الذكاء الاصطناعي 1: مثال فلتر الرسائل المزعجة
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ما هو المقياس الذي يُستخدم في تصنيف الرسائل غير المرغوب فيها (Spam)?

  • زيادة سرعة استقبال الرسائل
  • زيادة عدد الرسائل الحقيقية
  • تقليل عدد الإيجابيات الكاذبة والسلبيات الكاذبة (correct)
  • تقليل وقت الرد على الرسائل
  • ما هي البيئة التي يعمل ضمنها مرشح البريد المزعج?

  • الملف الشخصي للمستخدم
  • حسابات البريد الإلكتروني للمستخدمين (correct)
  • إعدادات الجهاز الشخصي
  • سيرفر البريد الإلكتروني
  • ما هي الوظائف التي يمكن أن يستخدمها مرشح البريد المزعج؟

  • نقل الرسائل إلى الأرشيف
  • عرض قائمة بالرسائل المنتظرة
  • وسم الرسائل كغير مرغوب فيها وحذفها (correct)
  • إعادة توجيه الرسائل إلى مستخدم آخر
  • ما هي المستشعرات التي يعتمد عليها مرشح البريد المزعج لتقييم الرسائل؟

    <p>الرسائل الواردة وملف تعريف المستخدم</p> Signup and view all the answers

    ما هو الهدف الرئيسي من نظام مرشح البريد غير المرغوب فيه؟

    <p>تقليل الخلط بين الرسائل الهامة وغير الهامة</p> Signup and view all the answers

    Study Notes

    Lecture 3: Artificial Intelligence 1 (CAI 2603)

    • PEAS Example 2: Spam Filter
      • Performance Measure: Minimize false positives and false negatives.
      • Environment: User's mail account, server's mail account.
      • Actuators: Mark as spam, delete.
      • Sensors: Incoming messages, user's account profile.

    Goal-Based Agents vs. Cost-Based Agents

    • Goal-based agents: Actions depend on the goal. For example, a robot moving from one room to another will have different actions than a robot moving to a different room.
    • Cost-based agents: Goal is to minimize the cost of erroneous decisions in the long term. An example is a spam filter that tries to categorize incoming emails correctly (wanted or unwanted).
    • Comparison Example: Agent 1 makes 12 errors out of 1,000 emails while Agent 2 makes 38 errors. While Agent 1 appears better, the errors made by Agent 2 may be considered more serious if they involve important emails. Therefore error severity might need weighting.

    Specifying The Task Environment

    • Discusses different characteristics to consider when building an AI-based task environment.

    Environment Types

    • Fully Observable vs. Partially Observable: Does the agent have access to the complete state of the environment? In a game of chess, a player knows all the pieces on the board while in a complex environment like a robot navigating a room, only partial observation is possible, making it harder for the agents to navigate.
    • Deterministic vs. Stochastic (vs. Strategic): Is the next environment state fully determined by the current state and the agent's action? In a deterministic environment, if an agent makes the same action twice in the same state, the environment will end in the same outcome. Stochastic environments differ because the outcome can change.
    • Episodic vs. Sequential: Is the agent's experience divided into separate, unconnected decisions, or is it a continuous sequence of actions and observations according to a transition model? In an episodic environment, an agent's decision doesn't need to consider future outcomes. Game of chess, for example, is sequential.
    • Static vs. Dynamic (vs. Semi-Dynamic): Does the environment change while the agent is thinking? A semi-dynamic environment doesn't change with time, but the agent's performance score does.
    • Single-Agent vs. Multi-Agent: Is the agent operating alone or with others/other agents in the environment?
    • Known vs. Unknown: Are the rules of the environment, transition model and reward associated with the states known to the agent?

    Examples of Environments

    • The document provides a table categorizing task environments (e.g., Chess, Dominos, Medical Diagnosis, Self-Driving Car) based on various properties (fully or partially observable, adversarial, deterministic or stochastic, discrete or continuous, single or multi-agent).

    Exercises

    • Autonomous Taxi Driver: Is the environment of an autonomous taxi driver a competitive or cooperative multiagent environment?
    • Task Environment Characterization: Characterize the following environments (Poker Game, Medical Diagnosis, Image Analysis, Interactive English Tutor). Describe the environment, whether known/unknown, fully/partially observable, etcetera in your answer.
    • Known/Unknown vs. Fully/Partially Observable: Is the distinction between known/unknown environments the same as fully/partially observable?
    • Episodic/Sequential Environments: Explain episodic environments and their simplicity in comparison to sequential environments.
    • Communication in Multiagent Environments: Describing environments where communication frequently arises and why it's a rational behaviour.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Description

    تقدم هذه المحاضرة نظرة على كيفية عمل وكلاء قائمة على الأهداف مقابل وكلاء قائمة على التكلفة في الذكاء الاصطناعي. سنتناول أيضًا مثال توضيحي على فلتر الرسائل المزعجة وكيفية قياس أدائه من خلال تقليل الإيجابيات الكاذبة والسلبيات الكاذبة.

    More Like This

    Email Best Practices Quiz
    10 questions

    Email Best Practices Quiz

    CharitableAllusion avatar
    CharitableAllusion
    Global Email Filter Predictor
    18 questions
    Email Spam Reduction Strategies
    10 questions
    Artificial Intelligence Lecture 3 Quiz
    5 questions
    Use Quizgecko on...
    Browser
    Browser