NLC Science 7 Consolidation WB v.1 PDF
Document Details
Uploaded by UnparalleledAnecdote
Tags
Summary
This is a student workbook for Grade 7 science covering various topics, including scientific investigations, the importance of fair testing, and the different levels of biological organization. It contains worksheets and activities.
Full Transcript
7 Science Consolidation Learning Camp Student Workbook Consolidation Learning Camp Student Workbook Science Grade 7 Weeks 1 to 3 Contents Introduction for Students...........................................................................................................
7 Science Consolidation Learning Camp Student Workbook Consolidation Learning Camp Student Workbook Science Grade 7 Weeks 1 to 3 Contents Introduction for Students....................................................................................................................... 1 The Plan............................................................................................................................................... 1 Time in Class........................................................................................................................................ 1 Mistakes.............................................................................................................................................. 1 Practice............................................................................................................................................... 2 It is important that you try and try again............................................................................................ 2 Science Grade 7 Lesson 1 Worksheet..................................................................................................... 3 Scientific investigations – The Importance of Fair Testing................................................................. 3 Science Grade 7 Lesson 2 Worksheet..................................................................................................... 6 What’s in the Bucket?......................................................................................................................... 6 Science Grade 7 Lesson 3 Worksheet..................................................................................................... 9 A Seawater Fish Tank.......................................................................................................................... 9 Science Grade 7 Lesson 4 Worksheet................................................................................................... 11 Why Cells?......................................................................................................................................... 11 Science Grade 7 Lesson 5 Worksheet................................................................................................... 14 From Cells to the Biosphere.............................................................................................................. 14 Science Grade 7 Lesson 6 Worksheet................................................................................................... 17 Scientific investigation – How much Watering?............................................................................... 17 Science Grade 7 Lesson 7 Worksheet................................................................................................... 20 Biotic and Abiotic.............................................................................................................................. 20 Science Grade 7 Lesson 8...................................................................................................................... 23 Scientific investigation – Using water from the sea?........................................................................ 23 Science Grade 7 Lesson 9 Worksheet................................................................................................... 26 The Atmosphere of Earth.................................................................................................................. 26 Science Grade 7 Lesson 10 Worksheet................................................................................................. 28 The Layers of the Atmosphere right above the Philippines............................................................... 28 Science Grade 7 Lesson 11 Worksheet................................................................................................. 31 The Sun Interacts with our Atmosphere........................................................................................... 31 Science Grade 7 Lesson 12 Consolidation Worksheet.......................................................................... 34 Are Humans Upsetting Earth’s Delicate Energy Balance?................................................................ 34 Science Grade 7 Lesson 13 Worksheet................................................................................................. 37 Exploring the scientific concept of Movement................................................................................. 37 Science Grade 7 Lesson 14 Worksheet................................................................................................. 40 The Difference between Distance and Displacement....................................................................... 40 i Science Grade 7 Lesson 15 Worksheet................................................................................................. 43 Let’s scientifically analyze Motion.................................................................................................... 43 Science Grade 7 Lesson 16 Worksheet................................................................................................. 46 It is Time to Accelerate!.................................................................................................................... 46 Science Grade 7 Lesson 17 Worksheet................................................................................................. 49 Acceleration can catch you out!....................................................................................................... 49 Science Grade 7 Lesson 18.................................................................................................................... 52 Thunder and lightning – very, very frightening!............................................................................... 52 ii Introduction for Students Welcome to the National Learning Camp. You are probably aware that this Camp is only open to students like you who have just completed Grade 7 or Grade 8 across the country. You have been chosen to be part of this important national program. Our focus this year is on English, Mathematics, and Science. The Plan You are to attend school for three days each week: Tuesday, Wednesday, and Thursday. You will take part in six special lessons each day. These lessons review subject content that you have completed. This will help you further strengthen your learning. There will be opportunities in each lesson for you to practice talking with other students and your teacher, and applying the knowledge you have gained. This include: understanding (comprehending) what you are reading in English, solving Mathematics problems, and interpreting the natural world through applying Scientific evidence. Time in Class How you use your time in lessons is very important. Every minute is valuable. It is critical that you work with the teacher and your classmates as closely as you can. This means you will be expected to: start each lesson as quickly as possible, recognize the lesson pattern through the help of the teacher as you move from one part of the lesson to another, pay attention when the teacher or students in your class are talking about the lesson, and try your best with all the different activities that make up the lesson. You will have opportunities to write your answers, explain to the teacher or classmates your reasons for your responses or thinking. There will be time to work on your own and at other times you will work with your classmates and report to the class. Mistakes One important fact drawn from brain research on learning concerns making mistakes. It might surprise you! Making mistakes while learning and trying to improve your skills and understanding is part of the brain’s process. So, learning from mistakes is an important pathway of our learning journey. When a genuine mistake is made: do not be ashamed or embarrassed, do try to learn from your mistake, be willing to talk about your mistakes, try to understand why you committed a mistake, and find out how to correct the mistake. Too often learners are embarrassed or feel they have failed because of errors/mistakes. This should not be the case. Everyone makes mistakes in the process of learning a new material. 1 A very famous scientist, Niels Bohr, who won a Nobel Prize for Physics, said: An expert is a person who has made all the mistakes that can be made in a very narrow field. Everyone makes mistakes, even experts. It is a vital part of learning. If you make mistakes, it is a sign that you are moving, you are learning forward. You may need to return to earlier learning and fill in some gaps. Mistakes and/or errors tell you and your teacher about your thinking and where you need help or practice (we call it deliberate practice) to do better. The teacher and you should celebrate finding the mistake as it will help you both know what new learning is needed. You might be surprised, but if you do not make genuine mistakes and fix them, your learning will not move forward efficiently. Practice If you want to be good at something you must practice it. Practice alerts the brain that the information needs to be known and to store the information in your head. This is the way the brain works; this is the way the brain learns. Learning, anything from sport, about your peers, and to learning subjects in school, requires effort and that means practice. Effort requires persistence, but it is not supposed to be difficult and punishing. It may be continued until one learns. There are no tricks. This is what the brain needs to learn. It is important that you try and try again Learning is a competition with yourself, not others. It is recognizing how your effort results in showing you where and how you are doing better. The best version of yourself will only be known if you try. The Extensive Team of Educators and Teachers involved in the National Learning Camp wish you the very best in your education future. For the Learning Camp, and your work when you return to school, our hope is for you to take any new knowledge, skills and understandings you have acquired to learn more, and to use this knowledge to want to learn more. Best Wishes 2 Science Grade 7 Lesson 1 Worksheet Scientific investigations – The Importance of Fair Testing Component 1: Short Review Q1. Name one of the important parts of a scientific investigation. Q2. What are some of the things you can do to make sure your experiment is a fair test and reliable? Q3. Why is it important for experiments we do in science to be fair and reliable? Component 2: Lesson purpose /Intention This lesson is about describing and writing the components of a scientific investigation and how important this is for learning and when answering questions in science. Specifically, you should be able to, (1) use the language of Science, and, (2) understand fair testing. Component 3: Lesson Language Practice Key words/terms: Results, Aim, Conclusion Complete the task below by using arrows to match the Heading with their Role/Purpose: Heading Role/Purpose Results What you are trying to prove Conclusion What you measured Aim What you learned from your results Component 4: Lesson Activity. 3 Component 4A Fair testing Gabriel inflated some balloons with air and tied them along a fence in his backyard to see what happened to them in sunlight. Some balloons were in the shade of the tree. Gabriel wondered why some balloons started to get bigger – some even got so big that they popped when they got very hot. “I think the balloons are getting bigger when the temperature is getting higher.” He said to himself. “I wonder what experiment I could do to find out the answer and make sure it’s a fair test?” Component 4B Q1. What should Gabriel use to measure the air temperatures? Q2. How could he work out to measure the size of the balloons accurately? Q3. What are some of the things that Gabriel needs to make sure that the balloons stay the same during his experiment so that it’s a fair test? Component 4C Q1. How should Gabriel write down all his measurements? Q2. What do you think was Gabriel’s aim for the experiment? Q3. If Gabriel’s experiment works out the way he thought it would, what should he write in his conclusion? Component 5: Lesson Conclusion 4 Q1. Has this lesson helped you to better understand what fair testing means in science? If so, how? Q2. Has this lesson helped you to remember the components of a scientific investigation? If so, how? 5 Science Grade 7 Lesson 2 Worksheet What’s in the Bucket? Component 1: Short Review Q1. What piece of equipment would you need to separate a mixture of sand and water? Q2. When Could you use a magnet to separate things? Q3. What is the difference between the processes of evaporation and filtering? Component 2: Lesson purpose/intention The lesson is about drawing and using flow diagrams and how important they are for learning and when answering questions in science. Flow diagrams can be used to show the steps in a scientific investigation and in showing the steps taken in a separation process. Component 3: Lesson Language Practice Complete the flow diagram that shows the steps in a science experiment or investigation by filling in the blank boxes marked A and B in the table below. 6 Component 4: Lesson Activity Component 4A What’s in the bucket? A group of high school students were playing on the beach and they found a small bucket with some interesting materials. The students found that the bucket contained a lot of sand but also some small nails, some large broken shells, and some white crystals. The students wanted to find out what the white crystal are. Their problem was to separate the mixture of materials in the bucket down to the white crystals. They started by picking out the large shells by hand. The students drew the following flowchart to help them work out what to do next. Component 4B Q1. What piece of equipment would the students need to do STEP 1? Q2. What two separating techniques did the students have to do in STEP 2? Q3. How would the students be able to separate the white crystals from the water? Component 4C Q1. What equipment would the students need for STEP 3? 7 Q2. What three processes of separation did the students use in their experiment to separate out all the different materials in the bucket? Q3. What if the students mixed up the steps and did STEP 2 instead of STEP 1 to begin their experiment? How could they fix their mistake? Component 5: Lesson Conclusion Q1. Has this lesson helped you to better understand the use of flow diagrams? If so, how? Q2. Has this lesson helped you to recall a number of different separation techniques? If so, how? 8 Science Grade 7 Lesson 3 Worksheet A Seawater Fish Tank Component 1: Short Review Q1. What is one example of a solution? Q2. What are two common examples of heterogenous mixtures found in your kitchen? Q3. Explain why sea water is a homogenous mixture? Component 2: Lesson purpose /Intention The lesson is about homogenous and heterogenous mixtures. We want to be sure we know and understand about solutions and their concentrations. Component 3: Lesson Language Practice Key words/terms: mixture, solution, uniform Q1. Select one from the words above and write one sentence using that word in the context of everyday life. Q2. Select one from the words above and write one sentence stating the scientific meaning of that word. Component 4: Lesson Activity Component 4A How much salt? Joshua asked his mother if he could have a fish tank and as they live near the sea could he use sea water. His mother agreed and said that he would have to look after it himself. She said he could use the kitchen but had to clean up after himself. Joshua thought “I wonder just how much salt is in a bucket of sea water in case I can’t get to the beach if I need to replace the water, I should be able to make my own.” Joshua decides to experiment by separating the water from the salt to find out exactly how much salt there is in 200 mL of sea water. 9 Component 4B Q1. What would be the best process that Joshua could use to separate the salt from the sea water? Q2. What are two very important measurements Joshua must make in his experiment? Q3. What other important things does he have to do to make sure his experiment is fair? Component 4C Q1. What piece of equipment does Joshua need to measure the amount of salt in the 200 mL of sea water? Q2. Joshua’s three readings for the mass of salt after evaporation are 6.5 g, 7.0 g and 7.5 g. What value for the weight/mass of salt should he use? Q3. Joshua was very accurate with his measurement of the volume of sea water so what is the concentration of the seawater in his experiment? Give your answer in grams per liter. Component 5: Lesson Conclusion Q1. Did you find Joshua’s experiment interesting? If so, why? Q2. Did you find the questions in component 4C harder than the questions in component 4B? If so, why? 10 Science Grade 7 Lesson 4 Worksheet Why Cells? Component 1: Short Review Q1. What is the biggest cell in a human body? Q2 What do you have to do so that you can see cells with a compound microscope? Q3. Why do scientists say that cells are the basic structure of all living things? Component 2: Lesson purpose/Intention The lesson is about cells. We want to be sure we know and understand the importance of cells to all living things. Component 3: Lesson Language Practice Key words/terms: Cytoplasm, membrane, nucleus Use arrows to match each Part of a cell to the Function of the part: 11 Component 4A: Lesson Activity All about cells Althea was in Grade 7 at school and her teacher was telling them all about cells and although she found it interesting, she felt that she didn’t really understand what the teacher was saying. She decided to tell her younger brother Angelo a story about cells to see how much she could remember about the lessons. This is what she said: “Did you know that every living thing is made of cells and that some tiny living things like bacteria are made up of only one cell but that human beings are made up of 75 trillion cells. Most cells have three main parts, but plant cells are a bit different to animal cells. I will draw them for you.” A B Component 4B Q1. Which of the two cell diagrams A and B is a plant cell? Q2. What is the name of the parts labelled X and Y in the two cells? Q3. Are the cells in our heart the same as the cells in our brain? Why or why not? Component 4C Q1. What do the cells in the organisms of similar species have in common? Q2. Name three essential functions of the human cell. Q3. What are the structures inside the nucleus called and why are they so important? 12 Component 5: Lesson Conclusion Q1. The questions in component 4B were based on the text and diagram. Did you find these questions easier than those questions in component 4C? If so, why? Q2. Has this lesson helped you to remember and or understand the basic structure of the cell? If so, how? 13 Science Grade 7 Lesson 5 Worksheet From Cells to the Biosphere Component 1: Short Review Q1. What is one example of the levels in the Biological Organization Chart? Q2 What is the lowest level of the organization chart and what is the highest level? Q3. Why do scientists use diagrams? Component 2: Lesson purpose/Intention The lesson is about biological organization. We want to be sure we know and understand the levels of the organization. Component 3: Lesson Language Practice. Key words/terms: cells, organ, tissues Q1. Select one the words above and write one sentence using that word. Q2. Select one word above and write one sentence using the scientific meaning of that word. 14 Component 4: Lesson Activity Biological Organisation Chart Jasmine is in Grade 7 and has been learning about Biology and her teacher showed the class the diagram below. Jasmine is interested in plants and animals but is not sure how the plants and animals she likes fit into this diagram. Jasmine has a pet dog and a fish tank with small fish in it. Diagram A Diagram B Component 4A Component 4B Q1. Describe the shape of Diagram A. Q2. What level of the diagram (starting with cells) are organs? Name an organ. Q3. Which level of the diagram would Jasmine’s dog and fish belong to and why? 15 Component 4C Q1. Name the level of organization that diagram B belongs to. Q2. Name three ecosystems common to the Philippines. Q3. Why is the Biosphere the biggest and highest level in the diagram? Component 5: Lesson Conclusion Q1. Has this lesson helped you to better read and understand diagrams? If so, how? Q2. Has this lesson helped you to remember and or understand the levels of biological organization? If so, how? 16 Science Grade 7 Lesson 6 Worksheet Scientific investigation – How much Watering? Component 1: Short Review Q1. If you are planning to do an experiment, what is the first thing you need to identify? Q2. What are some of the things that plants grown in a garden need to ensure they grow? Q3. Why is it important that experiments we do in science are a fair test? Component 2: Lesson purpose /Intention This lesson is about carrying out a scientific investigation and how important this is as an experience for learning in science. Component 3: Lesson Language Practice Key words/terms: sprout, germinate, valid Complete the task below by using arrows to match the words with their meaning in science: Word Meaning sprout How well an experiment determines what it set out to do. germinate Puts out shoots valid Begin to grow 17 Component 4: Lesson Activity. Component 4A Fair testing Angela wanted to find out if radish seeds would sprout if she watered them every day about as much as it rains usually. “I think the seeds will not germinate if I water them too much.” She thought to herself “I wonder what experiment I could do to find out the answer and make sure it’s a fair test?” Angela bought a packet of radish seeds and then collected some containers and some garden soil from her father’s garden shed. She decided that she would test two different amounts of water to see which amount made the seeds germinate/sprout quicker. Angela worked out that she needed 500mL a day to keep the soil moist in her containers. So, she decided she would use 500mL in containers marked sample A and 250mL in the containers marked sample B. Component 4B Q1. What should Angela use to measure the amount of water she intends to use each day? Q2. How should Angela prepare the containers she will put the seeds in? Q3. Suggest a method that Angela should now use to put the seeds in the container and set up a schedule for watering. Component 4C Q1. How should Angela measure which seeds sprouted more quickly? Q2. Where should Angela place the containers that she will water each day? Q3. Why did Angela need to have three containers in each sample and why did they all have to be in the same position outside? 18 Component 5: Lesson Conclusion Q1. Has this lesson helped you to understand what fair testing means in science? How? Q2. Did you find Angela’s experiment interesting? If so, why? 19 Science Grade 7 Lesson 7 Worksheet Biotic and Abiotic Component 1: Short Review Q1. Name a living thing that is not a plant or an animal? Q2 Name three important things in your immediate environment that are abiotic. Q3. Why do scientists use the term “biotic” when they talk about Living things? Component 2: Lesson purpose/Intention The lesson is about the biotic and abiotic features of an ecosystem. We want to be sure we know and understand the differences between biotic and abiotic factors. Component 3: Lesson Language Practice. Key words/terms: biotic, abiotic, ecosystem Complete the task below by using arrows to match the words with their meaning in science: Words Meaning biotic non-living ecosystem living or once was living abiotic a community of interacting organisms and their environment 20 Component 4: Lesson Activity Component 4A A Mangrove Swamp Jacob and his friends often go down to the mangroves near where he lives just to explore and maybe catch some fish. He told his mother that crabs and lobsters can live in the mangroves. His mother said he should be careful because there could be sharks and stingrays there. Component 4B Q1. Which label A, B or C on the diagram shows where Jacob would find crabs in the mangroves? Q2. Name the abiotic features of a mangrove swamp ecosystem shown in the diagram. Q3 If trees, like other plants, need water, how do the mangrove trees survive in salt water? Component 4C Q1. What is the biggest threat to the mangrove forests of the Philippines? Q2. What other abiotic factors are a threat to the mangrove swamps? Q3. How do the mangrove forests and swamps help protect the biotic and abiotic features of the Philippines? 21 Component 5: Lesson Conclusion Q1. Has this lesson helped you to use more technical language when talking about ecosystems? If so, give an example. Q2. Has this lesson helped you to remember and or understand the differences between biotic and abiotic factors in an ecosystem? If so, how? 22 Science Grade 7 Lesson 8 Scientific investigation – Using water from the sea? Component 1: Short Review Q1. What are some of the basic needs of all living things? Q2. What two essential things that plants grown in a garden need to make sure they grow? Q3. What are some separation techniques that we could use to separate water from mixtures? Component 2: Lesson purpose /Intention We want to be sure we know and understand that separating mixtures can produce very useful products. Component 3: Lesson Language Practice Key words/terms: Seedling; Separate; Equipment 23 Component 4: Lesson Activity. Component 4A Water, water everywhere Angela wanted to find out if some marigold (Amarillo) seedlings would grow just as well if she watered them with some water separated out from sea water. She collected some water from the ocean in a bucket. Her mother agreed that she could use the kitchen but that she had to clean up after herself. She set up some simple equipment to evaporate and then condense water from some sea water. She decided to buy some marigold seedlings and placed equal numbers into 12 small containers of garden soil. “I think those plants that I water with ordinary tap water will grow better than those where I use the water that I have separated from the sea.” She decided that she would use the same amount of each type of water and water all the containers at the same time each week. All the containers were kept in the same area of the garden so that they had the same light and air and shelter. Angela’s father helped her set up the equipment and use it safely. She was able to collect enough water each week to continue her experiment for one month. Component 4B Q1. What should Angela use to measure the amount of water she intends to give the plants each day? Q2. What should Angela do to prepare the containers she will put the seedlings in? Q3. What should Angela now do when she puts the seedlings in the containers? 24 Component 4C Q1. How should Angela measure which seedlings were growing better? Q2. What would Angela need to do to change the liquid sea water to make it evaporate to a gas and what does she need to do to condense it back to liquid? Q3. Why did Angela use the processes of evaporation and condensation? Component 5: Lesson Conclusion Q1. Has this lesson helped you to understand how useful separating techniques are? Q2. Did you find Angela’s experiment interesting? If so, why? 25 Science Grade 7 Lesson 9 Worksheet The Atmosphere of Earth Component 1: Short Review Q1. What is the atmosphere? Q2. What is the atmosphere made of? Q3. What are some good and bad ways humans interact with the atmosphere? Component 2: Lesson Purpose/Intention The lesson is about understanding more deeply that the atmosphere is made of air that covers the whole Earth. Component 3: Lesson Language Practice Key words/terms: Atmosphere; Atmospheric; Diameter; Approximately; Carbon dioxide; Oxygen Practice saying the words. Component 4: Lesson Activity Component 4A The Atmosphere of Earth The Earth’s Atmosphere surrounds our planet and is mostly composed of air. The atmosphere is essential to living things – it provides carbon dioxide for plants and oxygen for animals. The two main gases that make up the atmosphere are nitrogen (approximately 78%), and oxygen (approximately 21%). Carbon dioxide, argon and traces of other gases make up the rest. The total content of water in the atmosphere is about 0.25%, mostly made up of water vapor. Earth’s Atmosphere More than 98% of the gases in the Earth’s atmosphere are in three layers to 100 km The diameter of above the surface. the solid Earth is about 12,750 km. The amount of the atmospheric gases reduces as the distance from the Earth’s surface increases. Scientists describe the atmosphere as having five distinctive layers, but the boundary between each layer is not sharp and can be hard to measure precisely. 26 Component 4B Q1. What is the Atmosphere? Q2. What are the main gases that make up the atmosphere? Q3. Why are the gases in the atmosphere important for life? Component 4C Q1. What is the approximate diameter of the solid Earth? Q2. How far is it approximately to the center of the Earth? Q3. Use the numerical information provided in the Information Box to work out how well the diagram provided represents the relative thickness of the Atmosphere compared to the overall size of the Earth. Component 5: Lesson Conclusion Q1 How has the lesson helped you to better understand the atmosphere? Q2 Which questions were easy to answer – the ones in Component 4B or Component 4C? Why? Q3 What strategies do you use to answer the harder questions? 27 Science Grade 7 Lesson 10 Worksheet The Layers of the Atmosphere right above the Philippines Component 1: Short Review Q1. What is the atmosphere composed of? Q2. The atmosphere is composed of 'layers’ - what are some other things that have layers? Q3. What might you see or feel if you could just float vertically up into the sky kilometers above the clouds? [A SUGGESTION: Close your eyes and just visualize what that might be like.] Component 2: Lesson Purpose/Intention The lesson is about understanding more deeply that the Atmosphere has layers of varying thicknesses. We will be recalling the features of the layers such as their composition and the changes in temperature and pressure as you go out to space. Component 3: Lesson Language Practice Key words/terms: Boundaries; Troposphere; Stratosphere; Mesosphere; Thermosphere; Exosphere Practice saying the words. 28 Component 4: Lesson Activity Component 4A Layers of the Atmosphere above the Philippines Scientists believe that the atmosphere has five distinctive layers, but the boundaries between layers are not sharp and can be hard to measure precisely. The layers and some of their features are: Troposphere: This layer extends from the Earth’s surface up to about 13 kilometers (km). This layer holds 75% of the atmosphere's mass of gases. As you go higher up the troposphere, temperature drops from an average of about 130C near the Earth’s surface to -500C at the top of the layer. The air pressure drops from 1000 millibars (mb) near the Earth’s surface to 100 mb at the top of the layer. Stratosphere: This layer lies directly above the troposphere. It extends from about 13 km to about 48 km above the Earth's surface. The temperature of the bottom of the layer is -500C but at the top it is only -30C. The air pressure at the bottom of the layer is about 100 mb but at the top of the layer the air pressure is only 1 mb. Mesosphere: This layer lies directly above the stratosphere. It extends from about 48 km to about 100 km above the Earth's surface. The temperature of the bottom of the layer is -30C but at the top it is only -900C. The air pressure at the bottom of the layer is about 1 mb but at the top of the layer the air pressure is only 0.01 mb. Thermosphere: This layer lies directly above the mesosphere. It extends from about 100 km to about 700 km above the Earth's surface. The temperature of the bottom of the layer is -90 0C but at the top of the thermosphere it can be 350 0C or higher. The air pressure at the bottom of the layer is about 0.01 mb but at the top of the layer the air pressure is very weak at about 0.000001 mb. Exosphere: This layer is the uppermost layer, and it extends 10,000 km into space. In fact, it blends with what scientists consider to be outer space! The pull of Earth’s gravity is so small in this layer that molecules of gas escape into outer space. It would feel very cold as there are not enough molecules of gas to transfer heat. Component 4B Q1. How many layers do scientists think make up our atmosphere? Q2. What characteristics of the layers does the Information Box present measurements for? Q3. Which layer would feel the hottest? How do you know from the information Box? 29 Component 4C Q1. How far above the land’s surface of the Philippines will you find the top of the Troposphere? Q2. Use the information provided in the Information box, Layers of the Atmosphere above the Philippines, to complete the following table to summarize the features of the layers of the atmosphere – there are 10 cells to complete: ATMOSPHERIC LAYER FEATURES Marker Troposphere Stratosphere Mesosphere Thermosphere Altitude Top of layer 13 km 48 km 85 km 700 km Bottom of layer 0 km 13 km 48 km 85 km Layer Thickness 13 km 35 km thicknesses Typical Top of layer -50 0C -3 0C -90 0C 350 0C Temperature Bottom of layer Air Pressure Top of layer 0.01 mb 0.000001 mb Bottom of layer 1 mb 0.01 mb Q3. Study your completed table, and/or the Information box, and then describe how temperatures and air pressures of the atmosphere change as altitude increases from the Earth’s surface to 700 kilometers above the Philippines? Component 5: Lesson Conclusion Q1. Has the activity helped you to think more about the atmosphere and its layers of varying thicknesses? Q2. What did you enjoy about the lesson? Q3. What is something you would like to learn more about in this topic? 30 Science Grade 7 Lesson 11 Worksheet The Sun Interacts with our Atmosphere Component 1: Short Review Q1. What is the Earth’s Atmosphere? Q2. What forms of energy come from the Sun? Q3. How does the Sun affect our weather? Component 2: Lesson Purpose/Intention The lesson is about understanding more deeply how the atmosphere reacts to the energy received from the Sun. It builds explanations of the gases and processes that create the greenhouse effect that is important for life on Earth. Component 3: Lesson Language Practice Key words/terms: Ultra-violet radiation; Transparent; Infra-red energy; Kinetic energy Practice saying the words. 31 Component 4: Lesson Activity Component 4A The Sun Interacts with our Atmosphere The Sun is the Earth's primary source of external energy. Energy from the Sun heats our planet to the point where life can flourish. Most of the energy from the Sun is transmitted to the Earth as short-wave radiation (light and ultra- violet radiation). Because the atmosphere is mostly transparent, much of the light reaches the Earth’s surface where it is firstly absorbed, converting to infra-red energy. Much of this infra-red energy is re-radiated into the atmosphere, heating the gases of the atmosphere. Some atmospheric gases, including carbon dioxide, ozone, nitrous oxide and water vapor, are naturally occurring gases that absorb and emit infra-red energy very effectively. These gases are called greenhouse gases. The naturally occurring greenhouse gases have a positive effect as they hold just the right amount of heat in the atmosphere for life to exist, and they allow excess heat to radiate back into space. This keeps the average temperature of the atmosphere to about 130C. The atmospheric warming effect is called the greenhouse effect. Without the greenhouse effect, the Earth’s surface temperature would be about -230C, and life probably could not exist. The weather we experience on Earth is a direct result of absorbing energy from the Sun. The Sun heats the Earth’s surface in varying amounts, and this sets up convections current in the troposphere, producing winds and influencing ocean currents. In the warmer months in both the northern and southern hemispheres, tremendous storms form (including typhoons, hurricanes, and cyclones) which is a way the Earth gets rid of excess energy. The weather effects convert heat energy into kinetic energy (e.g., wind). Component 4B Q1. What is the main form of energy that is transmitted from the Sun to the Earth? Q2. Name some greenhouse gases? Q3. How are naturally occurring greenhouse gases good for the Earth 32 Component 4C Q1. What would the Earth’s surface temperature be without the greenhouse effect? Q2. What are some weather effects that are caused by the Earth absorbing energy from the Sun? Q3. Complete the following flow chart to show how the Sun’s energy is responsible for the natural warming of the Earth’s atmosphere. Heat energy Light energy absorbed by from the Sun greenhouse gases. Component 5: Lesson Conclusion Q1. Has the activity helped you to understand more deeply how the atmosphere reacts to the energy received from the Sun? Q2. What did you enjoy using flow charts to summarize information? Q3. What was hard to do or understand in the lesson? 33 Science Grade 7 Lesson 12 Worksheet Are Humans Upsetting Earth’s Delicate Energy Balance? Component 1: Short Review Q1. What is a ‘fossil fuel’? Q2. How can factories that use fossil fuels affect our environment? Q3. What are some energy changes that occur when fossil fuels are used to power factories? Component 2: Lesson Purpose/Intention The lesson is about reinforcing the fact that the Earth has a delicate energy balance. Component 3: Lesson Language Practice Key words/terms: Energy balance; Industrial Revolution; Greenhouse gas emissions; Impact; Excess Discuss the meaning of Impact and Excess, as they have special meanings in science contexts. Practice saying the words. 34 Component 4: Lesson Activity Component 4A Are humans upsetting Earth’s delicate energy balance? Since the middle of the Industrial Revolution, which is about 170 years ago, people have been increasingly releasing into the atmosphere large quantities of industrial greenhouse gases, including carbon dioxide, methane and nitrous oxide. Greenhouse gas emissions increased by 70 percent between 1970 and 2004. Emissions of carbon dioxide, the most impacting greenhouse gas, rose by about 80 percent during that time. Most of the carbon dioxide that people put into the atmosphere comes from burning fossil fuels such as oil coal, and natural gas for transport and producing electric power. People cutting down forests also increases the quantities of carbon dioxide into the atmosphere – carbon dioxide is released from decaying plant material, and harvested trees can no longer absorb carbon dioxide from the atmosphere. Excess quantities of another greenhouse gas, methane, comes from human livestock farming, rubbish landfill, and fossil fuel production such as coal mining and natural gas processing. Nitrous oxide, which also traps heat very well, is released from agricultural activities and from the burning of fossil fuels. All of these human activities add excess greenhouse gases to the atmosphere, trapping more heat than usual and interfering with the natural radiation of excess heat into space. These things are all contributing to recent and rapid global warming that might be resulting in dramatic climate change, more severe weather events and might result in rising sea levels that will impact on many population centers and countries. Component 4B Q1. What was the percentage increase in carbon dioxide in the atmosphere over the period 1970 and 2004? Q2. What things cause more greenhouse gases to be released into the atmosphere? Q3. How does global warming cause some bad effects? 35 Component 4C Q1. What are Greenhouse gases? Q2. What are some things that people could do to reduce global warming? Q3. Describe some human activities that are not indicated in the Information box that might also contribute to global warming and climate change and say what impacts the activities might have. Component 5: Lesson Conclusion Q1. Has the lesson helped you to think more about the role of the atmosphere in supporting life? Q2. What did you enjoy about the lesson? Q3. What is something that is good about the Greenhouse Effect and what is something that is bad about the Greenhouse Effect? 36 Science Grade 7 Lesson 13 Worksheet Exploring the scientific concept of Movement Component 1: Short Review Q1. What is a way you can make an object move? Q2. If you throw an object, like a ball, into the air across the school yard, it will move in a curved path. What are some other ways to describe how things can move? Q3. If we push a toy car across a long table, how can we scientifically measure its movement? Component 2: Lesson Purpose/Intention The lesson is about learning how to describe the movement of objects in a scientific way. Component 3: Lesson Language Practice Key words/terms: Move/Moving, Direction, Distance, Speed, Travel, Traveled, Uniform; Constant What is the difference between the words ‘travel’ and ‘traveled’? Try to use some of the key words/terms by saying them in a sentence. 37 Component 4: Lesson Activity Component 4A Was the bus exceeding the speed limit? Two students were sitting in a tree, looking out over a flat field. On the other side of the field, they could see a very straight road running along the other side of the field. They watched across the field as a bus traveled in one direction along the straight road. House Factory They noticed that the bus was traveling at a uniform speed – not speeding up, not slowing down, but the students thought it might be breaking the 60 speed limit! They could see the bus was about to pass a house that they know is 1 kilometer from a factory positioned further along the road. They timed how long it took the bus to travel from the house to the factory. It took the bus 70 seconds to travel from the house to the factory. One student said to the other “I wonder if the bus is speeding?”. Component 4B Q1. How far is it between the house and the factory? Q2. What important things about the problem do we know from the text? (Problem: Was the red bus speeding?) Q3. What does a speed limit of 60 mean and why is it important? Component 4C 38 Q1. What does ‘traveling at a uniform speed’ mean? Q2. What do we need to know to calculate the speed that bus was traveling? Q3. We know the bus took 70 seconds to travel 1 kilometer. What do we have to do to work out the bus’s speed in kilometers per hour (km/hr)? Component 5: Lesson Conclusion Q1. Could you find answers to questions in the text for Component 4? Which ones? Q2. Did you find it easier to answer the questions in Component 4B or 4C? Why? Q3. Has the activity helped you to think about the movement of objects in different dimensions? How? 39 Science Grade 7 Lesson 14 Worksheet The Difference between Distance and Displacement Component 1: Short Review Q1. What is distance? Q2a. How do we measure distance? Q2b. What units do we use? Q3a. What is speed? Q3b. What is average speed? Component 2: Lesson Purpose/Intention The lesson is about learning the difference between distance and the scientific term displacement, and why that is important. Component 3: Lesson Language Practice Key words/terms: Movement; Start position, Final position, Displacement, Vector, Represents What is the difference between the word ‘start’ and ‘final’? Try to sound out the words ‘displacement’, ‘vector’, and ‘represents’. Component 4: Lesson Activity 40 Component 4A Why Displacement is important to Scientists An everyday example can help to show what displacement is and why it is important. A student, called Ana, walks from her house in North Street to school each morning via the house of her friend, Bea, in South Street. Ana’s path to school is shown on the village map below in heavy dashed line ( ). Ana has to walk from Point A to Point B and then to Point C. It takes Ana 6 minutes to get to Bea’s house. Ana waits 2 minutes for Bea to get ready, then Ana and Bea take 3 minutes to walk together to school. The light dashed line ( ) represents how far Ana is from her house (start position) when she gets to school (final position). This represents the net distance that Ana is from her house. The line has an arrow on it because it points in the direction that Ana’s school is from her house. When we know the net distance and net direction that Ana has moved, we know her displacement from her house to school. When Ana gets to school, her displacement is 80 meters directly West from her house. Displacement is a measure of both the net distance moved and the net direction moved. This is important to scientists as knowing distance and direction gives precise measurements of where moving things have traveled. In Science, when a quantity has both DISTANCE and DIRECTION it is called a VECTOR quantity. Component 4B Q1. What is the first street that Ana walks along? Q2. Which direction does Ana need to go when she gets to Long Lane? Q3. How far in total does Ana walk to get to school each morning? 41 Component 4C Q1 a. After school, Ana walks home along North Street. What is the distance she needs to walk? b. What is the direction Ana walks from her school to home? Q2. a. What are ways you could describe Bea’s movement from her home to school? b. What is Ana’s displacement from her school in the afternoon? Q3. a. How far has Ana walked in total in going both to and from school? b. How would you describe Ana’s displacement over the whole day? Component 5: Lesson Conclusion Q1. How has the lesson helped you to describe movement scientifically? Q2. Which questions were easy to answer – the ones in Component 4B or Component 4C? Why? Q3. What strategies do you use to answer the harder questions? 42 Science Grade 7 Lesson 15 Worksheet Let’s scientifically analyze Motion Component 1: Short Review Q1. What do we mean in science when we use the word ‘Motion’? Q2. What are some key characteristics of motion that we can measure? Q3. What is a graph in science and why are there commonly two axes on graphs.? Component 2: Lesson Purpose/Intention The lesson is about learning how scientists represent motion in tables and graphs and use this to visualize motion in a way that allows us to analyze it and to make predictions based on the analysis. Component 3: Lesson Language Practice Key words/terms: Motion, Graph, Displacement, Distance-time, Axis and axes, Units, Slope Question: Can you tell the difference between the words ‘axis’ and ‘axes’ when that are being used to describe parts of a graph? 43 Component 4: Lesson Activity Component 4A Ana’s displacement to and from school. We can use a graph to represent Ana’s displacement from her house to school in the morning, and then from her school to her house in the afternoon after school finishes. Please recall from Lesson 14 that, in the mornings, Ana walks from Point A to Point B and that takes 6 minutes. She then waits 2 minutes at Point B for her friend Bea to get ready. Then Ana and Bea take 3 minutes to walk together from Point B to the school at Point C. After school, Ana walks directly from her school to her house in North Street. The following is a graph which represents Ana’s walk to and from her house to school. Some important points are labelled 1, 2, 3, 4, and 5 on the plotted line. Data table Component 4B Q1. What does point 1 on the graph represent? 44 Q2. Which part of the line on the graph represents Ana’s slowest walking speed? Why? Q3. What is happening between points 2 and 3, and how do you know? Component 4C Q1. Which section of the line represents Ana’s walk home from school? Q2. Ana walks the fastest when she walks from school to her house. What on the graph indicates that? Q3. What is Ana’s total displacement after all her walking to and from school? How do you know? Component 5: Lesson Conclusion Q1. Has the activity helped you to better understand tables and graphs related to motion? How? Q2. What did you enjoy about the lesson? Q3. What is something you would like to learn more about using tables and graphs? 45 Science Grade 7 Lesson 16 Worksheet It is Time to Accelerate! Component 1: Short Review Q1. What is speed? Q2. What are some units we use to describe speed? Q3. What is the difference between speed and velocity? Component 2: Lesson Purpose/Intention The lesson is about acceleration and its importance in helping to precisely measure how objects move. Component 3: Lesson Language Practice Key words/terms: Velocity; Acceleration; Force; Concept; Equation; Units Practice saying the words. 46 Component 4: Lesson Activity Component 4A Distinguishing Speed, Velocity and Acceleration Acceleration is the scientific term for any process where there is a change in velocity. Velocity involves both speed and direction. Because acceleration is a change in velocity, it also involves both speed and direction. So, acceleration is defined as a change in speed and/or a change in direction. Therefore, if you are speeding up – you are accelerating, if you are slowing down – you are accelerating, if you are going at the same speed but changing direction – you are accelerating. It also means that no matter how fast you are going, if you are not changing your speed or you are not changing your direction, you are not accelerating. In Science, we use the following ideas to describe and calculate motion: Concepts Equations Distance traveled over time is used to calculate the distance (m) Ave speed (m/s) = average speed for a journey. time (s) Average speed is the total distance traveled divided by (÷) a period of time. It is not a vector quantity. Displacement measures the ‘final position’ of an object. displacment (m) Velocity (m/s) = It tells the distance from the starting position and the D time (s) direction of movement. Velocity is the change in position divided by (÷) the change in time. It is a vector quantity. Acceleration measures the rate of change in velocity D velocity (m/s) Acceleration (m/s/s) = and it has direction. A general principle is that if an D time (s) object is slowing down, then its acceleration is in the opposite direction of its motion. It is a vector quantity. Acceleration is the change in velocity divided by (÷) the change in time. Note [‘∆’ is a symbol meaning “the change in”] Component 4B Q1. What is used to calculate the average speed for a journey? Q2. A scooter travels 120 meters directly towards the East in 6 seconds, and then it travels 100 m directly towards the North in 6 seconds. What is the average speed of the scooter? 47 Q3. The displacement of the scooter from its original starting position was 141 m. What is the velocity of the scooter? Component 4C Q1. What is acceleration? Q2. What are some ways that an object could be accelerating? Q3. How are velocity and acceleration related? Component 5: Lesson Conclusion Q1. Could you find any answers in the Stimulus text provided for questions in Component 4B or 4C? Which ones? Q2. What connections or differences do you notice between questions in 4B and 4C? Q3. Did you find it easier to answer the questions in Component 4B or 4C? Why? 48 Science Grade 7 Lesson 17 Worksheet Acceleration can catch you out! Component 1: Short Review Q1. What is velocity? Q2. What are some examples of things that exhibit uniform or constant velocity? Q3. Some people think that the movement of the hands on a clock exhibit uniform or constant velocity. What would a scientist say about this? Component 2: Lesson Purpose/Intention This lesson is about how we can represent an everyday situation involving motion in distance-time graphs. One reason scientists do this is to help explain motion, including the differences between things like velocity and acceleration by showing trends and patterns in the measurements recorded as objects move. Component 3: Lesson Language Practice Key words/terms: Velocity; Accelerate; Stationary; Uniform; Constant; Straight line; Curved line Practice saying the words. 49 Component 4: Lesson Activity Component 4A Acceleration can catch you out! A police officer (The pulisya) witnesses a blue car going through a red traffic light. The car seems to be traveling at a uniform velocity, but it also seemed to the police officers to be traveling faster than the allowable 50 speed limit. The police officer chased the car, accelerating his patrol vehicle from a stationary position. The graph below shows the motion of the blue car and the police officer’s patrol vehicle. Use the information in this stimulus to answer the questions below. Component 4B Q1. How long does it take for the police officer to pull over or stop the driver of the blue car? Q2. What are some ways the two vehicles have moved in this scenario? Q3. At any time, did the blue car accelerate? How do you know? 50 Component 4C Q1. What is a quantity that is used in the stimulus to describe or measure motion? Q2. a. From the information in the stimulus, what tells us if the blue car or the police car was stopped? b. What was the velocity of the blue car when it went through the red light? Q3. If the police car did not stop the blue car, could we predict how long it would take to travel 1 kilometer? Component 5: Lesson Conclusion Q1. Did you enjoy the scenario for this lesson? Why? Q2. How has the lesson helped you to represent motion scientifically? Q3. Which questions were easy to answer – the ones in Component 4B or Component 4C? Why? Q4. What strategies do you use to answer the harder questions? 51 Science Grade 7 Lesson 18 Thunder and lightning – very, very frightening! Component 1: Short Review Q1. What is lightning? Q2. What forms of energy can be identified during a violent storm? Q3. What are some ways that the different forms of energy in a violent storm are related to each other? Component 2: Lesson Purpose/Intention This lesson is about practicing how to apply scientific ideas that we have learnt this week about motion to an everyday situation. Component 3: Lesson Language Practice Key words/terms: Thunder; Lightning; Speed of sound; Speed of light; 3,000,000 (3 million) What is the difference between these numbers? What is the difference between ‘300’ and ‘3,000’? What is the difference between ‘3,000’ and ‘30,000’? What is the difference between ‘30,000’ and ‘300,000’? What is the difference between ‘300,000’ and ‘3,000,000’? Try to sound out the words Thunder and Lightning. Maybe you could put them into a sentence or a rhyme – like the lesson title! 52 Component 4: Lesson Activity Component 4A Here comes a big storm – how close is it? Light travels faster than sound. That is why, if we are watching a storm, we usually see lightning before we hear the thunder. Light travels close to 3,000,000 meters per second (3,000,000 m/s). That is about 10,800,000 kilometers per hour! That is so fast that if a storm is approaching, the lightning reaches us in a fraction of a second after it is produced in a thunder strike. Sound travels much more slowly through the air of Earth’s atmosphere. Its velocity is about 350 meters per second (350 m/s). That is about 1,260 kilometers per hour. So, if you count the number of seconds between when you see a storm’s lightning and when you hear its thunder, you can calculate how far the storm is away from you! MAP Storm N Your position 0 1 km There is a storm in the north-east and it’s heading my way! Component 4B Q1. What is the velocity of sound in air? Q2. A rocket that takes cargo to the International Space Station travels faster than sound shortly after take-off. 53 What are some other things that can travel faster than sound travels in air? Q3. Write a statement that compares, or shows a relationship between, Velocity of sound and Velocity of light. Component 4C Q1. Which of the following is the best approximation of how long the light from a lightning strike takes to reach us if it occurs 10 kilometers away? Tick your answer: A: much less than 1 second... B: about 1 second.......... C: about 5 seconds......... D: about 10 seconds........ Q2. If we see a lightning strike and count 15 seconds before we hear the thunder, how far away is the storm? Q3. a. If in 10 mins the gap between the storm’s lightning and its thunder is now 4 seconds, how fast is the storm traveling towards you? b. How would a scientist describe the motion of the storm? Lesson Conclusion Q1. Has the activity helped you to think more deeply about the motion of objects in different situations? How? Q2. What did you enjoy about the lesson? Q3. What is something you would like to learn more about in this topic? 54