Adversarial Search and Minimax Algorithm Quiz
10 Questions
4 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What values are used for initialization in the described pruning strategy?

  • alpha = 0, beta = 0
  • alpha = -1, beta = 1 (correct)
  • alpha = 1, beta = 1
  • alpha = 1, beta = -1
  • When is the alpha value updated?

  • Only at Min nodes
  • At terminal nodes
  • Only at Max nodes (correct)
  • At both Max and Min nodes
  • What is the role of the Ø value in the pruning strategy?

  • It represents the highest value achieved by Min nodes
  • It indicates the final outcome of the search
  • It represents the lowest value achieved by Max nodes
  • It helps in setting a lower bound on Max's outcome (correct)
  • Which approach does the pruning strategy resemble?

    <p>Depth-first search</p> Signup and view all the answers

    What action is taken if alpha is less than or equal to Ø during pruning?

    <p>Prune any remaining branches</p> Signup and view all the answers

    What values are propagated upwards during the search?

    <p>Alpha and Beta values</p> Signup and view all the answers

    How are terminal nodes treated in terms of updating α and Ø values?

    <p>Both alpha and beta values are updated at terminal nodes</p> Signup and view all the answers

    What happens if Ø becomes less than alpha during the search process?

    <p>'α' gets updated with a lower value from a sibling node</p> Signup and view all the answers

    What happens if Ø becomes less than alpha?

    <p>The current node is pruned.</p> Signup and view all the answers

    Which nodes update only the Ø value?

    <p>Min nodes only.</p> Signup and view all the answers

    Study Notes

    Chess and AI

    • Kasparov identified Deep Blue's weaknesses and won the remaining two games easily, indicating that computation speed alone was not sufficient for success.
    • Humans learn and adapt, making them challenging opponents for AI systems like Cray Blitz and Deep Blue.

    Deep Blue's Configuration

    • The 1997 version of Deep Blue included 480 chess chips, each capable of searching 2 to 2.5 million chess positions per second.
    • The system's speed reached approximately one billion chess positions per second, or 40 tera operations.
    • Deep Blue's alpha-beta algorithm increased search speed by up to 40 billion times when searching close to 40 billion positions for each move.

    Stochastic Games

    • Stochastic games involve random elements, such as chance nodes, and require a combination of skills and luck.
    • Examples of stochastic games include backgammon, where players try to move all their pieces off the board before their opponent.

    Search Algorithms

    • Breadth-first search has higher memory requirements, making it less efficient for large problems.
    • Depth-first search, on the other hand, requires less storage and can be more efficient for certain problems.
    • Informed search algorithms, such as best-first search, use evaluation functions to guide the search.
    • A* search combines the cost of reaching a node and the estimated cost of reaching the goal from that node.
    • Minimax is a search algorithm used for games with two players, where one player tries to maximize their utility and the other tries to minimize it.
    • The minimax value is the best achievable utility against an optimal adversary.
    • Alpha-beta pruning can be used to reduce the search space by eliminating branches that will not affect the outcome.

    Minimax Example

    • A two-ply game tree can be used to illustrate the minimax algorithm, where the goal is to maximize the utility for the player Max.
    • Pruning can be used to eliminate branches that will not affect the outcome, reducing the search space.

    Alpha-Beta Pruning

    • Alpha-beta pruning is a strategy that performs a depth-first search and keeps track of two bounds: alpha (the largest value for Max) and beta (the lowest value for Min).
    • The bounds are initialized as -1 and 1, respectively, and updated during the search.
    • Pruning occurs when alpha is less than or equal to beta, eliminating branches that will not affect the outcome.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your understanding of adversarial search and the minimax algorithm with this quiz. Learn how players Max and Min strategize and how to compute each node's minimax value to achieve the best possible outcome against an optimal adversary.

    More Like This

    Adversarial Search: Minimax Quiz
    10 questions
    Lec-8 Adversarial Search
    14 questions

    Lec-8 Adversarial Search

    EverlastingCalcite avatar
    EverlastingCalcite
    Use Quizgecko on...
    Browser
    Browser