sum \vec{F} = 0$.

Momento de una fuerza

  • Described by vector derived product vector representing then location relative Force denoted expression. $ \vec{M} = \vec{r} \times \vec{F}$

Fuerzas paralelas

  • To ensure that bodies at rests equilibrium requirements require The sum must always be Zero as well moment about Zero too exist

Centro de gravedad

  • Center indicates action for forces

Dinámica

Leyes de Newton

  • Law Inertia objects maintain unless caused externally
  • Second determines Pro Force derived multiplication Mass over. Accerelation express relations $\sum \vec{F} = m \cdot \vec{a}$
  • Third defines action and opposing. Equal reverse in bodies

Fuerzas de rozamiento

  • force by frictions either standing denoted relations ,$ F_r = \mu \cdot N$

Fuerzas elásticas

  • Exert elasticity force in displacement denote following equation,$ F = -k \cdot \Delta x$

Fourier Series Summary

  • Representation of periodic functions with sines and cosines
  • Expressed as $f(x) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$
  • $a_0, a_n, b_n$ are Fourier coefficients that define amplitude and phase.

Calculating Fourier Coefficients

  • Formulas to calculate coefficients:
    • $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$
    • $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$
    • $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$

Square Wave Example

  • Square wave function Fourier series:
    • $f(x) = \frac{4}{\pi} \sum_{n=1, 3, 5,...}^{\infty} \frac{1}{n} \sin(nx)$

Applications of Fourier Series

  • Signal processing, image processing, physics, and engineering

GeoGebra Quick Start Guide

Interface

  • Menu bar for file, edit, view, options, tools, window and help
  • Toolbar for quick access to tools
  • Algebraic view for math objects
  • Graphic view for visual
  • CAS, for symbolic calculations
  • Construction protocol registers all steps

Inputting

  • Input bar directly adds commands using on screen keyboard

Basic edits

Main Edits

Key Commands

  • Basic operations with Point, line function transform

Extra suggestions

  • Personalize with resources

Algèbre linéaire (Bernard Gostiaux)

  • Table of Contents
    • Avant-propos
    • Notations
  1. Espaces vectoriels
  • Loi de composition interne
  • Groupe
  • Corps
  • Espace vectoriel
  • Sous-espace vectoriel
  • Somme de sous-espaces vectoriels
  • Intersection de sous-espaces vectoriels
  • Somme directe de sous-espaces vectoriels
  • Sous-espaces supplémentaires
  • Espace vectoriel quotient
  1. Applications linéaires
  • Application linéaire
  • Image d'une application linéaire
  • Noyau d'une application linéaire
  • Théorème du rang
  • Applications linéaires et formes linéaires
  • Hyperplan
  • Projecteurs
  • Symétries
  • Homographies
  1. Matrices
  • Matrices
  • Matrices carrées
  • Matrices inversibles
  • Transposition des matrices
  • Matrices et applications linéaires
  • Changement de bases
  • Matrices équivalentes
  • Matrices semblables
  • Trace d'une matrice carrée
  1. Déterminants
  • Formes n-linéaires alternées
  • Déterminant d'une famille de vecteurs
  • Déterminant d'un endomorphisme
  • Déterminant d'une matrice carrée
  • Propriétés des déterminants
  • Calcul des déterminants
  • Applications des déterminants
  1. Réduction des endomorphismes et des matrices carrées
  • Éléments propres d'un endomorphisme
  • Polynôme caractéristique
  • Théorème de Cayley-Hamilton
  • Polynôme minimal
  • Diagonalisation
  • Trigonalisation
  • Décomposition de Dunford
  1. Espaces préhilbertiens réels
  • Produit scalaire
  • Inégalité de Cauchy-Schwarz
  • Norme associée à un produit scalaire
  • Orthogonalité
  • Procédé d'orthonormalisation de Gram-Schmidt
  • Projections orthogonales
  • Éléments de géométrie euclidienne
  • Adjoint d'un endomorphisme
  • Endomorphismes autoadjoints
  • Endomorphismes orthogonaux
  1. Formes bilinéaires
  • Formes bilinéaires
  • Formes bilinéaires symétriques
  • Formes bilinéaires antisymétriques
  • Orthogonalité
  • Matrices congruentes
  • Réduction de Gauss
  • Formes quadratiques
  • Formes quadratiques positives
  1. Espaces hermitiens
  • Formes hermitiennes
  • Produit scalaire hermitien
  • Orthogonalité
  • Adjoint d'un endomorphisme
  • Endomorphismes antihermitiens
  • Endomorphismes unitaires
  1. Solutions des exercices

Rules of Differentiation Summarized

Constant Function Rule

  • For $f(x) = k$ (k is constant), $f'(x) = 0$.

Power Rule

  • If $f(x) = x^n$, then $f'(x) = nx^{n-1}$.

Constant Multiple Rule

  • For $f(x) = k \cdot g(x)$ (k is constant), $f'(x) = k \cdot g'(x)$.

Sum/Difference Rule

  • For $f(x) = u(x) \pm v(x)$, $f'(x) = u'(x) \pm v'(x)$.

Product Rule

  • If $f(x) = u(x) \cdot v(x)$, then $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$.

Quotient Rule

  • If $f(x) = \frac{u(x)}{v(x)}$, then $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2}$.

Chain Rule

  • When $f(x) = u(v(x))$, $f'(x) = u'(v(x)) \cdot v'(x)$.

Derivatives of Trigonometric Functions:

  • $f(x) = \sin(x) \implies f'(x) = \cos(x)$
  • $f(x) = \cos(x) \implies f'(x) = -\sin(x)$
  • $f(x) = \tan(x) \implies f'(x) = \sec^2(x)$

Derivatives of Exponential and Logarithmic Functions:

  • $f(x) = e^x \implies f'(x) = e^x$
  • $f(x) = \ln(x) \implies f'(x) = \frac{1}{x}$

Pythagorean Theorem Overview

  • Right triangle: $a^2 + b^2 = c^2$
    • a and b are the legs
    • c is the hypotenuse
  • Converse of the Pythagorea: If $a^2 + b^2 = c^2$, then $\angle C$ is a right angle.
  • Pythagorean triples are integer triplets that fulfills the main equations
  • Pythagorean Inequalities Theorem 1: If $c^2 > a^2 + b^2$, obtuse triangle.
  • Pythagorean Inequalities Theorem 2: If $c^2 < a^2 + b^2$, acute triangle.

Research Notes

  • Research is a careful and detailed study into a specific problem
  • Types of research

Qualitative Research

  • Explores ideas and creating a hypothesis or theory
  • Tries to understand a group of people Data is collected through interviews and focus groups Tends to have small sample sizes Asks the question "why?" Data is descriptive

Quantitive Research

  • Tests hypothesis of theories
  • Tries to measure a group of people
  • Data is collected through surveys and experiments
  • Tends to have large sample sizes
  • Asks the question "how many?"
  • Data is numerical

Static Characteristics Overview

  • Static Sensitivity: Ratio of output change to input change, $K = \frac{\Delta y}{\Delta x}$ Ideally the sensitivities should be high meaning the smaller change input will result of the larger change output.
  • Linearity: Maximum deviation from linear response.
  • Hysteresis: Difference in output depending on direction of input change.
  • Resolution: Smallest detectable input change.
  • Accuracy: How well a measurement aligns with a standard value.
  • Precision: Consistency/repeatability of measurements.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Bayes' Theorem Quiz
5 questions

Bayes' Theorem Quiz

TimeHonoredVictory avatar
TimeHonoredVictory
Bayes' Theorem and Likelihood Ratios Quiz
94 questions
Bayes-hálók tanítása
15 questions
Use Quizgecko on...
Browser
Browser