Podcast
Questions and Answers
Quod est primum divisio in arboribus decisionis?
Quod est primum divisio in arboribus decisionis?
Quot partes dividuntur in prima divisione arboris decisionis?
Quot partes dividuntur in prima divisione arboris decisionis?
Quid efficit arbor decisionis in primo gradu?
Quid efficit arbor decisionis in primo gradu?
Quod est effectus divisionis ad sinistram in arboribus decisionis?
Quod est effectus divisionis ad sinistram in arboribus decisionis?
Signup and view all the answers
Quomodo arbor decisionis potest repraesentari?
Quomodo arbor decisionis potest repraesentari?
Signup and view all the answers
Quae ratio adhibetur ad determinandum regiones in arboribus decisionis?
Quae ratio adhibetur ad determinandum regiones in arboribus decisionis?
Signup and view all the answers
Quae est utilitas divisionis secundae in arboribus decisionis?
Quae est utilitas divisionis secundae in arboribus decisionis?
Signup and view all the answers
Quod est maximum caput informationis cum dividente?
Quod est maximum caput informationis cum dividente?
Signup and view all the answers
Quae est utilitas Gini impuritatis in computatione?
Quae est utilitas Gini impuritatis in computatione?
Signup and view all the answers
In quibus condiciones informationis lucrum melius est?
In quibus condiciones informationis lucrum melius est?
Signup and view all the answers
Quot moduli impudentiae adhibentur in difficultate identitatis?
Quot moduli impudentiae adhibentur in difficultate identitatis?
Signup and view all the answers
Quid significat 'overfitting' in contextu data mining?
Quid significat 'overfitting' in contextu data mining?
Signup and view all the answers
Quot sunt exemplaria maximi criterii informationis?
Quot sunt exemplaria maximi criterii informationis?
Signup and view all the answers
Quod modum adhibere ubi Gini non sit maxime idoneus?
Quod modum adhibere ubi Gini non sit maxime idoneus?
Signup and view all the answers
Quam utilitas implicatur in quantitativa computatione Gini?
Quam utilitas implicatur in quantitativa computatione Gini?
Signup and view all the answers
Quod argumentum Gini impuritatis describit probabilitatem?
Quod argumentum Gini impuritatis describit probabilitatem?
Signup and view all the answers
Quoties Gini impuritas aequalis est 0?
Quoties Gini impuritas aequalis est 0?
Signup and view all the answers
Quis inter hoc non est pars functionis perditionis?
Quis inter hoc non est pars functionis perditionis?
Signup and view all the answers
Quid significat G(p) in contextu Gini impuritatis?
Quid significat G(p) in contextu Gini impuritatis?
Signup and view all the answers
Quod indicat $p_i$ in formula pro Gini impuritate?
Quod indicat $p_i$ in formula pro Gini impuritate?
Signup and view all the answers
Quis inter haec non est causa defectus 0-1 perditionis pro decisionibus arboribus?
Quis inter haec non est causa defectus 0-1 perditionis pro decisionibus arboribus?
Signup and view all the answers
Quot classes necessariae sunt ad Gini impuritatem maximam?
Quot classes necessariae sunt ad Gini impuritatem maximam?
Signup and view all the answers
Quid est maximum value Gini impuritatis?
Quid est maximum value Gini impuritatis?
Signup and view all the answers
Quoties Gini impuritas minimus est 0, qualis est id data set?
Quoties Gini impuritas minimus est 0, qualis est id data set?
Signup and view all the answers
Quod significat Gini impuritas cum in binario classificatione valet?
Quod significat Gini impuritas cum in binario classificatione valet?
Signup and view all the answers
Quae sequentes gradus adhibentur ad functionem fθ (x) aestimandam?
Quae sequentes gradus adhibentur ad functionem fθ (x) aestimandam?
Signup and view all the answers
Quid significat 'greedy optimisation' in constructione arborum?
Quid significat 'greedy optimisation' in constructione arborum?
Signup and view all the answers
Quid fit si data in training solum unum genus continent?
Quid fit si data in training solum unum genus continent?
Signup and view all the answers
Quod est objective ad selectionem optimarum subdivisionum?
Quod est objective ad selectionem optimarum subdivisionum?
Signup and view all the answers
Quid est L(yi, fθ(xi))?
Quid est L(yi, fθ(xi))?
Signup and view all the answers
Quod genus amissionis non operatur bene in arboribus decisionum?
Quod genus amissionis non operatur bene in arboribus decisionum?
Signup and view all the answers
Quid significat 'recurse' in constructura arborum decisionum?
Quid significat 'recurse' in constructura arborum decisionum?
Signup and view all the answers
Quam adhibere ad decidendum quorum divider optimum?
Quam adhibere ad decidendum quorum divider optimum?
Signup and view all the answers
Quis est accuratus exitus cum secat = 0.5 et feature = y?
Quis est accuratus exitus cum secat = 0.5 et feature = y?
Signup and view all the answers
Quid indicat accuratum exitum 100% in continuis decision stump?
Quid indicat accuratum exitum 100% in continuis decision stump?
Signup and view all the answers
Quod est accuratum exitum cum feature = x et secat = -0.5?
Quod est accuratum exitum cum feature = x et secat = -0.5?
Signup and view all the answers
Quod principium adhibetur ad spatium dividendum in decision stump continuis?
Quod principium adhibetur ad spatium dividendum in decision stump continuis?
Signup and view all the answers
Quid significat accuratum exitum 0%?
Quid significat accuratum exitum 0%?
Signup and view all the answers
Quod est accuratum exitum quando feature = y et secat = 0.5?
Quod est accuratum exitum quando feature = y et secat = 0.5?
Signup and view all the answers
Quid obstat ad accuratum decisionem in decision stump?
Quid obstat ad accuratum decisionem in decision stump?
Signup and view all the answers
Quod est secare magis efficax in data continuis?
Quod est secare magis efficax in data continuis?
Signup and view all the answers
Quod realmente adiuvare potest ad accuratum exitus in decision stump?
Quod realmente adiuvare potest ad accuratum exitus in decision stump?
Signup and view all the answers
Quomodo describitur accuratus output in decision stump continuis?
Quomodo describitur accuratus output in decision stump continuis?
Signup and view all the answers
Quid necessario non est ad parametra optimanda in decision stump?
Quid necessario non est ad parametra optimanda in decision stump?
Signup and view all the answers
Quis est exactus modus pro calculando accuratum exitum?
Quis est exactus modus pro calculando accuratum exitum?
Signup and view all the answers
Quod elementum non pertinet ad decision stump continuis?
Quod elementum non pertinet ad decision stump continuis?
Signup and view all the answers
Quae de labelis in processu notandi verum est?
Quae de labelis in processu notandi verum est?
Signup and view all the answers
Quid est significatio ‘semi-supervised’ in contextu discendi machinis?
Quid est significatio ‘semi-supervised’ in contextu discendi machinis?
Signup and view all the answers
Quid excluendum est in algorithmis supervisionibus?
Quid excluendum est in algorithmis supervisionibus?
Signup and view all the answers
Quae ex sequentibus probas discendi qualitates est probabilistica?
Quae ex sequentibus probas discendi qualitates est probabilistica?
Signup and view all the answers
Quid de notis ‘weakly-supervised’ est falsum?
Quid de notis ‘weakly-supervised’ est falsum?
Signup and view all the answers
Quid definit ‘active learning’?
Quid definit ‘active learning’?
Signup and view all the answers
Quod processus discendi in ‘batch learning’ non includit?
Quod processus discendi in ‘batch learning’ non includit?
Signup and view all the answers
Quod affirmatio de modellis graphice est verum?
Quod affirmatio de modellis graphice est verum?
Signup and view all the answers
Study Notes
Machine Learning 1.02: Decision Trees
- Decision trees are a supervised classification algorithm.
- They are easy to understand.
- The next lecture will cover random forests, which are an extension of decision trees.
- Random forests were a leading approach in machine learning before deep learning.
What is the goal? I
- The goal is to learn a function, y = f(x), from data.
- x is an n-dimensional feature vector.
- y is an output class from {0, 1, ..., K-1} where K is the number of possible output classes.
- This is a supervised machine learning problem.
What is the goal? II
- The goal is to learn y = f(x) from data, specifically {(X1, Y1), (X2, Y2), ..., (XN, YN)}.
- Choosing the best function, f, requires a loss function.
What is the goal? III
- The task is to learn a function, y = f(x), from data. A set {(X1,Y1), ...,(XN,YN)}.
- A suitable function f(x) , given a choice of parameter, should minimise the total loss calculated via a loss function L(yi, f(xi)).
Decision Stump I
- An algorithm from a previous lecture is discussed, involving evaluating various features and matches to determine the best fit for the data. Parameters are discussed.
Decision Stump II
- The algorithm from the previous lecture is reinterpreted in current notation, introducing parameters, functions including Kronecker delta function and a loss function.
Decision Stump III
- The function space learned by the decision stump is explained.
Continuous decision stump I
- The lecture discusses how to deal with continuous input features.
- A function, f(x), is created for partitioning the space
Continuous decision stump II
- Examples of continuous decision stumps for different splits are demonstrated with associated accuracy results.
Continuous decision stump III
- Procedures are outlined to find optimal splits by sweeping parameters and evaluating loss functions
Continuous decision stump IV
- The limitations of axis-aligned separation in real-world data are highlighted.
Decision trees I
- Recursive splitting is introduced to improve upon the limitations of previous decision stumps.
- The result can be viewed as a tree structure.
Decision trees II
- The parameter of the function is a binary tree.
- Two types of nodes are distinguished in the tree: internal nodes that execute the splits and leaf nodes containing the final answers.
Decision trees III
- A method to evaluate the function fo(x) is explained through the use of the binary tree.
Decision trees IV
- Explains Greedy optimisation of parameters (including brute force at each node), tree construction, and a way to avoid overfitting such as by using techniques such as Limiting the tree depth, Minimum leaf node size.
Decision trees V
- The need for a loss function, L(y_i, f_{θ}(x_i)), is emphasized.
- The 0-1 loss is unsuitable for decision trees but works well for decision stumps.
Gini Impurity
- Gini impurity, a suitable loss function, is explained.
- It measures the probability that two randomly selected items from the data set will have different classes.
- The lowest value of Gini Impurity is 0.0, which implies that all items from the data set have the same class.
- The highest value for Gini Impurity is less than 1.0, where each data point in the data set belongs to a different class.
- A formula for calculating Gini impurity is presented.
Weighting the split
- Explains how to weight the different splits to create a single number.
Information gain
- Information gain measures the information gained by making a particular split in the data.
- It is calculated via a formula involving Entropy.
Which loss function?
- Comparison of the characteristics of Gini impurity and information gain as loss functions.
- Gini impurity is faster to compute than information gain.
Overfitting
- The concept of overfitting in decision trees is explained.
- It occurs when a decision tree learns the details of the training data too well, including random noise.
- The solution is discussed via Early Stopping.
Early stopping
- Methods for avoiding overfitting by stopping early, including limiting tree depth and minimum leaf node size.
- Prevents the decision tree function from becoming too complicated.
- Hyperparameters are introduced as values that control these parameters.
A glossary of ML problem settings
- A brief introduction to supervised machine learning, classification and regression.
Supervised learning: Classification
- Defines supervised classification as learning a function y = f(x) with a discrete output, y.
- Examples such as identifying camera trap animals from images, and predicting voting intention from demographic data are included.
Supervised learning: Regression
- Defines supervised regression as learning a continuous function, y.
- Provides examples such as predicting the critical temperature of a superconductor given material properties, and inferring particle paths in high energy physics experiments.
Supervised learning: Further kinds
- Discusses multi-label classification, where the output variable y is a set (eg. identifying multiple objects in an image), structured prediction (eg. sentence tagging), and other cases where the output is structured.
Unsupervised learning
- Describes unsupervised learning as finding patterns in data without any pre-defined outputs(or labels for the data).
- Provides examples such as clustering (grouping similar data points), density estimation, and dimensionality reduction.
Unsupervised learning: Clustering
- Describes grouping similar data points for various examples including finding co-regulated genes and identifying social groups
- Includes real-world applications and diagrams.
Unsupervised learning: Dimensionality reduction
- Explains dimensionality reduction as a method to reduce the number of variables of input data while preserving important information.
*supervised
- Describes semi-supervised learning and weakly-supervised learning which use fewer labeled data points, but lots of unlabeled data (or cheap inaccurate data).
- Introduces concepts from image recognition as an example.
Glossary
- A summary of different types of classification, regression, and learning methodologies, including supervised, unsupervised and categories for methods.
Further categories
- Describes different categorisation methods, for example, answering style (point versus probabilistic estimate) and workflow (eg. batch, incremental, and active learning).
- Additional examples of categorisation by workflow or area (eg. computer vision or natural language processing (NLP)) are provided.
Summary
- Describes the main topics covered in the presentation, as well as how the information has been presented.
- Includes a summary of topics that this course may touch on further (eg., overfitting techniques).
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
Hic quiz explorat divisiones primarias arborum decisionis et eorum partes fundamentales. Discipuli discunt de effectibus divisionum et ratione adhibita ad determinandas regiones. Utilitatem divisionum secondarum in contextu arborum decisionis simul consideramus.