Summary

These notes cover fundamental algebraic concepts and theorems related to complex numbers, quadratic equations, and polynomials. Key concepts explored include factor theorems, remainder theorems, and relations between the roots and coefficients of equations. The document also touches on polynomial equations and factoring.

Full Transcript

# Algebra ## **UNIT 1: Elementary Theorem** on the Roots of an Equation **# Quadratic Equation** * **ax² + bx + c = 0 , a ≠ 0** **-> ax² + bx = -c** **-> 4a. ax² + 4a.bx = -4ac** **-> (2ax)² + 2(2ax).b = -4ac** **Add b² both side** **-> (2ax + b)² = b² - 4ac** **-> 2ax + b = ±√(b² - 4ac)*...

# Algebra ## **UNIT 1: Elementary Theorem** on the Roots of an Equation **# Quadratic Equation** * **ax² + bx + c = 0 , a ≠ 0** **-> ax² + bx = -c** **-> 4a. ax² + 4a.bx = -4ac** **-> (2ax)² + 2(2ax).b = -4ac** **Add b² both side** **-> (2ax + b)² = b² - 4ac** **-> 2ax + b = ±√(b² - 4ac)** **-> x = -b ±√(b² - 4ac)/2a** **-> x₁ = -b +√(b² - 4ac) /2a , x₂ = -b - √(b² - 4ac) /2a** **-> x₁ + x₂ = -2b/2a = -b/a** **-> x₁. x₂ = (-b + √(b² - 4ac)/2a) . (-b - √(b² - 4ac)/2a)** **-> x₁. x₂ = (b² - (b² - 4ac))/4a² = c/a** **Let's consider a(x - x₁)(x - x₂)** **-> a[x² - x₁x₂ - x₂x₁ + x₁x₂]** **-> ax² - ax(x₁ + x₂) + ax₁x₂** **-> ax² - ax(-b/a) + ac/a** **-> ax² + bx + c = 0** **-> a(x - x₁)(x - x₂) = ax² + bx + c = 0** **① If D = 0 : b² - 4ac = 0** **-> b² = 4ac** **-> x₁ = x₂ = -b/2a i.e perfectly.** **a(x - x₁)(x - x₂) = a(x - x₁) 2** **② If D > 0: roots are real & distinct** **③ If D < 0 : roots don't exist.** **x² - 2x = 0** **-> x(x - 2) = 0** **-> x = 0 , x = 2** **x² - 2x - 1 = 0** **D = 4 - 4 x 1 x (-1) at c = -1** **-> D = 4 + 4 = 8** **-> x = 2 ± √(4 + 4 x 1 x 1)/2 x 1** **-> 2[ 1 ± √2]** **-> x² - x + 1 + i = 0** * **o if a , b , ac are real then roots are complex conjugate** **o if a, b, ac are not real then roots are not real.** **# Polynomials f(x) = axⁿ + bxⁿ⁻¹ +--- + c₁x + c₀** **-+---** **many terms** **is called a polynomial** **# Remainder Theorem** **-> f(x) = (x - a)q(x) + r** **Divident divisor Remainder** **[R = f(a)]** **Case **If a polynomial f(x) is divided by (x - a) then a remainder (x - a) is a remainder **If R = 0, this implies this division is exact then f(x) = (x - a)q(x)** **(x - a) is a factor of f(x)** ## **# Without division find (R)**. **x²-3x² - x - 6 is divided x + 3** **f(-3) = 81 - 3 x 9 + 3 - 6** **= 81 - 27 - 3 = 54 - 3 = (51)** ## **# Factor Theorem** **If f(a) = 0** **-> f(a) = 0 then the polynomial f(x) has ( x - a )** **# Theorem of root of Equation** **-> It is an alternate method to the usual division method but it is only applicable when the division is linear. Suppose the quotient is q(x) and remainder is r.** **① f(x) = 2x³ + 3x²-2x - 5** **-> x = 1 3x -2x -5 g(x) = x - a** **-> 2x³ 2x³ + 3x² -2x - 5** **-> -5x³ + 2x² -5x² -2x - 5** **-> 5x³ 5x² 2x** **-> 10x² 20x** **-> 20x - 2x - 5** **-> 18x² - 5** **# f(x) = q(x) + r** **-> f(x) = x³ +3x² -2x - 5** **1 3 0 -2 -5** **x² 2x² 10x² 20x² 36** **1 5 10 18 31** **f(x) = 1x³ + 5x² + 10x + 18** **② x³+3x²-2x-5 (x - 2)** **1 3 -2 -5** **x² 2x² 10x² 16** **1 5 8 11** **f(x) = x² + 5x + 8 + (11) / (x - 2)** **q(x)** **③ 2x⁵ - x³ + 2x -1 / x+2** **0 - 1 0 2 -1** **22⁵ - 4x⁴ - 2 78 - 14 38 - 60** **2x⁴ - 4x³ + 7x² - 14x + 30 = 61** **q(x)** **f(x) = (x - 2)(x² + 5x + 8) + 11** ## **# Factor Form of a Polynomial:** Let f(x) which is equal to c₀xⁿ + c₁xⁿ⁻¹ +--- + cₙ₋₁x + cₙ where c₀ ≠ 0, is a degree n polynomial. **If f(a) = 0:** has a root a, then (x - a) is a factor of f(x) by factor theorem. **f(x) = (x - a₁) Q(x)** **If Q(x) = 0 : Has a root a₂ then (x - a₂) is a factor of Q(x).** **f(x) = (x - a₁)(x - a₂) Q₁(x)** **f(x) = (x - a₁)(x - a₂)----(x - aₙ) Constant** ## **# Theorem on Roots of Equation** **# Factored form of a polynomial of degree 'n':** - f(x) = a₀xⁿ + a₁xⁿ⁻¹ +--- + aₙ₋₁x + aₙ where a₀≠ 0 **-> f(x) = 0** **(Polynomial)** **If 'α' be the root of poly. equation:** **f(x) = (x - α₁) q(x)** **where q(x) is one degree less.** **If 'α₂' be the root of q(x)** **-> q(x) = 0** **-> q(x) = (x - α₂) q₁(x)** **-> f(x) = (x - α₁)(x - α₂)----(x - αₙ) aₙ** **# Let f(x) = 0 be an equation where f(x) = a₀xⁿ + a₁xⁿ⁻¹ +--- + aₙ₋₁x + aₙ with degree 'n', x₁----- αₙ will be the 'n' distinct roots of the equation.** **-> f(x) = 0** **-> f(α₁) = (α₁ - α₁)q(α₁) = 0** **If α₂ α₁ be another root** **-> f(α₂) = (α₂ - α₁)q(α₂) = 0** **-> α₂ - α₁ ≠ 0** **-> q(α₂) = 0** ## **# Fundamental Theorem of Algebra:** Every algebraic equation with complex coefficient has a complex root (it may be real or imaginary). **NOTE:** Every equation of degree 'n' has exactly 'n' roots. If a root of multiplicity 'm' be counted as 'm' roots (repeated roots). **Every polynomial or Integral Ration equation of degree 'n' is a product of 'n' linear factors/ 'n' distinct factors.** **-> (x - a₁)^m₁(x - a₂)^m₂----(x - aₙ)^mₙ** **# Relationship b/w Roots & Coef of a Equation** * **f(x) = a₀xⁿ + a₁xⁿ⁻¹ +--- + aₙ is a polynomial equation** * **If f(α) = 0 , polynomial equation** **-> α [f(α) = 0] , α is a root/solution of equation** * **x²-3x+2=0** **-> x²-2x-x+2 = 0** **-> x(x-2) -1(x-2) = 0** **-> (x-2)(x-1)** **-> x = 2, 1** **-> Coef. -> 1 , -3 , 2** **-> a₀ = 1 - 3 + 2 = 0** **-> Then (x-1) is a root of f(x) equation** * **f(2) = 4-6+2 = 0** **-> (x - 2) is a root of equation** **-> a₀xⁿ + a₁xⁿ⁻¹ + a₀ general form of n° equation** **Let a₁, a₂ be the root.** **-> x² + a₀x + a₀ = 0** **-> (x-a₁)(x-a₂) = 0** **-> x²-a₁x-a₂x+ a₁a₂ = 0** **-> x² - (a₁ + a₂)x + a₁a₂ = 0** **On comparing** * **-a₁ = a₁ + a₂ ** **-> a₁ + a₂ = -a₁/ a₀** * **a₁a₂ = a₂/a₀** **By condition that ax² + bx + c = 0 have double root.** **-> a₀ = -b + c** **sum: x + x = 2x = -b /a** **product: x² = c /a** **Equation: x² - 2ax + a² = 0** ## **RESULT:** a₀xⁿ+ a₁xⁿ⁻¹ +--- + aₙ = 0 **If the root with the form of 'α' then divides a₀ & aₙ then 'α' will be the root of the equation** ## **Q3** **x³ - 9x² + 23x - 15 = 0** **Given roots are in the form of A.P.** **Let a-d, a, a+d be the roots of the given equation.** **a - d + a + a + d = 9** **-> 3a = 9 -> a = 3** **x³ + bx² + rx = +23** **-> (a - d)a + a(a + d) + (a + d)(a - d) = 23** **-> a²-ad + a²+ad + a² - ad +ad - d² = 23** **-> 3a²-d² = 23** **-> 3 x 9 - d² = 23** **-> d² = 23 - 27 = -4 -> d = ±2** ## **Q8** **8x² - 14x² + x - 1 = 0 all in G.P.** **Let a, ar, ar² are in G.P.** **-> ax x ar x ar² = 1/8** **-> a³r³ = 1/8** **-> a. r = 1/2 -> a = 1/2r** **a + ar + ar² = 14** **-> 1/2r + 1/2r³ = 14** **-> 1 + r² = 28** **-> r² = 27** ## **Q4** **a₀x⁴ + a₁x³ + a₂x² + a₃x + a₄ = 0** **Let α, β, γ, δ be the roots.** **-> ∑ = α + β + γ + δ = -a₁/ a₀ = -b** **-> ∑₂ = αβ + βγ + γδ + δα + βδ + αγ = a₂/ a₀ = c** **-> (α + β)(γ + δ) + αγ + βδ = c/a₀** **-> ∑₃ = αβγ + βγδ + αγδ + αβδ = -a₃/ a₀ = d** **-> αβ(γ + δ) + δd(α + β) = - a₃/ a₀** **-> ∑₄ = αβγδ = a₄/ a₀ = e** ## **Formation of equation when roots are given:** **Case 1:** If all roots are rational **Case 2:** Some roots are irrational **Case 3:** roots are complex **Que** Find an equation of lowest degree with the rational coefficient. **① Two of the roots are 2 & 3** **② Three .... 1, 2, 3** **-> (x - 2)(x - 3) = 0** **-> x² - 5x + 6 = 0** **-> (x - 1)(x - 2)(x - 3)** **-> x³ - 6x² + 11x - 6 = 0** **Equation with all rational roots a₁, a₂-----aₙ is given: (x - a₁)(x - a₂)----(x - aₙ) = 0** ## **Que** **Theorem:** Irrational roots occur in pair. **For example:** x² + x + √3 **x² - x -√3** The irrational roots of an equation with rational coef. occurred in pair i.e. **If an equation a₀xⁿ + a₁xⁿ⁻¹ +--- + aₙ₋₁x + aₙ = 0 where a₀ ≠ 0 & a₁ to aₙ has an irrational root a+√b then it also has an irrational root a - √b** **-> a + √b -> a + √b** **-> -a + √b** **-> -a - √b** **Que** Find an equation with rational coef. which has 2 and 2+√3 as two of its roots. **-> (x - 2)(x - (2 + √3))(x - (2 - √3)) = 0** **-> (x - 2)(x - 2 - √3)(x - 2 + √3) = 0** **-> [x² - 4x - √3x + 4 + 2√3][x - 2 + √3] = 0** **-> x³ - 2x² + 8x = 0** **Theorem:** Some complex roots occur in the conjugate pairs. **a₀xⁿ + a₁xⁿ⁻¹ +--- + aₙ₋₁x + aₙ = 0** **When a₀ ≠ 0 & a₁ to aₙ has complex root 'a + ib' then it also has complex root 'a - ib'.** **-> Complex roots of an equation with real coef. always occur in conjugate pairs.** **Remark:** The complex roots of an equation with complex no. coef. may or may not occur in complex conjugate pairs. **For example:** x² + 7ix + 12 = 0 **-> x² - 3ix - 4x -12 = 0** **-> x(x - 3i) - 4(x - 3i) ** **-> (x - 3i)(x - 4) = 0** **Que** Find the set (1 + 3i)(1 - 3i) find the equation. **-> [x - (1 + 3i)][x - (1 - 3i)] = 0** **-> (x - 1 - 3i)(x - 1 + 3i) = 0** **-> x² - 2x + 3ix - x + 1 - 3i - 3ix + 3i + 9i² = 0** **-> x² - 2x + 10 = 0** ## **# Upper Limit to Real Roots of Equation:** **Any number which exceed all real roots of a real equation is called upper limit to the real roots of that equation.** **-> Suppose α β are the roots, then 'γ' is the upper limit of the roots.** **-> x² + 4x + 8 = 0** **-> x² + 5x + 6 = 0** **-> x = -3, -2.** **Any true number is the upper limit to the real numbers of an equation having no negative coefficient.** ## **# Upper Limit to Real Roots of Equation:** **Any number which exceed all real roots of a real equation is called upper limit to the real roots of that equation.** **-> Suppose α β are the roots, then 'γ' is the upper limit of the roots.** **-> x² + 4x + 8 = 0** **-> x² + 5x + 6 = 0** **-> x = -3, -2.** **Any true number is the upper limit to the real numbers of an equation having no negative coefficient.** ## **# Theorem:** **If in a real equation, f(x) = a₀xⁿ + a₁xⁿ⁻¹ +--- + aₙ₋₁x + aₙ = 0** **The first +ve coeff. is preceded by "k" coefficient which are all zero.** **If 'G' denotes the greatest of the numerical value of the -ve coefficient, then each real root is less than 1 + k√(G/a₀) -> 1 + k√(G/a₀).** **Q/ x⁵ + 4x² - 7x² - 40x + 1 = 0** **-> x⁵ + 4x² + 0x³ -7x² - 40x + 1 = 0** **k = 3, G = 40** **1 + 3√(40/1)** **-> x³ + 8x² - 9x + c² = 0** **k = 2, G = 9** **1 + 2√(9/1)** **-> 1 + 3 = 4** **Theorem: If in a real algebraic equation in which the coefficient of the highest power of the unknown is +ve, then the sum of all the +ve coefficients divided by the greatest quotient as obtained by unit in the u.l. of the roots.** **-> a₀xⁿ + a₁xⁿ⁻¹ + --- + aₙ₋₁x + aₙ** **① a₀x⁰ , If -ve multiply by (-1)** **-> a₀ + a₁** **② a₀ + a₁ -> a₀** **③ 9 + 1 = 9** **Que** x³ + 8x² -9x + c² = 0 **① 90 = 1** **② 9 = 9** **③ 1 + 8 = 9** **-> 1 + 1 = 2 u.l of equation** **18 - 9 - 24 31 +1** **# Newton's Method for Integral Roots** **f(x) = a₀xⁿ + a₁xⁿ⁻¹ +--- + aₙ₋₂x² + aₙ₋₁x + aₙ = 0** **-> aₙ₋₁x + aₙ = -a₀xⁿ - a₁xⁿ⁻¹ - a₂xⁿ⁻² ---- aₙ₋₂x** **-> aₙ₋₁x + aₙ = x²[-a₀xⁿ⁻² - a₁xⁿ⁻³ ---- aₙ₋₂] ** **-> x² divides aₙ₋₁x + aₙ** **-> x divides aₙ₋₁x + aₙ/ x** **-> aₙ₋₂x² + aₙ₋₁x + aₙ = x²[-a₀xⁿ⁻⁴ - a₁xⁿ⁻⁵ ---- aₙ₋₃] ** **-> x² divides aₙ₋₂x² + aₙ₋₁x + aₙ** **-> x divides aₙ₋₂x² + aₙ₋₁x + aₙ/ x** **-> aₙ₋₃x³ + aₙ₋₂x² + aₙ₋₁x + aₙ** **-> x divides aₙ₋₃x³ + aₙ₋₂x² + aₙ₋₁x + aₙ/ x** **q. f(x) = x⁴ - 9x³ + 24x² -23x + 15 = 0** **f(3) = 81 - 9 x 27 + 24 x 9 - 23 x 3 + 15** **-> 3 - 23 +15** **-> 3** **-> - 23 + 5 = - 18** **-> - 18 divided by 3** **-> 3/ 24 - 6 = 18** **-> 3/ - 9 + 6 = - 3** **-> 3/ 0 - 1 + 1 = 0** **Thus f(x) is divisible by 3.** **Que** x⁴ - 9x³ + 24x² -23x + 15 **1 -9 24 -23 15 ** **-2 -6 6 -5** **0 - 3 18 - 18** **-> '3' is a root of poly equation** **1 -9 24 -23 15 ** **-5 -4 -20 - 3** **-> '5' is the root of equation** **1 - 9 24 -23 15** **-3 -5 -28** **x⁴ - 8x³ - 21x² + 22x + 40 = 0** **① 40 = ±1 , ±2 , ±4, ±5 , ±8 ,±10, ±20, ±40** **② 2** **-> Out apply u.l.** **-> -21 -22 -21 40** **-> - 2 is the u.l.** **-> k = 1, G = 21** ** -> ** 1 + √(21/1) = 1 + √21 = 5 ** **-> E2, 5 -> at x = 4** **1 - 2 -21 22 40 ** **4 8 -10 32** **-> 13 32** **-> so 4 is not the root** ** -> at x = 2** **1 -2 -21 22 40 ** **2 0 21 20** **-> 0 2 0 42** **-> '2' is the root of equation** # **Complex Numbers:** **-> z = x + iy** **-> z = r(cosθ + isinθ)** **x = r cosθ** **-> y = r sinθ** **r² + y² = r²(cos²θ + sin²θ)** **-> r² + y² = r² = √(x² + y²)** **-> sinθ = y/r** **Complex Numbers are an extension of real numbers, and they come into the existence to get √(-1) = i.** # **General Complex Number is z = x + iy, where x & y are the real numbers & i = √-1.** **A set of complex numbers is denoted by "C". If it is in the form c = x + iy , x & y ∈ R & i = √-1. ** **A complex number is '0' iff x & y are '0'.** **-> z = x - iy** **-> |z| = √(x² + y²)** **-> z = x + + iy** **-> |z| = √(x² + y²) -> |z| = r** **-> θ is the angle between 0Z with the x-axis in anticlockwise direction.** **-> Then y = r sinθ = tanθ -> θ = tan⁻¹(y/x)** ## **Q1** **-> 1 + √3i** **x = 1, y = √3** **-> θ = tan⁻¹(√3/1) = π/3** **-> r = √(x² + y²) = √(1 + 3) = √4 = 2** **-> z = r(cosθ + isinθ)** **-> z = 2(cosπ/3 + isinπ/3)** ## **Q2** **-> z = -1 - √3i** **-> θ = tan⁻¹(√3/1) = π/3** **-> (-1, -√3)** **-> z = r(cosθ + isinθ)** **-> z = 2(cos4π/3 + isin4π/3)** **NOTE:** **-> tan⁻¹(y/x) if x, y > 0** **-> π + tan⁻¹(y/x) if x < 0 , y > 0** **-> π + tan⁻¹(y/x) if x < 0 , y < 0** **-> 2π + tan⁻¹(y/x) if x > 0 , y < 0** **-> 2 = r(cosθ + isinθ)** **-> where θ = cos⁻¹(x/r) , sin⁻¹(y/r)** **Que** Find polar representation of 2 where 2 = 1 + cosα **-> x = 1 + cosα** **-> y = sinα** **-> r = √((1 + cosa)² + sin²α) = √(1 + 2 cosα + cos²α + sin²α) = √(2 + 2 cosα)** **-> r = √(2(1 + cosα)) = √(2 cos²(α/2)) = √2|cosα/2|** **-> θ = tan⁻¹(sinα/ (1 + cosα))** **-> θ = tan⁻¹(2 sin(α/2) cos(α/2)/ 2 cos²(α/2))** **-> θ = tan⁻¹(tan(α/2)) ** **-> θ = α/2** ## **De' Moivre's Theorem for n ∈ N:** **(cosθ + isinθ)ⁿ = cos nθ + i sin nθ ; n ∈ N** **Base Condition:** When n = 1 **-> (cosθ + isinθ)¹ = cosθ + isinθ** **LHS = RHS** **-> Result is true for n = 1** **Let the result be true for n = k** **-> (cosθ + isinθ)ᵏ = cos kθ + isin kθ (1)** **We will prove that the result is true for n = k + 1.** **-> (cosθ + isinθ) ᵏ⁺¹ = cos(k + 1) θ + i sin (k + 1) θ** **-> (cosθ + isinθ) ᵏ⁺¹=(cosθ + isinθ) ᵏ (cosθ + isinθ)** **-> (cosθ + isinθ) ᵏ⁺¹ = (cos kθ + isin kθ)(cos θ + isin θ)** **-> cos kθ cosθ + i cos kθ sin θ+ isin kθ cosθ - sin kθ sin θ** **-> (cos kθ cosθ - sin kθ sin θ) + i (cos kθ sin θ + sin kθ cos θ)** **-> cos (k + 1) θ + i sin(k + 1)θ** **-> RHS** **Hence, the result is true for n = k + 1** **-> (cosθ + isinθ)ⁿ = cos nθ + isin nθ** ## **De' Moivre's Theorem for integers:** **(cos θ + isin θ)ⁿ = cos nθ + i sin nθ** **Case 1: n > 0** **-> n is a N** **Case 2: n = 0** **-> n = 0** **Case 3: n < 0** **-> n = -m** **-> m > 0** **-> (cos θ + isin θ)ⁿ** **-> (cos θ + isin θ)⁻ᵐ** **-> (cos θ + isin θ)⁻¹ ᵐ** **-> 1 / (cosθ + isinθ) ᵐ** **-> (cos mθ + i sin mθ)⁻¹ [Rationalising]** **-> (cos mθ - i sin mθ)/ (cos²mθ + sin²mθ)** **-> cos(-m)θ + i sin(-m) θ = (cos nθ + i sin nθ)** **-> RHS.** ## **Questions** **Que 1** Find the |z| and arg(z) of (1 - i)¹⁰ (√3 + i)⁵ **-> x + iy -> x = rcosθ = 1** **-> y = rsinθ = -1** **|z| = √(x² + y²) -> |z| = √(1² + 1²) = √2** **-> θ = tan⁻¹(-1/1) = -π/4** **-> θ = 2π - π/4 = 7π/4** **-> z = (1 - i)¹⁰** **-> z = [(√2)(cos ( - π/4) + isin (-π/4))] ¹⁰ ** **-> z = (√2) ¹⁰ [cos (- 5π/2 ) + i sin (-5π/2)]** **-> θ = ( - 5π/2) = ( - 11π/2)** **-> z = [ (√2)¹⁰ (cos (- 11π / 2) + isin (-11π/ 2))]** **-> z = [(√2)¹⁰ (cos (- 11π / 2) + isin (- 11π/ 2))]** **-> z = [ (√2)¹⁰ (cos (π/2) + isin (π/2))]** ** -> z₂ = [ (√3 + i)⁵ = [2(cosπ/6 + isinπ/6)] ⁵** **-> z₂ = 32 [cos5π/6 + isin 5π/6]** **z₁ z₂ = (1 - i)¹⁰ (√3 + i)⁵** **-> z₁z₂ = [(√2)¹⁰ (cos (π/2) + isin (π/2))] * 32 [ cos 5π/6 + isin 5π/6]** **-> z₁z₂ = (√2)¹⁰ * 32 [cos((5π/6) + (π/2)) + isin((5π/6) + (π/2)) ]** **-> z₁z₂ = (√2)¹⁰ * 32 [cos(4π/3) + isin (4π/3)]** **-> z₁z₂ = (√2)¹⁰ * 32 [cos(8π/3) + isin (8π/3)]** **-> z₁z₂ = (√2)¹⁰ * 32 [cos(2π/3) + isin (2π/3)]** **-> z₁z₂ = 1024 [cos(2π/3) + isin (2π/3)]** **-> z₁z₂ = 1024 * 1/2 * (- 1 + √3i)** **-> z₁z₂ = 512(-1 + √3i)** # **When we multiply two polar representations, then their arg get add & when we divide then arg get substracted.** **-> z₁z₂ = cos θ₁ + i sin θ₁** **-> z₂ = cos θ₂ + i sin θ₂** **-> 1/z₂ = 1/(cos θ₂ + i sin θ₂) = (cos θ₂ - i sin θ₂)/ (cos²θ₂ + sin²θ₂)** **-> 1/z₂ = cos θ₂ - i sin θ₂** **-> z₁/z₂ = (cos θ₁ + i sin θ₁)(cos θ₂ - i sin θ₂) **-> z₁/z₂ = (cos θ₁ cos θ₂ - sin θ₁sin θ₂ ) + i (sinθ₁ cos θ₂ + cosθ₁ sin θ₂) ** **-> z₁/z₂ = cos (θ₁ + θ₂) + i sin ( θ₁ + θ₂)** **-> (cos θ₁ + i sin θ₁)(cos θ₂ + i sin θ₂) --- (cos θₙ + i sin θₙ)** **-> (cos θ₁ + i sin θ₁)(cos θ₂ - i sin θ₂) = cos (θ₁ + θ₂ - θ₃ ---- θₙ) + i sin (θ₁ + θ₂ - θ₃ ---- θₙ)** **-> (cos θ - i sin θ)ⁿ = cos nθ - i sin nθ** ## **# Express in the form of

Use Quizgecko on...
Browser
Browser