Solving Quadratic Equations by Factoring PDF

Summary

This document provides examples of solving quadratic equations by factoring, including step-by-step solutions and worked examples. The document uses diagrams and charts to improve understanding and help visualize the problem solving steps. The examples cover different types of quadratic equations.

Full Transcript

ǫȄǐȐþçǥȎȐ ÖǔșìâǤǜÜǐǪȂȚǪȁòȢǒȌȚȎǰǖǔȐǐȑȁåÞǤǒ 2-2...

ǫȄǐȐþçǥȎȐ ÖǔșìâǤǜÜǐǪȂȚǪȁòȢǒȌȚȎǰǖǔȐǐȑȁåÞǤǒ 2-2 ǔȚǼȚǒǦǗȊâåȡêǐǼȎȊâȉǟ x ɮȉȍǐȈȊǐǒìâǤǝȊâȘǶǿǖüÞǤșǦǖþ ȉȍâȖǼȊâȗȊàȉȚȋǠǗȊǐǒ Solving Quadratic Equations x by Factoring 4 ft ǕțǽțǓǧǗǕȋêǑǽȎȊǠêǑǞȚà ĽǺȚǶǗǩÞ ȊȎâȗǽȋâȘȋàȊțȌǡǘȋǑǓ 6 ft îìǤȊâǦȚșǐǼȍ ȔdzǧǼþìâǥǞȋâúȗǶȊțǛȏǘȋȐȚìâǥȆȎǒǘȈâ.A 10.2.1 ć ȇǘǓǑǝàǟdzþÛȊȎǑȉȋǑǓìâǥǞȋâǕǠǑǫȎȊ Ǜć ȏȚĀǦȋâìâǥȆȏȋâǑȎ ǔȚȑǓȊâȉȎǼǗǩâ.B åǐǠȋǶǰȎȊâ ǕȋêǑǽȏȌȋǕțǪǑțȆȋâǕȀțDZȋâ ļ ÛìâǥǞȋâȐȎǥǽǓǕȑǑȒȃȋâȔƑǷȀǗȍȋĀǦȋâÜǨǞȋâǕǠǑǫȎǥȚǥǡǗȇȒȉȏȚȁțȈ.C ǕțǽțǓǧǘȋâ standardformofquadratic ÛǔȚǼȚǒǦǗȊâåȡêǐǼȎȊâȉǟȗȋǻȉȍâȖǼȊâȗȊàȉȚȋǠǗȊâùǤǻǐǪșȀȚȇ îǐǩȝâúâNjǪȊâ equation ĀǧȃDZȋâãǧǴȋâǜǗǑȑǕțǰǑǣ ļ ĀǦȂǰȊâãǦdzȊâǛǖǐȐǔȚǯǐǢúǐȎǼǗǩâ 1úǐǚȍ zero-product property  Û(x−9)( 5x+2)=0ǔȊêǐǼȎȊâȉǟêǐǝșàȆȑȈȎșȀȚȇ Öb þ a ǕțȆțȆǡȋâ êâǥǼȞâ ǻțȏǞȋ ȔȑÞ ȘȌǼ ĀǦȂǰȊâãǦdzȊâǛǖǐȐǔȚǯǐǢ ǯȒǗ b = 0 þÞ a = 0 ǑȎǍȂ Öab = 0 üǑȈ âëà Ȋǡȋâ êǑǞȚȠ ǕȋêǑǽȏȋâ șȂ ǧȃDZȋâ ĀþǑǫǗ șǘȋâ ȊȎâȗǽȋâ êćǥǠ åǐȄȢǼȊâȏǻǘǠǒâ (5x + 2) = 0 þÞ (x − 9) = 0 úǑȏǽǘǪǑǓ ǕȋêǑǽȏȋâ ýǦȕ ȊǠ șȂ ǧȉȂ 2 þǥǔǘǪ ȁțȈ șȑǑțǓ ȊțǛȏǗþ úþǥǝ x = − __ 5 ÖĀǧȃDZȋâ ãǧǴȋâ ǜǗǑȑ ǕțǰǑǤȋ ǑȆā Ȃþ x=9 ÛșȑǑțǓ ȊțǛȏǗ șȂþ Ûúþǥǝ șȂ úȗȌǡȋâ ÖǧȃDZȋâ ĀþǑǫȚ (x − 9) ǑȎà ǧȃDZȋâ ĀþǑǫȚ (5x + 2) þÞ ȐțȌǡȋâ ȣȈ ȐȎ ȄȆǡǗ 2 ñȗǼ x=−_ x = 9 ñȗć Ǽ 5 ć 2 __ 2 + 2) = 0 __ (9 − 9)(5(9) + 2) = 0 (− 5 − 9)(5(− 5) 2 __ (−9 5 )(0) = 0 (0)(47) = 0 0=0✓ 0=0✓ 2 þ x = 9 Ǒȏȕ üǑțȆțȆǠ üȣǠ (x − 9)(5x + 2) = 0 ǕȋêǑǽȏȌȋ Öüëà x=−_ 5 ǔȚȊǐǗȊâǔǠȂǰȊâȘȁǺǓǗș 45 ȊȎâȗǽȋâȘȋàȊțȌǡǘȋǑǓǕțǽțǓǧǘȋâåȢêǑǽȏȋâȊǠ 2-2îìǤȊâ M02_MTH03_SE10_QTR_AR_8973.indb 45 12/05/2022 6:14:16 PM 1úǐǚȎȊâǺǒǐǖ ȐțǘțȋǑǘȋâȐțǘȋêǑǽȏȋâȊǠą .1 ɭȉ ć ǠǖüÞúþǐǟ a. (2x − 1)(x + 3) = 0 b. (2x + 3)(3x − 1) = 0 ȉȍâȖǼȊâȗȊàȉȚȋǠǗȊǐǒǔȚǼȚǒǦǗȊâåȡêǐǼȎȊâȉǟ 2úǐǚȍ ȘȎȚȔǐȂȎȊâãǐǼȚǗǩȡâ Ûx2+9x=−20ǔȊêǐǼȎȊâȉǠȊȉȍâȖǼȊâȗȊàȉȚȋǠǗȊâúǐȎǼǗǩâȆȑȈȎșȀȚȇ ɯa ≠ 0 ǙțǠ Öax 2 + bx + c = 0 șȕ ǔȚǼȚǒǦǗȊâǔȊêǐǼȎȋȊǔȚǩǐȚȅȊâǔǿȚǰȊâ ǕțǪǑțȆȋâǕȀțDZȋâșȂǕȋêǑǽȏȋâǒǘȈâ 1 äȖǶǣȊâ x 2 + 9x = −20 úǑȏǽǘǪǑǓǕțǽțǓǧǗǕȋêǑǽȎȊǠǥȒǼ Ǒȏā ǏâêÞǥǓâÖȊȎâȗǽȋâȘȋàȊțȌǡǘȋâ x 2 + 9x + 20 = 0 ǕțǪǑțȆȋâǕȀțDZȋâșȂǕȋêǑǽȏȋâǕǓǑǘȉǓ ǕǼȗȏǞȎ úǑȏǽǘǪâ ȐȉȏȚ Öx 2 + 9x + 20 = 0 Ȋǡȋ ȊȎâȗǽȋâ ǕǼȗȏǞȎ êǑǞȚȠ Ȣþǥǝ ā ǎǮȑÞ 2 äȖǶǣȊâ ǕȋêǑǽȏȋâ Ȋǡȋ 9 ǑȖǼȗȏǞȎþ 20 ǑȖǓǧdz ǜǗǑȑ șǘȋâ ȊȎâȗǽȋâ 20êǥǽȋâȊȎâȗǼ ȊȎâȗǽȋâôȗȏǞȎ 1 , 20 21 ĀþǑǫȚ 5 þ 4 ȐțȌȎǑǽȋâ ãǧdz ǜǗǑȑ 2 , 10 12 4,5 9 ɯ9 ĀþǑǫȚ ǑȏȖǼȗȏǞȎþ 20 ǕțȌțȌǡǘȋâ ǕȀțDZȋâ șȂ ǕȋêǑǽȏȌȋ ǕțǪǑțȆȋâ ǕȀțDZȋâ ǕǓǑǘȈ ǥǼÞ 3 äȖǶǣȊâ ǔȚǩâìêǔǠȚǰȐ ǕȀțDZȋâ ȊțȌǡǗ ȇȑǑȉȎǍǓ üǑȈ âëà (x + 4)(x + 5) = 0 ȔȑǍȂ ÖȊȎâȗǽȋâ Șȋà ǕȋêǑǽȏȌȋ ǕțǪǑțȆȋâ Ȋǡȋâ êǑǞȚà ȇȒȉȏȚ ǕȋêǑǽȏȋâ Ȋǡȋ ĀǧȃDZȋâ ãǧǴȋâ ǜǗǑȑ ǕțǰǑǣ ȊȏǽǘǪâ 4 äȖǶǣȊâ (x + 4) = 0 þÞ (x + 5) = 0 x = −4 x = −5 x = −5 þ x = −4 Ǒȏȕ üǑțȆțȆǠ üȣǠ x 2 + 9x + 20 = 0 ǕȋêǑǽȏȌȋ Öüëà ȊȎâȗǽȋâȘȋàȊțȌǡǘȋǑǓȐțǘțȋǑǘȋâȐțǘȋêǑǽȏȋâ ȊǠą .2 ɭȉ ć ǠǖüÞúþǐǟ a. x 2 + 16x + 64 = 0 b. x 2 − 12x = 64 ǕțǽțǓǧǘȋâåǑȒȚǑǔǘȏȋâþåȢêǑǽȏȋâ 2äǤǟȖȊâ 46 M02_MTH03_SE10_QTR_AR_8973.indb 46 12/05/2022 6:14:16 PM äǐȚǠȊâǺȄâþȏȍȉǎǐǪȍȉǠȊȉȍâȖǼȊâȗȊàȉȚȋǠǗȊâúǐȎǼǗǩâ 3úǐǚȍ ȃȚǓǶǖ ft ɮxǽȋǓșǤǟȖȍñǦǼǒȘǜìǐǢĀëȡȖȁǴǎǐǟȓȊȀǠǗȍȖǓȄ 20 x 1664ft2ȘǜìǐǣȊâĀëȡȖȂȊâǴǎǐǠȊâǺȍȖǓȅȊâȀȅǩǔǟǐǪȍǽȋǓǖ 40 ft ɮȘǜìǐǣȊâĀëȡȖȂȊâǴǎǐǠȊâñǦǻǤǜþÞ ȗǔȆȋâ ǕǠǑǫȎ ȊțǛȏǘȋ ǕȋêǑǽȎ ǒǘȈâ ǽǯą (2x + 20)(2x + 40) = 1 664 ñǧǽȋâ × úȗǷȋâ = ǕǠǑǫȏȋâ ǕțǪǑțȆȋâ ǕȀțDZȋâ șȂ ǕȋêǑǽȏȋâ ǒǘȈâ ǻȚíȗǘȋâ ǕțǰǑǣ ȊȏǽǘǪâ ǑǪǟâ (2x + 20)(2x + 40) = 1 664 4x 2 + 120x − 864 = 0 4x 2 + ____ ___ 120x 864 0 ȘȌǼ ǥǠ ȊȈ ȍǫȅâ 4 4 − ___ 4 = __ 4 ǕȋêǑǽȏȋâ ǵțǫǔǘȋ 4 x 2 + 30x − 216 = 0 (x − 6)(x + 36) = 0 ć Öüëà x = −36 þ x = 6 Ǒȏȕ ǕȋêǑǽȏȋâ ȣǠ ǦǪȁ ć 6 ft ȗȕ ǵǏǑǡȋâ ñǧǼ ÖüëàȊǡȋâ ȗȕ −36 üȗȉȚ üÞ ȐȉȏȚ Ȣ âǦȋ Ǒǔā ȋǑǪ ǵǏǑǡȋâ úȗǶ üȗȉȚ üÞ ȐȉȏȚ Ȣ Ȋǡȋâ ȐȎ ȄȆǡǗ ǕțȌǰȞâ ǕȋêǑǽȏȋâ șȂ x = 6 ñȗć Ǽ [2(6) + 20] [2(6) + 40] = 1 664 (32)(52) = 1 664 ✓ ÛìǑǶȠâñǧǼǑȎÖ504 cm 2 ĀþǑǫǗ ìǑǶà Ȋǣâê äìȗǰ ǕǠǑǫȎ.3 ɭȉ ć ǠǖüÞúþǐǟ x x 30 cm 504 cm2 20 cm 47 ȊȎâȗǽȋâȘȋàȊțȌǡǘȋǑǓǕțǽțǓǧǘȋâåȢêǑǽȏȋâȊǠ 2-2îìǤȊâ M02_MTH03_SE10_QTR_AR_8973.indb 47 12/05/2022 6:14:17 PM ǐȚāć ȐǐȚǒǔȚǼȚǒǦǖǔȊâêȉȚǚȎǗȊǔȚȋȚȋǠǗȊâǔǿȚǰȊâúǐȎǼǗǩâ 4úǐǚȍ ÛǐȚāć ȐǐȚǒf(x)=x2−2x−8ǔȊâǤȊâȉȚǚȎǗȊȉȍâȖǼȊâȗȊàȉȚȋǠǗȊâúǐȎǼǗǩâȆȑȈȎșȀȚȇ ć ȊȎâȗǽȋâȘȋàǕțǽțǓǧǘȋâǕȋâǥȋǑǓǕǷǔǗǧȏȋâǕțǽțǓǧǘȋâǕȋêǑǽȏȋâȊȌǠ 1 äȖǶǣȊâ x 2 − 2x − 8 = 0 (x + 2)(x − 4) = 0 ǕȋêǑǽȏȋâ úȗȌǠ êćǥǠ 2 äȖǶǣȊâ (x − 4) = 0 þÞ (x + 2) = 0 x=4 x = −2 Ö−2 þ 4 Ǒȏȕþ x ȐțǽǷȆȏȋâ ǵǪȗǘȎ ǥǝþÞ îÞǧȋâ åǑțǚâǥǠà ǥǝþÞ 3 äȖǶǣȊâ ǔȚǩâìêǔǠȚǰȐ 4 + (−2) _______ ǻȆȚ ȇȋǦȋ ÖǧǹǑȒǘȎ ǎȂǑȉȏȋâ ǻǷȆȋâ =1 2 ȐțǽǷȆȏȋâ ȐțǓ ȁDZǘȒȏȋâ șȂ îÞǧȋâ 1 ȗȕ îÞǧȌȋ x șǚâǥǠȠâ șȂ x șǚâǥǠȠâ ñȗć Ǽ ɯx ìȗǡȏȋâ ȐȎ îÞǧȌȋ y șǚâǥǠȠâ ǥǝþÞ ǕțǽțǓǧǘȋâ Ǖȋâǥȋâ f(1) = (1) 2 − 2(1) − 8 = −9 (1 , −9) șȕ îÞǧȋâ åǑțǚâǥǠà Öüëà y x -4 O 2 ɯx ìȗǡȏȋâ ȐȎ ȐțǽǷȆȏȋâþ îÞǧȋâ ȊǛć Ȏ 4 äȖǶǣȊâ -4 ȍǪǧȋ x ìȗǡȏȋâ ȐȎ ȐțǽǷȆȏȋâþ îÞǧȋâ ȊȏǽǘǪâ -8 șȑǑțǔȋâ ȊțǛȏǘȋâ Ǒāțć ȑǑțǓ f(x) = 2x 2 + 5x − 3 Ǖȋâǥȋâ ȊțǛȏǘȋ ȊȎâȗǽȋâ Șȋà ȊțȌǡǘȋâ ȊȏǽǘǪâ.4 ɭȉ ć ǠǖüÞúþǐǟ ǔȚǼȚǒǦǖǔȊâǤȊǔȚȋȚȋǠǗȊâǔǿȚǰȊâǔǒǐǗȇ 5úǐǚȍ ÛýǐȐêÞȘȐǐȚǓȊâȉȚǚȎǗȊǐǒǔǶǓǖǦȎȊâǔȚǼȚǒǦǗȊâǔȊâǤȋȊǔȚȋȚȋǠǗȊâǔǿȚǰȊâǔǒǐǗȇȆȑȈȎșȀȚȇ y x -6 -4 -2 O 2 (−5 , 0) -2 -4 (1 , 0) -6 -8 (−2 , −9) ǔȚȊǐǗȊâǔǠȂǰȊâȘȁǺǓǗș ǕțǽțǓǧǘȋâåǑȒȚǑǔǘȏȋâþåȢêǑǽȏȋâ 2äǤǟȖȊâ 48 M02_MTH03_SE10_QTR_AR_8973.indb 48 12/05/2022 6:14:18 PM 5úǐǚȎȊâǺǒǐǖ x ȐțǽǷȆȏȋâ ǥǝþÞ 1 äȖǶǣȊâ 1 þ −5 Ǒȏȕ x üǑǽǷȆȏȋâ ǕțȌțȌǡǘȋâ ǕȀțDZȋâ șȂ ǕțǽțǓǧǘȋâ ǕȋêǑǽȏȋâ ǒǘȈâ 2 äȖǶǣȊâ ǑȖȌȎâȗǽȋ ȐțȌǠ ǑȏȖȑȞ ǕțǽțǓǧǘȋâ ǕȋêǑǽȏȌȋ ȐțȌǠ üȣǛć ȏȚ ȐȚǦȌȋâ Öx ȐțǽǷȆȏȋâ ȊȏǽǘǪâ ǔȚǩâìêǔǠȚǰȐ a(x − p)(x − q) = 0 ǕǐȂǑȉȏȋâ ôȗǷȆȋâ ȐȎ șǏǑȖȑȢ êǥǼ ǧȏȚ a[x − (−5)] [x − (1)] = 0 q þ p șǘȏțȆǓ x ȐțǽǷȆȏȋâ ȐǼ ñȗć Ǽ âǦȋ (1 , 0) þ (−5 , 0) ȐțǘǷȆȒȋǑǓ êǑǞȚȠ a Ǖȏțȅ ǥȚǥǡǗ ȇțȌǼ ǒǞȚ a(x + 5)(x − 1) = 0 ā ǧȏȚ ĀǦȋâ ǥțǠȗȋâ ǎȂǑȉȏȋâ ǻǷȆȋâ ǑǴȚÞ ǕțȌțȌǡǘȋâ ǕȀțDZȋâ șȂ Ǖȋâǥȋâ ǒǘȈâ 3 äȖǶǣȊâ (−2 , −9) ǕǷȆȒȋǑǓ a Ǖȏțȅ êǑǞȚȠ ǕǛȋǑǚ ǕǷȆȑ ȊȏǽǘǪâ f(x) = a(x + 5) (x − 1) îÞǧȋâ ȊȏǽǘǪâ −9 = a(−2 + 5)(−2 − 1) ɯf(–2) = –9 þ x = –2 ñȗć Ǽ a=1 f(x) = (x + 5) (x − 1) þÞ f(x) = 1(x + 5)(x − 1) șȕ ǕțǽțǓǧǘȋâ ǕȋâǥȌȋ ǕțȌțȌǡǘȋâ ǕȀțDZȋâ Öüëà Û ýǑȑêÞ Ǒāțć ȑǑțǓ ǕȌǛȏȏȋâ ǕȋâǥȌȋ ǕțȌțȌǡǘȋâ ǕȀțDZȋâ ǑȎ.5 ɭȉ ć ǠǖüÞúþǐǟ y 2 x O 2 4 6 8 10 -2 -4 -6 -8 49 ȊȎâȗǽȋâȘȋàȊțȌǡǘȋǑǓǕțǽțǓǧǘȋâåȢêǑǽȏȋâȊǠ 2-2îìǤȊâ M02_MTH03_SE10_QTR_AR_8973.indb 49 12/05/2022 6:14:19 PM ȉȍâȖǼȊâȗȊàȉȚȋǠǗȊǐǒǔȚǼȚǒǦǗȊâåȡêǐǼȎȊâȉǟ ûȖȕȂȎȊâǮǣȋȍ Öb þ a ǕțȆțȆǡȋâ êâǥǼȞâ ǻțȏǞȋ ȔȑÞ ȘȌǼ ĀǦȂǰȊâãǦdzȊâǛǖǐȐ ǕțǰǑǣ ǯȒǗ ǐȚāć ǹȂȊ ǕȀțDZȋâ șȂ ǕțǽțǓǧǗ ǕȋêǑǽȎ ȘȌǼ ĀǧȃDZȋâ ãǧǴȋâ ǜǗǑȑ ǕțǰǑǣ ȄțǔǷǗ ȇȒȉȏȚ b = 0 þÞ a = 0 ǑȎǍȂ Öab = 0 üǑȈ âëà ǕțǽțǓǧǘȋâ ǕȋêǑǽȏȋǑǓ ǕǷǔǗǧȏȋâ ǕȋâǥȌȋ șȑǑțǔȋâ ȊțǛȏǘȌȋ x ȐțǽǷȆȏȋâ êǑǞȚȠ ǕțȌțȌǡǘȋâ x 2 + 2x − 3 = 5 x 2 + 2x − 8 = 0 ǐāćșǦǓǜ ǕȀțDZȋâ șȂ ǕȋêǑǽȏȋâ ǒǘȈâ (x + 4) (x − 2) = 0 ȊȎâȗǽȋâ Șȋà ǑȖȌȌǠþ ǕțǪǑțȆȋâ (x − 2) = 0 þÞ (x + 4) = 0 x=2 x = −4 x = 2 þ x = −4 Ǒȏȕ üǑțȆțȆǠ üȣǠ ǕțǽțǓǧǘȋâ ǕȋêǑǽȏȌȋ y f(x) = x 2 + 2x – 8 ǐȚāć ȐǐȚǒ 8 4 x -4 -2 O 2 4 x üǑǽǷȆȏȋâ -4 ȊțǛȏǘȌȋ x üǑǽǷȆȏȋâ ȄǓǑǷǘȚ 2 þ −4 Ǒȏȕ -8 Ǖȋâǥȋâ ìǑȃǰÞ ǻȎ șȑǑțǔȋâ ȆȎȕȁȃǓć ǵ ȆȎȕȁȏǻǦǓć ǻ ɫȘȋșǐȎȍǔȊêǐǼȍȉȇȉ ąǟÖ6þ5ȏȚȑșǦȎǗȊâȘȁ ȊȎâȗǽȋâȘȋàȊțȌǡǘȋâùǥǼǑǫȚȁțȈ îǐǩȝâúâNjǪȊâ â.1 5. (x − 10)(x + 20) = 0 6. (3x + 4)(x − 4) = 0 ÛǕțǽțǓǧǘȋâåȢêǑǽȏȋâȊǠȘȌǼ ɮȉȍâȖǼȊâȗȊàȉȚȋǠǗȊǐǒȘȋșǐȎȍǔȊêǐǼȍȉȇȉ ąǟÖ8þ7ȏȚȑșǦȎǗȊâȘȁ ȐțǘȋêǑǽȏȋâúȗȌǠȐțǓüìǑȅ ǔȚȑǓȊâȉȎǼǗǩâ.2 7. x 2 + 18x + 32 = 0 8. x 2 − 4x − 21 = 0 4x2+10x−14=0þ2x2+5x−7=0 ć ȇǘǓǑǝàǟdzþÛǸǠȣǗâëǑȎ ɫȘȋșǐȎȍǔȊêǐǼȍȉȇȉ ąǟÖ12-9ȏșìǐȎǗȊâȘȁ ȘǘȎÛĀǧȃDZȋâãǧǴȋâǜǗǑȑǕțǰǑǣșȕǑȎ åǐǠȋǶǰȎȊâ.3 9. x 2 + 2x = −1 10. x 2 − 8x = 9 ć ȇǘǓǑǝàǟdzþÛǕțǽțǓǧǗǕȋêǑǽȎȊǡȋǑȖȋǑȏǽǘǪâȇȒȉȏȚ 11. 2x 2 + x = 15 12. 5x 2 − 19x = −18 ā ǕȏțȅȣȎǑȈǑ ǽǓǧȎȊȉǮǗșǘȋâêþǥǡȋâǕțǚȣǛȋǖȑǑȈâëà ā ć.4 ȌȎǻ y ǕȀțDZȋâșȂÖǕțǽțǓǧǗǕȋêǑǽȎǒǘȈâ.13 ć ȇǘǓǑǝàǟdzþÛǕȋêǑǽȏȌȋ ā ć ȣǠȍȉȂÖǧȃDZȋâĀþǑǫǗ 16 ǻȎǑȖȋȗȌǠȄǓǑǷǘǗÖǕțȌțȌǡǘȋâ 8 ǕțǽțǓǧǘȋâǕȋâǥȌȋxȐțǽǷȆȏȋâ x ìþǑǞȏȋâȊȉǮȋâșȂǑāțć ȑǑțǓǕȌǛƏ ȏȏȋâ -8 -4 O 4 8 -8 ć.14 ǕȋêǑǽȏȋâȊȌǠ -16 ȊȎâȗǽȋâȘȋàx2−6x+5=0 ȊǛć ȎȍǚÖǕțǽțǓǧǘȋâǕȋêǑǽȏȋǑǓǕǷǔǗǧȏȋâǕȋâǥȌȋîÞǧȋâåǑțǚâǥǠàǥǝþÞ Ǒāțć ȑǑțǓf( x)=x2−6x+5Ǖȋâǥȋâ ǕțǽțǓǧǘȋâåǑȒȚǑǔǘȏȋâþåȢêǑǽȏȋâ 2äǤǟȖȊâ 50 M02_MTH03_SE10_QTR_AR_8973.indb 50 12/05/2022 6:14:20 PM ȉǎǐǪȍȉǟþã ą ìƏ Ǥǖ ãìƏ Ǥǖ ȆȎȕȁíćǧǻ 1úǐǚȎȊâǦǹȐâ ɮȘȋșǐȎȍǔȊêǐǼȍȉȇȉ ąǟÖ23-20ȏșìǐȎǗȊâȘȁ ĀǦȋâǑȎÖ8ȗȕǕțǽțǓǧǗǕȋêǑǽȎúȗȌǠǥǠÞüǑȈâëà ǐȚāć ȅǶȑȍìǦć ǒ.15 ȇȒȉȏȚüǑǘȌȋâüǑǘȆȚǧǷȋâǑȎÛǕțǽțǓǧǘȋâǕȋêǑǽȏȋâȐǼȔǘȂǧǽȎȇȒȉȏȚ 20. (x − 5)(x + 2) = 0 21. (2x − 5)(7x + 2) = 0 āć ÛǕțǽțǓǧǘȋâǕȋêǑǽȏȌȋȣǠȗȕȊǡȋââǦȕüǑȈâëàǑȎǕȂǧǽȎǑȏȖȋȣǣȐȎ 22. 3(x + 2)(x − 2) = 0 23. (3x − 8) 2 = 0 șȌȚǑȏȎǕȋǑǠȊȉȋǕțǽțǓǧǗǕȋêǑǽȎǒǘȈâ ǔȄǤǒȉǯâȖǖ.16  ɮȉȍâȖǼȊâȗȊàȉȚȋǠǗȊǐǒǔȊêǐǼȍȉȇȉ ąǟÖ29-24ȏșìǐȎǗȊâȘȁ șȆǷȒȏȋâùǧȚǧǔǗèǧǭâ 3þ2ȏȚȊǐǚȎȊâǦǹȐâ ǧǣȜâ îȗȉǽȎ ǑȏȕǥǠÞ üȣǠ ǕȋêǑǽȏȌȋ.a 24. x2 + 2x + 1 = 0 25. x2 − 5x − 14 = 0 ǥǠâþ ȊǠ ǕȋêǑǽȏȌȋ.b 26. x 2 + 7x = 0 27. 2x 2 − 5x + 2 = 0 ȊȎâȗǽȋâȘȋàǕȋêǑǽȏȋâȊțȌǡǗșȂǒȋǑǷȋâNjǷǣȐțć Ǔ NJǶǣȊâȉćȋǟ.17 28. 2x 2 + 3x = 5 29. 5x 2 + 16x = −3 Ȕǡǡǰþ ǔȅǶȑȎȊâǔǟǐǪȍȉȚǚȎǗȊǔȊêǐǼȍǑǗȇâÖ31þ30ȏȚȑșǦȎǗȊâȘȁ x2 + 2x Ũ 3 = 5 3úǐǚȎȊâǦǹȐâ ɮxǔȎȚȄǤǜþÞȌǙÖǔȋȋǹȎȊâ (x Ũ 1)(x + 3) = 5 198cm2ǕțȌȉȋâǕǠǑǫȏȋâ.30 x Ũ 1 = 5 þÞ x + 3 = 5 x = 6 þÞ x = 2 x 9 cm ǕȋêǑǽȏȋâȊȌǡǗȁțȈèǧǭâ ȉǠȊâȘȁǦǒǐǙþǦȈć ȁ.18 16 cm ǑȖȌȎâȗǼȘȋà2x2+8x+  6=0 x üǑțȑǑțǓüȣțǛȏǗǑȏȕýǑȑêÞüǑǐȂǑȉȏȋâüǑǽǷȆȋâ ǐȚȋǼȊâǦȚȈȂǗȊâåâìǐȕȍ.19 24 in.31 ȐțǘțǽțǓǧǗȐțǘȋâǥȋ x y x 12 in 189 in² = ǕțȌǣâǥȋâǕǠǑǫƯâ 12 4 ÖȉȍâȖǼȊâȗȊàǔȊêǐǼȎȊǐǒǔǶǓǖǦȎȊâǔȊâǤȊâȉȋǟÖ33þ32ȏȚȑșǦȎǗȊâȘȁ x O 2 4 6 8 4úǐǚȎȊâǦǹȐâ ɮǐȚāć ȐǐȚǒǔȊâǤȊâȉǚć ȍȌǙîÞǦȊâåǐȚǙâǤǟàǤǜþÞþ -4 32. x2 − 2x − 63 = 0 33. x2 + 16x + 63 = 0 5úǐǚȎȊâǦǹȐâ ɮǔȚǼȚǒǦǗȊâǔȊâǤȋȊǔȚȋȚȋǠǗȊâǔǿȚǰȊâǑǗȇâ Ȑțǘȋâǥȋâ ÿǥǠǍǓ ǕǷǔǗǧȏȋâ ǕȋêǑǽȏȌȋ ǕțȌțȌǡǘȋâ ǕȀțDZȋâ ǒǘȈâ.a Û ǑȖǘǔǘȈ șǘȋâ Ǖȋâǥȋâ ȊǛć ȏȚ ȘȒǡȒȎ ĀÞ y .34 12 ā ÿǧǣȞâ ǕȋâǥȋǑǓ ǕǷǔǗǧȏȋâ ǕȋêǑǽȏȋâ êǑǞȚȠ ǑāǘǓǑǚ ȣȎǑǼ ȊȏǽǘǪâ.b 6 ǕȅȣǽȋâýǦȕǟǴǘǗȁțȈÛȐțǘȋâǥȋâȐțǓǑȖǺǠȣǗșǘȋâǕȅȣǽȋâǑȎ.c x ÛǖǓǑǛȋâúȣǣȐȎ -4 -2 O 2 4 -6 -12 51 ȊȎâȗǽȋâȘȋàȊțȌǡǘȋǑǓǕțǽțǓǧǘȋâåȢêǑǽȏȋâȊǠ 2-2îìǤȊâ M02_MTH03_SE10_QTR_AR_8973.indb 51 12/05/2022 6:14:21 PM ȉǎǐǪȍȉǟþã ą ìƏ Ǥǖ ìǐǓǗǢâȗȋǻãìƏ Ǥǖ ȃǓć ǵ ǕțǪǑțȆȋâǑȖǘȀțǰȊȎâȗǼȐȎǧǛȈÞþÞȊȎǑǽǓǕȋêǑǽȎȊȈȊǰĆ.37 äǥȏǓȔȌțǘȂúǑǽǭàǥǽǓüȗȌȎǵȚǧǭȄȌǶąÞ åǐȚDzǐșǦȊâȘȁǴǒâþì.35 I. x 2 + 6x = −8 A. 2x − 3 ȔȋǑǽǭàȐȎ8 sǥǽǓñìȞâȘȋàǵǔȕþ3s y II. 2x 2 + x = 6 100 B. x + 4 80 III. x 2 + 2x = 8 C. x − 4 ôǑȃǗìȢâ 60 IV. 2x 2 + 5x = 12 D. x + 2 (ft) 40 V. 2x 2 − 11x = −12 E. x − 2 20 ǕțǽțǓǧǗǕȋêǑǽȎúȗȌǠǥǠÞ SAT/ACTìǐǓǗǢâ.38 x ǕțǽțǓǧǘȋâǕȋâǥȋâîÞìǻȆȚþ−2ȗȕx2+  bx+  c=0äìȗDZȋâșȂ 0 2 4 6 8 10 ÛǕȋêǑǽȏȌȋǧǣȜâȊǡȋâǑȎɯ( 2ɯ5,−20ɯ25)ǥȒǼǑȖǓǕǷǔǗǧȏȋâ (s) ȐȎǨȋâ 𝖠 −11 ǕȀțDZȋâ șȂ ǕȋǑǡȋâ ýǦȕ çǦȏȒǗ șǘȋâ ǕțǽțǓǧǘȋâ ǕȋêǑǽȏȋâ ǑȎ.a 𝖡 −4.5 Û ǕțȌțȌǡǘȋâ șǘȋâ ǕȋêǑǽȏȋǑǓ ǕǷǔǗǧȏȋâ ǕȋâǥȌȋ îÞǧȋâ ǕǷȆȑ åǑțǚâǥǠà ǑȎ.b 𝖢 0.5 þ Ǖȋâǥȋâ ýǦȖȋ îÞǧȋâ ǕǷȆȑ ȐțǓ ǕȑìǑȆȏȋâ Ȕǝþ ǑȎ Û ǑȖǗǥǝþÞ 𝖣7 Û ýȣǼÞ șȑǑțǔȋâ ȊțǛȏǘȌȋ îÞǧȋâ ǕǷȆȑ 𝖤9 șǘȋâ ǕȋâǥȌȋ ǕțȌțȌǡǘȋâ ǕȀțDZȋâ șȂ ȔǓǧdz ȇȒȉȏȚ ĀǦȋâ ǖǓǑǛȋâ ǑȎ.c ć ÛýȣǼÞ șȑǑțǔȋâ ȊțǛȏǘȋâ Ǖȋâê ȘȌǼ ȊDZǡǘȋ ǑȖǘǔǘȈ ȇǘǓǑǝà ǟdzþ ǕȈǧǓǕȂǑǠȐǼ1ftǥǽǔǗäìȗȂǑȑîǥȒȖȎȍȏDZȚ ǔȚǎâêÞǔȎȕȍ.39 ǕȈǧǓǨȈǧȎșȂäìȗȂǑȒȋâýǑțȎǵȆǫǗǙțǡǓ10ftǑȖdzǧǼǕǠǑǔǪ ȘȌǼÞ÷ǑǷǤǓǖǔǛȎ15ftȔȋȗǶșȑǥǽȎȇȌǪ ǔȚȑǓȊâȉȎǼǗǩâ.36 ǎȂǑȉȎǻǷȅȊȉǭȘȌǼäìȗȂǑȒȋâȐȎǕǷȅǑǫȋâýǑțȏȋâìǑǫȎǕǠǑǔǫȋâ êȗȏǽȋâäǥǼǑȅȘȋà÷ǑǷǤȋâȐȎǕȂǑǫȏȋâûȗȌǽȎǧțǿȔǼǑȃǗìâêȗȏǼ 3ftìâǥȆȏǓêȗȏǽȋâôǑȃǗìâȐȎǧDZȅÞ 1 ft 10 ft 15 x ft ft ɯäìȗȂǑȒȋâȐȎÜǑȏȋâȄȂǥǗǻȅȗȎ(1,0)ǕǷȆȒȋâȐȉǘȋ AÜǧǝȊâ ɯýǑțȏȋâìǑǫȎǕǝǦȏȒȋǕțǽțǓǧǗǕȋêǑǽȎǒǘȈâ (x – 3) ft ÛäìȗȂǑȒȋâȐȎȄȂǥǘȏȋâÜǑȏȌȋôǑȃǗìâȘDZȅÞǑȎ BÜǧǝȊâ ɯAÜǨǞȋâȐȎȇǘȋêǑǽȎȊȏǽǘǪâ Û êȗȏǽȋâ ôǑȃǗìâ êǑǞȚȠ ȊȏǽǘǫǗ üÞ ȇȒȉȏȚ âëǑȎ.a ȘDZȅÞüǑȈâëàäìȗȂǑȒȋâȐȎȄȂǥǘȏȋâÜǑȏȋâìǑǫȎǕȋêǑǽȎǑȎ CÜǧǝȊâ ą êȗȏǽȋâ ôǑȃǗìâ êǑǞȚȠ ǕțǽțǓǧǗ ǕȋêǑǽȎ ǒǘȈâ.b ǑȖȌǠþ Û4ftüȗȉȚüÞǒǞȚÜǑȏȌȋôǑȃǗìâ ÛêȗȏǽȋâäǥǼǑȅȐǼ÷ǑǷǤȋâǥǽǔȚȍȈ.c ǕțǽțǓǧǘȋâåǑȒȚǑǔǘȏȋâþåȢêǑǽȏȋâ 2äǤǟȖȊâ 52 M02_MTH03_SE10_QTR_AR_8973.indb 52 12/05/2022 6:14:22 PM

Use Quizgecko on...
Browser
Browser