Nelson Mandela University Mathematics for Engineering Technologists 1a PDF Past Paper - MATV101 - March 25, 2024
Document Details
Uploaded by FeistySolarSystem
Nelson Mandela University
2024
Nelson Mandela University
Tags
Summary
This Nelson Mandela University mathematics past paper covers topics in complex numbers and matrices, specifically targeting engineering technologists. The exam, administered on March 25, 2024, consists of 20 multiple-choice questions assessing student understanding of these concepts.
Full Transcript
Mathematics for Engineering Technologists 1a MATV101 Semester Test 1: 25 March 2024 Total: 20 Marks Time: 50 minutes Special Instructions: Answer ALL questions on the multiple-choice answer shee...
Mathematics for Engineering Technologists 1a MATV101 Semester Test 1: 25 March 2024 Total: 20 Marks Time: 50 minutes Special Instructions: Answer ALL questions on the multiple-choice answer sheet provided. Do all your workings on the pages provided, clearly number each question’s workings. 1. Which of the following statements is TRUE? A) The equation x 2 = −3 has no solutions. B) The equation x 2 = −3 has REAL solutions. C) The equation x 2 = −3 has COMPLEX solutions. D) The equation x 2 = −3 has REAL and COMPLEX solutions. E) None of the above. 2. Let z =−4 + 7i, w =3 − 6i. Determine 4 z − 6 w. A) 2 − 8i B) −34 + 64i C) −34 − 8i D) −22 + 43i E) None of the above. v 3. Let v =− 8 3i, w =−11 + 5i. Determine. w A) −103 − 7i 103 7 B) − + i 73 73 103 7 C) − − i 146 146 1 1 D) − + i 2 2 E) None of the above. ab 4. Let a =−3 − 8i, b =14 − i. Determine. b + 3a 99 359 A) + i 26 130 B) −50 − 109i C) −12 − 32i 731 995 D) − i 106 106 E) None of the above. u − 3w 5. Let z =10 − 2i, w =−4 + 3i, u =x + yi. Determine u given =w. z A) −46 + 47i 10 2 B) − i 3 3 10 2 C) − + i 3 3 D) 22 − 29i E) None of the above. 6. Let u ∈ be the additive identity. Then: A) Re ( u ) = 1. B) For z ∈ , z + u = 1. C) u = 1. D) For z ∈ , z + ( − z ) =u. E) None of the above. 4π −2π 7. The statement 2cis = 2cis is: 3 3 4π −2π True, since the angles and have the same terminal side A) 3 3 on the Argand Plane. B) True, since both numbers have a modulus of 2. 4π −2π C) False, since ≠. 3 3 D) False, since in rectangular form the numbers are different. E) None of the above. 5π 8. The principle argument of 4cis is: 3 π A) 3 π B) − 3 2π C) 3 5π D) 3 E) None of the above. 9. Given z = =− 3 − i, then z 3 =... 125π A) 8cis − 216 125π B) 6cis − 216 5π C) 6cis − 2 5π D) 8cis − 2 E) None of the above. 10. Given w4 =−2 + 2 3i, then w3 =... 5π A) 2cis 3 1 20π B) 4 4 cis 3 19π C) 2cis 12 1 41π D) 2 2 cis 12 E) None of the above. 11. p = [ P+PT =... i] (A) cannot be calculated 1 2.T (B) 2y y2 ] [ 2+X (C) ] [2 ! X 2y 2+ : (D) l2!.1: 2y rl (E) none of the other options given 12. A has size 5 x 5; B is a 5 by 2 matrix The third row of A is [6 1 0 1 OJ The third row of Bis [1 1] The first column of A is [1 0 The first column of B is [o 1 AB= (ci;j) p xq Then c3; 1 =... (A) 1 (B) 2 (C) 6 (D) 7 (E) none of the other options given 3 1 0 A is an example of a.... matrix (A) lower triangular (B) upper triangular (C) diagonal (D) symmetric (E) none of the other options given 3 1 6 det(C) is calculated using co-factor expansion using column two. So we get det(C) = 3A1;2 + lA2;2 + 6A3;2 Then we have A1;2 =... (A) I I (J3) (-1)(1+2) I I (C) (-l)(lx2) I I (D) -3(0) (E) none of the other options given 1 0 2 [ 1 15 0 1 4 ]. 0 0 6 4 =... (A) not4 able to be calculated 6 12 (B) [2 6p] (C) 8 rn ] 16 (D) [3 2 8p] (E) none of the other options given 16. 6x + 3y - z = 11 4y + z = 10 z=4 \,Ve apply Cramer's rule to determine the solution for variable x X =... 11 3 -1 1 (A) - 10 4 1 24 4 0 1 6 3 -1 1 (B) 24-0 4 1 0 0 1 11 3 -1 (C) 24---;-- 10 4 1 4 0 1 6 3 -1 (D) 24 7 0 4 1 0 0 1 (E) none of the other options given 17. A quick way to find x- 1 for a 2 x 2 matrix is X= [a then x- 1 = (det(X))- 1 [ d - bJ C -c a 2 If G= [ then c-1 =... p (B) 6 [ ! P (C) 6(6 - 0) (D) ¼(O - 6) (E) none of the other options given Then the following matrices will have a mutiplicative inverse (A) X·' y & z (B) X & y (C) X & z (D) y & z (E) none of the other options given 19. Given the following linear system x - 3y + llz = 7 2x + 4y = 8 3x + 9y + z = 7 Vve start using the Gaussian elimination technique to the augmented matrix and get... hint : look at column 1 [ -3 11 7 (A) 10 -22 -6 18 -32 -14l [ -3 _t] 11 (B) -2 -22 18 -32 [ -3 11 (C) 10 -22 0 -32 l4l [ ] -3 11 (D) 1 11 6 12 (E) none of the other options given 20. The following is an augmented matrix representation of a linear system [ ] 0 0 0 0 1 0 0 0 1 The solution set is... (A) {(x1;x2;x3) : (2;2; O)} (B) {(x1;x2;x3) : (1; -1;0)} (C) {(x1;x2;x3;x4): (2;2;2;0)} (D) {(x1;x2;x3;x4): (2;0;2;0)} (E) none of the other options given ANSWERS: 1. C 2. B 3. C 4. E 5. A 6. D 7. A 8. B 9. D 10. A