Podcast
Questions and Answers
ما هو المقياس الذي يُستخدم في تصنيف الرسائل غير المرغوب فيها (Spam)?
ما هو المقياس الذي يُستخدم في تصنيف الرسائل غير المرغوب فيها (Spam)?
ما هي البيئة التي يعمل ضمنها مرشح البريد المزعج?
ما هي البيئة التي يعمل ضمنها مرشح البريد المزعج?
ما هي الوظائف التي يمكن أن يستخدمها مرشح البريد المزعج؟
ما هي الوظائف التي يمكن أن يستخدمها مرشح البريد المزعج؟
ما هي المستشعرات التي يعتمد عليها مرشح البريد المزعج لتقييم الرسائل؟
ما هي المستشعرات التي يعتمد عليها مرشح البريد المزعج لتقييم الرسائل؟
Signup and view all the answers
ما هو الهدف الرئيسي من نظام مرشح البريد غير المرغوب فيه؟
ما هو الهدف الرئيسي من نظام مرشح البريد غير المرغوب فيه؟
Signup and view all the answers
Study Notes
Lecture 3: Artificial Intelligence 1 (CAI 2603)
-
PEAS Example 2: Spam Filter
- Performance Measure: Minimize false positives and false negatives.
- Environment: User's mail account, server's mail account.
- Actuators: Mark as spam, delete.
- Sensors: Incoming messages, user's account profile.
Goal-Based Agents vs. Cost-Based Agents
- Goal-based agents: Actions depend on the goal. For example, a robot moving from one room to another will have different actions than a robot moving to a different room.
- Cost-based agents: Goal is to minimize the cost of erroneous decisions in the long term. An example is a spam filter that tries to categorize incoming emails correctly (wanted or unwanted).
- Comparison Example: Agent 1 makes 12 errors out of 1,000 emails while Agent 2 makes 38 errors. While Agent 1 appears better, the errors made by Agent 2 may be considered more serious if they involve important emails. Therefore error severity might need weighting.
Specifying The Task Environment
- Discusses different characteristics to consider when building an AI-based task environment.
Environment Types
- Fully Observable vs. Partially Observable: Does the agent have access to the complete state of the environment? In a game of chess, a player knows all the pieces on the board while in a complex environment like a robot navigating a room, only partial observation is possible, making it harder for the agents to navigate.
- Deterministic vs. Stochastic (vs. Strategic): Is the next environment state fully determined by the current state and the agent's action? In a deterministic environment, if an agent makes the same action twice in the same state, the environment will end in the same outcome. Stochastic environments differ because the outcome can change.
- Episodic vs. Sequential: Is the agent's experience divided into separate, unconnected decisions, or is it a continuous sequence of actions and observations according to a transition model? In an episodic environment, an agent's decision doesn't need to consider future outcomes. Game of chess, for example, is sequential.
- Static vs. Dynamic (vs. Semi-Dynamic): Does the environment change while the agent is thinking? A semi-dynamic environment doesn't change with time, but the agent's performance score does.
- Single-Agent vs. Multi-Agent: Is the agent operating alone or with others/other agents in the environment?
- Known vs. Unknown: Are the rules of the environment, transition model and reward associated with the states known to the agent?
Examples of Environments
- The document provides a table categorizing task environments (e.g., Chess, Dominos, Medical Diagnosis, Self-Driving Car) based on various properties (fully or partially observable, adversarial, deterministic or stochastic, discrete or continuous, single or multi-agent).
Exercises
- Autonomous Taxi Driver: Is the environment of an autonomous taxi driver a competitive or cooperative multiagent environment?
- Task Environment Characterization: Characterize the following environments (Poker Game, Medical Diagnosis, Image Analysis, Interactive English Tutor). Describe the environment, whether known/unknown, fully/partially observable, etcetera in your answer.
- Known/Unknown vs. Fully/Partially Observable: Is the distinction between known/unknown environments the same as fully/partially observable?
- Episodic/Sequential Environments: Explain episodic environments and their simplicity in comparison to sequential environments.
- Communication in Multiagent Environments: Describing environments where communication frequently arises and why it's a rational behaviour.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
تقدم هذه المحاضرة نظرة على كيفية عمل وكلاء قائمة على الأهداف مقابل وكلاء قائمة على التكلفة في الذكاء الاصطناعي. سنتناول أيضًا مثال توضيحي على فلتر الرسائل المزعجة وكيفية قياس أدائه من خلال تقليل الإيجابيات الكاذبة والسلبيات الكاذبة.