Linear Control Theory (EE 326) PDF

Summary

These notes provide a detailed study of linear control theory, specifically focusing on time response analysis for first and second-order systems. The document explores step responses, time constants, rise times, settling times, damping ratios, and natural frequencies for various system configurations. The analysis also incorporates the effect of additional zeros on the overall step response.

Full Transcript

Linear Control Theory (EE 326): 3. Time Response Analysis Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal First Order System Step Response 1 ๐‘Ž 1 ๐‘Ž ๐‘‹ ๐‘  = ๐บ ๐‘  =...

Linear Control Theory (EE 326): 3. Time Response Analysis Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal First Order System Step Response 1 ๐‘Ž 1 ๐‘Ž ๐‘‹ ๐‘  = ๐บ ๐‘  = ๐‘Œ ๐‘  = ๐‘  ๐‘ +๐‘Ž ๐‘  ๐‘ +๐‘Ž Taking Partial Fraction and solving for ๐‘ฆ ๐‘ก we get ๐‘ฆ ๐‘ก = 1 โˆ’ ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘ข ๐‘ก 1 ๐‘ฆ ๐‘กโ†’โˆž =1 ๐‘ฆ ๐‘ก= = 1 โˆ’ ๐‘’ โˆ’1 = 0.632 ๐‘Ž 1 ๐‘ก = ๐‘Ž is called the time constant of the system: time it takes for the step response to rise to 63% of its final value (or the exponent ๐‘’ โˆ’๐‘Ž๐‘ก to decay to 37% of the initial value of unity) Time constant = 1/ (magnitude of the pole) Pole is also called as exponential frequency (as it has the unit of frequency) d๐‘ฆ ๐‘ก=0 Initial slope: = ๐‘Ž ๐‘‘๐‘ก EE326 Dept. of E & E, NITK Surathkal 2 First Order System Step Response 1 ๐‘Ž 1 ๐‘Ž ๐‘‹ ๐‘  = ๐บ ๐‘  = ๐‘Œ ๐‘  = ๐‘  ๐‘ +๐‘Ž ๐‘  ๐‘ +๐‘Ž Taking Partial Fraction and solving for ๐‘ฆ ๐‘ก we get ๐‘ฆ ๐‘ก = 1 โˆ’ ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘ข ๐‘ก 4 ๐‘ฆ ๐‘ก= = 1 โˆ’ ๐‘’ โˆ’4 = 0.981 ๐‘Ž Settling time (four time constants) to reach within ยฑ2 % tolerance Rise time: time required for 10 % to 90% transition 2.2 ๐‘‡๐‘Ÿ = ๐‘Ž EE326 Dept. of E & E, NITK Surathkal 3 First Order System Step Response ๐‘Ž Transfer function ๐บ ๐‘  = ๐‘ +๐‘Ž 1 Time Constant ๐‘‡ ๐‘Ž seconds 2.2 Rise time ๐‘‡๐‘Ÿ seconds ๐‘Ž 4 ยฑ2 % tolerance seconds ๐‘Ž Settling time ๐‘‡๐‘  3 ๐‘Ž seconds ยฑ5 % tolerance 5 seconds we assume that steady-state has reached ๐‘Ž EE326 Dept. of E & E, NITK Surathkal 4 First Order System Step Response Slope = ๐‘Ž ๐‘‡๐‘Ÿ EE326 Dept. of E & E, NITK Surathkal 5 Second Order Systems 1 ๐พ 1 ๐พ ๐‘‹ ๐‘  = ๐บ ๐‘  = 2 ๐‘Œ ๐‘  = ๐‘  ๐‘  + ๐‘Ž๐‘  + ๐‘ ๐‘  ๐‘ 2 + ๐‘Ž๐‘  + ๐‘ Find ๐พ such that the final value is 1 (for critically stable systems) ๐พ ๐‘ฆ โˆž = lim ๐‘ ๐‘Œ(๐‘ ) lim =1 โ‡’๐พ=๐‘ ๐‘ โ†’0 ๐‘ โ†’0 ๐‘ 2 + ๐‘Ž๐‘  + ๐‘ 9 ๐บ ๐‘  = 2 ๐‘  + ๐‘Ž๐‘  + 9 ๐‘Ž โ‡’ 0: 0.5: 10 EE326 Dept. of E & E, NITK Surathkal 6 9 Second Order Systems ๐บ ๐‘  = 2 ๐‘  + ๐‘Ž๐‘  + 9 Undamped ๐‘Ž = 0 Underdamped ๐‘Ž =2 overdamped ๐‘Ž = 8 EE326 Dept. of E & E, NITK Surathkal 7 9 Second Order Systems ๐บ ๐‘  = 2 ๐‘  + ๐‘Ž๐‘  + 9 Underdamped: fast but with oscillations Critically damped: fastest possible without oscillations ๐‘Ž =? Overdamped: no oscillations but slow EE326 Dept. of E & E, NITK Surathkal 8 9 Second Order Systems ๐บ ๐‘  = 2 ๐‘  + ๐‘Ž๐‘  + 9 Analyse step by step Value of a Roots of the ch. eqn Natural response Case I: ๐‘Ž = 0 ยฑ๐‘—3 ๐‘ sin 3๐‘ก + ๐œ™ Case II: ๐‘Ž = 9 โˆ’1.146, โˆ’7.854 ๐‘1 ๐‘’ โˆ’1.146๐‘ก + ๐‘2 ๐‘’ โˆ’7.854๐‘ก Case III: ๐‘Ž = 2 ๐›ผ ๐‘’ โˆ’๐‘ก sin 8๐‘ก + ๐œƒ โˆ’1 ยฑ ๐‘— 8 What is critically damped (i.e., fastest possible without oscillations) Hint: exponential is slow, sinusoidal is oscillatory, polynomial may be? โ˜บ Case IV: ๐‘Ž = 6 โˆ’3, โˆ’3 ๐‘Ž1 ๐‘ก๐‘’ โˆ’3๐‘ก + ๐‘Ž2 ๐‘’ โˆ’3๐‘ก EE326 Dept. of E & E, NITK Surathkal 9 Step Response: Second Order Systems 9 ๐บ ๐‘  = Case I: ๐’‚ = ๐ŸŽ Case II: ๐’‚ = ๐Ÿ ๐‘ 2 + ๐‘Ž๐‘  + 9 Undamped Underdamped Case IV: ๐’‚ =6 Case III: ๐’‚ = ๐Ÿ— Critically Overdamped damped Not to be confused with critically stable!! EE326 Dept. of E & E, NITK Surathkal 10 The General Second Order System ๐‘ Some definitions ๐บ ๐‘  = 2 ๐‘  + ๐‘Ž๐‘  + ๐‘ Natural frequency ๐Ž๐’ Frequency of oscillation of the system without damping Ex. Tank circuit ๐œ”๐‘› =1/ ๐ฟ๐ถ rad/sec Take ๐‘Ž = 0 โ‡’ poles = ยฑ๐‘— ๐‘ Exponential decay frequency 1 Natural period Damping ratio ๐œป (zeta) = = ๐œ”๐‘› ๐‘Ž ฮค2 2๐œ‹ Time constant โ‡’ ๐œ”๐‘› Thus ๐‘Ž = 2๐œ๐œ”๐‘› A general second order system T. F. is given by ๐œ”๐‘›2 ๐บ ๐‘  = 2 ๐‘  + 2๐œ๐œ”๐‘›๐‘  + ๐œ”๐‘›2 EE326 Dept. of E & E, NITK Surathkal 11 The General Second Order System ๐œ”๐‘›2 ๐บ ๐‘  = 2 ๐‘  + 2๐œ๐œ”๐‘›๐‘  + ๐œ”๐‘›2 Poles: ๐œ๐œ”๐‘› ยฑ ๐œ”๐‘› ๐œ 2 โˆ’ 1 Damping ratio and the type of step response of the system ๐œ=0โ†’ โ†0 5 2 (neglect the term ๐‘  + 15 ) 360 ๏‚— ๐บ2 ๐‘  = (๐‘ +4)(๐‘  2 +2๐‘ +90) 4 0) Vary 0.1 โ‰ค ๐‘Ž โ‰ค 10) zoom EE326 Dept. of E & E, NITK Surathkal 35 Effect of additional zeros Lets take an example: 9 ๐‘ +๐‘Ž ๐บ ๐‘  = ๐‘Ž ๐‘  2 + 2๐‘  + 9 First consider only LHS zeros (i.e., ๐‘Ž > 0) Vary 0.1 โ‰ค ๐‘Ž โ‰ค 10) EE326 Dept. of E & E, NITK Surathkal 36 Effect of additional zeros Lets take an example: 9 ๐‘ +๐‘Ž ๐บ ๐‘  = ๐‘Ž ๐‘  2 + 2๐‘  + 9 First consider only LHS zeros (i.e., ๐‘Ž > 0) Vary 0.1 โ‰ค ๐‘Ž โ‰ค 10) Error as a function of value of a (when the term ๐‘  + ๐‘Ž is neglected) EE326 Dept. of E & E, NITK Surathkal 37 Effect of additional zeros More general explanation (for LHS zeros only) โ„’ โˆ’1 ๐‘  + ๐‘Ž ๐‘Œ(๐‘ ) ๐‘ฆ1 ๐‘ก = ๐‘ฆแˆถ ๐‘ก + ๐‘Ž๐‘ฆ(๐‘ก) โ†๐‘ง ๐‘  โˆ’ plane ๐‘ฆแˆถ ๐‘ก โ‰ช ๐‘Ž๐‘ฆ(๐‘ก) ๏‚— Step response is affected when the derivative term dominates ๏‚— Since initial slope is usually +ve โ—ฆ Higher overshoot is expected for lower values of โ€œaโ€ ๐‘Ž = 0.1 EE326 Dept. of E & E, NITK Surathkal 38 Effect of additional zeros More general explanation (for RHS zeros only) ๐‘  โˆ’ plane ๐‘งโ†’ ๐‘ฆ1 ๐‘ก = ๐‘ฆ(๐‘ก) แˆถ + ๐‘Ž๐‘ฆ ๐‘ก ; ๐‘Ž < 0 EE326 Dept. of E & E, NITK Surathkal 39 Effect of additional zeros More general explanation (for RHS zeros only) ๐‘ฆ1 ๐‘ก = ๐‘ฆ(๐‘ก) แˆถ + ๐‘Ž๐‘ฆ ๐‘ก ; ๐‘Ž < 0 Normalized: 9/๐‘Ž ๏‚— When a is small +ve โ—ฆ Derivative is dominating โ—ฆ The step response will follow derivative ๏‚— When a increases โ—ฆ Step response go negative โ—ฆ In contrast to LHS zeros Nonminimum phase systems EE326 Dept. of E & E, NITK Surathkal 40 P1 For each of the systems, find ๐œ, ๐œ”๐‘›, ๐‘‡๐‘ , ๐‘‡๐‘, ๐‘€๐‘ (๐‘–๐‘› %) 16 (i) ๐บ ๐‘  = 2 ๐œ”๐‘› = 4 rad/s ๐œ = 0.375 ๐‘  + 3๐‘  + 16 ๐‘‡๐‘  = 2.667 s ๐‘‡๐‘ƒ = 0.847 s ๐‘€๐‘ƒ = 0.28 (ii) ๐บ ๐‘  = 0.04 ๐‘ 2 + 0.02๐‘  + 0.04 ๐œ”๐‘› = 0.2 rad/s ๐œ = 0.05 ๐‘‡๐‘  = 400 s ๐‘‡๐‘ƒ = 15.727 s ๐‘€๐‘ƒ = 0. 85 EE326 Dept. of E & E, NITK Surathkal 41 P1 (iii) For each of the systems, find ๐œ, ๐œ”๐‘›, ๐‘‡๐‘ , ๐‘‡๐‘, ๐‘€๐‘ (๐‘–๐‘› %) 14.145 ๐บ ๐‘  = 2 (๐‘  + 0.842๐‘  + 2.829)(๐‘  + 5) ๐œ”๐‘› = 1.682 rad/s ๐œ = 0.25 ๐‘‡๐‘  = 9.501 s ๐‘‡๐‘ƒ = 1.929 s ๐‘€๐‘ƒ = 0. 432 Note: 5 = 11.87 > 5 0.842 14.145 2 14.145 (๐‘ 2 + 0.842๐‘  + 2.829)(๐‘  + 5) 5 2 (๐‘  + 0.842๐‘  + 2.829) Step response plot with 2nd order approximation EE326 Dept. of E & E, NITK Surathkal 42 P2 For each of the pair of the second order specifications, find the location of the complex conjugate poles (i) Percentage overshoot = 12, ๐‘‡๐‘  = 0.6 seconds ๐œ = 0.559 ๐œ”๐‘› = 11.917 rad/s poles = โˆ’6.661 ยฑ ๐‘—9.88 (ii) Percentage overshoot = 10, ๐‘‡๐‘ƒ = 5 seconds ๐œ = 0.591 ๐œ”๐‘› = 0.779 rad/s poles = โˆ’0.460 ยฑ ๐‘—0.628 EE326 Dept. of E & E, NITK Surathkal 43 P3 For the system shown find the percentage overshoot, settling time (๐‘‡๐‘ ) and peak time (๐‘‡๐‘ƒ) of ๐œƒ2(๐‘ก) when a step torque ๐‘‡ ๐‘ก = ๐‘ข ๐‘ก is applied as shown. ๐‘‡ ๐‘  = 1.07๐‘  2 + 1.53๐‘  ๐œƒ1 ๐‘  โˆ’ 1.53๐‘ ๐œƒ2 (๐‘ ) 0 = โˆ’1.53๐‘ ๐œƒ1 ๐‘  + 1.53๐‘  + 1.92 ๐œƒ2 (๐‘ ) 1.07๐‘  2 + 1.53๐‘  ๐‘‡ ๐œƒ2 ๐‘  โˆ’1.53๐‘  0 1.53 = = ๐‘‡ ๐‘  1.07๐‘  2 + 1.53๐‘  โˆ’1.53๐‘  1.6371๐‘  2 + 2.0544๐‘  + 2.9376 โˆ’1.53๐‘  1.53๐‘  + 1.92 โ‡’ ๐ท ๐‘  = ๐‘  2 + 1.255๐‘  + 1.794 ๐œ”๐‘› = 1.3394 rad/s ๐œ = 0.4685 ๐‘‡๐‘  = 6.374 s ๐‘‡๐‘ƒ = 2.6549 s ๐‘€๐‘ƒ = 0.189 EE326 Dept. of E & E, NITK Surathkal 44 P4 (Matlab): Home Work Problems The matlab code given below simulates a system with Transfer function 1. Try using the two different inputs (one sinusoidal corrupted by ๐‘  2 +0.2๐‘ +4 noise) and the other pure noise. What do you observe? %Code Q7 clc; clear all; t=linspace(0,50,1001); Sys=tf(1,[1 0.2 4]); x=sin(2*t)+2*sin(.1*t)+0.2*cos(10*t)+rand(1,length(t)); % x=rand(1,length(t))-0.5; %commented, uncomment to check for this input y=lsim(Sys,x,t); plot(t,x,'b--',t,y,'r'); EE326 Dept. of E & E, NITK Surathkal 45 P4 (Matlab): Home Work Problems The matlab code given below simulates a system with Transfer function 1. Try using the two different inputs (one sinusoidal corrupted by ๐‘  2 +0.2๐‘ +4 noise) and the other pure noise. What do you observe? EE326 Dept. of E & E, NITK Surathkal 46 P4 (Matlab): Home Work Problems Plotting the frequency response of the system and the spectrum of the input as well as the output F=linspace(0,4,100); G=bode(Sys,2*pi*F); figure(2) plot(F,db(abs(squeeze(G)))); xlabel('Frequency (Hz)') ylabel('20log_{10}|G(\omega)|') X=fft(x); Y=fft(y); F1=(0:1000)*20/1000; figure(3) plot(F1(1:200),db(X(1:200))); xlabel('Frequency (Hz)') ylabel('20log_{10}|X(\omega)|') figure(4) plot(F1(1:200),db(Y(1:200))); xlabel('Frequency (Hz)') ylabel('20log_{10}|Y(\omega)|') EE326 Dept. of E & E, NITK Surathkal 47 P4 (Matlab): Home Work Problems 1 Frequency response of ๐‘  2 +0.2๐‘ +4 ร— 2๐œ‹ = 2.03 rad System poles: โˆ’0.1 ยฑ ๐‘—2 System modes: ๐‘’ โˆ’0.1ยฑ๐‘—2 ๐‘ก Natural response: ๐ถ ๐‘’ โˆ’0.1๐‘ก sin 2๐‘ก + ๐‘โ„Ž EE326 Dept. of E & E, NITK Surathkal 48 P4 (Matlab): Home Work Problems Input signal (rand signal) spectrum EE326 Dept. of E & E, NITK Surathkal 49 P4 (Matlab): Home Work Problems Output signal spectrum EE326 Dept. of E & E, NITK Surathkal 50 P4 (Matlab): Home Work Problems 1 ๐‘  2 +0.2๐‘ +4 Can be viewed in two ways: Filtering only a component with 2 rad/sec (signal processing perspective) Responding only to 2 rad/sec (system perspective) EE326 Dept. of E & E, NITK Surathkal 51 Linear Control Theory (EE 326): 2.1 Review of Laplace Transform Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal Definition Laplace Transform โˆž โ„’ ๐‘“(๐‘ก) = เถฑ ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก ๐‘  โˆˆ ROC = ๐น(๐‘ ) 0โˆ’ Lower limit is 0โˆ’ โ†’ integrate even when ๐‘“ ๐‘ก is discontinuous at ๐‘ก = 0 E.g. ๐›ฟ(๐‘ก) Solving differential equation: does require only initial conditions (i.e., at 0โˆ’ ) No need of auxiliary conditions (i.e., at 0+ ) Remember, initial conditions are discontinuities at ๐‘ก = 0 Inverse Laplace Transform 1 ๐œŽ+๐‘—โˆž โ„’ โˆ’1 ๐น(๐‘ ) = เถฑ ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = ๐‘“ ๐‘ก ๐‘ข(๐‘ก) 2๐œ‹๐‘— ๐œŽโˆ’๐‘—โˆž Here ๐‘ข ๐‘ก is the unit step function Since it is unilateral Laplace Transfrom EE326 Dept. of E & E, NITK Surathkal 2 Definition Laplace Transform Table Sl. ๐‘“(๐‘ก) ๐น(๐‘ ) No. 1 ๐›ฟ(๐‘ก) 1 2 ๐‘ข(๐‘ก) 1 ๐‘  3 ๐‘ก๐‘ข(๐‘ก) 1 ๐‘ 2 4 ๐‘ก ๐‘› ๐‘ข(๐‘ก) ๐‘›! ๐‘  ๐‘›+1 5 ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘ข(๐‘ก) 1 ๐‘ +๐‘Ž 6 sin ๐œ”๐‘ก ๐‘ข(๐‘ก) ๐œ” ๐‘ 2 + ๐œ”2 7 cos ๐œ”๐‘ก ๐‘ข(๐‘ก) ๐‘  ๐‘ 2 + ๐œ”2 EE326 Dept. of E & E, NITK Surathkal 3 Definition Laplace Transform Properties Sl. Properties Name No. โˆž 1 Definition โ„’ ๐‘“(๐‘ก) = ๐น ๐‘  = เถฑ ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก 0โˆ’ 2 โ„’ ๐›ผ๐‘“(๐‘ก) = ๐›ผ๐น ๐‘  Linearity 3 โ„’ ๐‘“1 ๐‘ก + ๐‘“2 (๐‘ก) = ๐น1 ๐‘  + ๐น2 (๐‘ ) Linearity 4 โ„’ ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘“(๐‘ก) = ๐น ๐‘  โˆ’ ๐‘Ž Frequency Shift 5 โ„’ ๐‘“(๐‘ก โˆ’ ๐‘‡) = ๐น ๐‘  ๐‘’ โˆ’๐‘ ๐‘‡ Delay 6 1 ๐‘  Scaling โ„’ ๐‘“(๐‘Ž๐‘ก) = ๐น ๐‘Ž ๐‘Ž 7 ๐‘‘๐‘“ ๐‘ก Differentiati โ„’ = ๐‘ ๐น ๐‘  โˆ’ ๐‘“ 0โˆ’ on ๐‘‘๐‘ก ๐‘› 8 ๐‘‘๐‘› ๐‘“ ๐‘ก ๐‘‘ ๐‘˜โˆ’1 ๐‘“ 0โˆ’ Differentiati โ„’ = ๐‘ ๐‘›๐น ๐‘  โˆ’ เท ๐‘  ๐‘›โˆ’๐‘˜ on ๐‘‘๐‘ก ๐‘› ๐‘‘๐‘ก๐‘˜โˆ’1 ๐‘˜=1 EE326 Dept. of E & E, NITK Surathkal 4 Definition Laplace Transform Properties, continuedโ€ฆ Sl. Properties Name No. ๐‘ก 9 ๐น ๐‘  Integration โ„’ เถฑ ๐‘“ ๐œ ๐‘‘๐œ = 0โˆ’ ๐‘  10 ๐‘“ โˆž = lim ๐‘ ๐น ๐‘  Final Value ๐‘กโ†’0 11 ๐‘“ 0+ = lim ๐‘ ๐น ๐‘  Initial Value ๐‘กโ†’โˆž EE326 Dept. of E & E, NITK Surathkal 5 Problems: Partial Fraction Expansion P1: Find the inverse Laplace Transform of 2 ๐น ๐‘  = โ‡’ ๐‘“ ๐‘ก = 2๐‘’ โˆ’๐‘ก โˆ’ 2๐‘’ โˆ’2๐‘ก ๐‘ข ๐‘ก ๐‘ +1 ๐‘ +2 P2: Solve the differential equation using Laplace transform (with zero initial condition) ๐‘‘2๐‘ฆ ๐‘‘๐‘ฆ + 12 + 32๐‘ฆ = 32๐‘ข ๐‘ก โ‡’ ๐‘ฆ ๐‘ก = 1 โˆ’ 2๐‘’ โˆ’4๐‘ก + ๐‘’ โˆ’8๐‘ก ๐‘ข ๐‘ก ๐‘‘๐‘ก 2 ๐‘‘๐‘ก P3: Find inverse Laplace Transform of (repeated roots) 2 ๐น ๐‘  = 2 โ‡’ ๐‘“ ๐‘ก = 2๐‘’ โˆ’๐‘ก โˆ’ 2๐‘ก๐‘’ โˆ’2๐‘ก โˆ’ 2๐‘’ โˆ’2๐‘ก ๐‘ข ๐‘ก ๐‘ +1 ๐‘ +2 P4: Find inverse Laplace Transform of (Complex conjugate roots) 3 3 3 โˆ’๐‘ก ๐น ๐‘  = โ‡’๐‘“ ๐‘ก = โˆ’ ๐‘’ 4 cos 2๐‘ก + 2 sin 2๐‘ก ๐‘ข ๐‘ก 2 ๐‘  2 + 2๐‘  + 5 5 20 EE326 Dept. of E & E, NITK Surathkal 6 Components Passive Linear Components Impedance Admittance Component Voltage-current Current-Voltage ๐‘‰ ๐‘  ๐ผ ๐‘  ๐‘ ๐‘  = ๐‘Œ ๐‘  = ๐ผ(๐‘ ) ๐‘‰(๐‘ ) Capacitor 1 ๐‘ก ๐‘‘๐‘ฃ ๐‘ก 1 ๐‘ฃ ๐‘ก = เถฑ ๐‘– ๐‘ก ๐‘‘๐‘ก ๐‘– ๐‘ก =๐ถ ๐ถ๐‘  ๐ถ 0 ๐‘‘๐‘ก ๐ถ๐‘  Resistor ๐‘ฃ ๐‘ก 1 ๐‘ฃ ๐‘ก = ๐‘…๐‘–(๐‘ก) ๐‘– ๐‘ก = ๐‘… ๐‘… ๐‘… ๐‘‘๐‘– ๐‘ก 1 ๐‘ก 1 Inductor ๐‘ฃ ๐‘ก =๐ฟ ๐‘– ๐‘ก = เถฑ ๐‘ฃ ๐‘ก ๐‘‘๐‘ก ๐ฟ๐‘  ๐‘‘๐‘ก ๐ฟ 0 ๐ฟ๐‘  EE326 Dept. of E & E, NITK Surathkal 7 Problems: Electrical Networks P1: Write the differential Equation using mesh ๐‘‰๐‘ ๐‘  analysis and derive the transfer function ๐‘‰ ๐‘  ๐ฟ๐‘‘๐‘– ๐‘ก 1 ๐‘ก ๐ผ ๐‘  ๐‘ฃ ๐‘ก = + ๐‘…๐‘– ๐‘ก + เถฑ ๐‘– ๐‘ก ๐‘‘๐‘ก โ‡’ ๐‘‰ ๐‘  = ๐ฟ๐‘ ๐ผ ๐‘  + ๐‘…๐ผ ๐‘  + ๐‘‘๐‘ก ๐ถ 0 ๐ถ๐‘  1 = ๐ฟ๐‘  + ๐‘… + ๐ผ ๐‘  1 ๐ถ๐‘  ๐‘‰๐ถ ๐‘  ๐ฟ๐ถ Also, = ๐‘‰ ๐‘  ๐‘… 1 ๐‘‰๐ถ ๐‘  ๐ถ๐‘  = ๐ผ(๐‘ ) ๐‘  2 + ๐ฟ ๐‘  + ๐ฟ๐ถ 1 ๐‘‰ ๐‘  ๐‘‰๐ถ ๐‘  ๐ฟ๐ถ ๐‘‰๐ถ ๐‘  = ๐‘‰ ๐‘  ๐‘… 1 ๐‘  2 + ๐ฟ ๐‘  + ๐ฟ๐ถ EE326 Dept. of E & E, NITK Surathkal 8 Problems: Electrical Networks P2: Write the Algebraic Equation in Laplace transformed domain using mesh analysis and derive the ๐‘‰๐‘ ๐‘  transfer function ๐‘‰ ๐‘  ๐‘‰ ๐‘  = ๐‘…1 ๐ผ1 ๐‘  + ๐ฟ๐‘  ๐ผ1 ๐‘  โˆ’ ๐ผ2 ๐‘  โ‡’ 1 ๐‘…1 + ๐ฟ๐‘  โˆ’๐ฟ๐‘  ๐ผ1 (๐‘ ) ๐‘‰(๐‘ ) ๐ผ2 ๐‘  1 = โˆ’๐ฟ๐‘  ๐‘…2 + ๐ฟ๐‘  + ๐ผ2 ๐‘  0 0 = ๐‘…2 ๐ผ2 ๐‘  + + ๐ฟ๐‘  ๐ผ2 ๐‘  โˆ’ ๐ผ1 ๐‘  โ‡’ 2 ๐ถ๐‘  ๐ถ๐‘  Using Cramerโ€™s Rule ๐‘…1 + ๐ฟ๐‘  ๐‘‰(๐‘ ) ๐ผ2 (๐‘ ) = โˆ’๐ฟ๐‘  0 ๐ผ2 ๐‘  ๐ฟ๐‘  ๐‘…1 + ๐ฟ๐‘  โˆ’๐ฟ๐‘  โ‡’ = ๐‘‰ ๐‘  1 2 1 ๐‘…1 + ๐ฟ๐‘  ๐‘…2 + ๐ฟ๐‘  + โˆ’ ๐ฟ๐‘  โˆ’๐ฟ๐‘  ๐‘…2 + ๐ฟ๐‘  + ๐ถ๐‘  ๐ถ๐‘  ๐‘‰๐‘ ๐‘  1 ๐ผ2 ๐‘  โ‡’ = ๐‘‰ ๐‘  ๐ถ๐‘  ๐‘‰ ๐‘  EE326 Dept. of E & E, NITK Surathkal 9 Problems: Electrical Networks ๐‘‰๐ฟ ๐‘  P3: Find the TF ๐‘‰ ๐‘  1 1 ๐‘‰1 ๐‘  1 + + 1 โˆ’ ๐‘‰๐ฟ ๐‘  = ๐‘‰(๐‘ ) โ‡’ 1 2+ โˆ’1 ๐‘‰(๐‘ ) ๐‘  ๐‘  ๐‘‰1 (๐‘ ) = 1 2 ๐‘‰๐ฟ ๐‘  ๐‘‰ ๐‘  1 1 1 โˆ’1 +1 ๐‘  โˆ’๐‘‰1 ๐‘  + + + 1 ๐‘‰๐ฟ ๐‘  = ๐‘‰(๐‘ ) โ‡’ 2 ๐‘  ๐‘  ๐‘  ๐‘  Using Cramerโ€™s Rule 1 ๐‘‰๐ฟ ๐‘  ๐‘  2 + 2๐‘  + 1 2+ ๐‘‰(๐‘ ) ๐‘  โ‡’ = 2 1 ๐‘‰ ๐‘  ๐‘  + 5๐‘  + 2 โˆ’1 ๐‘‰๐ฟ (๐‘ ) = ๐‘ ๐‘‰ ๐‘  1 2+๐‘  โˆ’1 Can we calculate the step response? 2 โˆ’1 ๐‘ +1 EE326 Dept. of E & E, NITK Surathkal 10 Components Translation System Impedance Component Force-Velocity Force-Displacement ๐น ๐‘  ๐‘๐‘€ ๐‘  = Spring ๐‘ก ๐‘‹(๐‘ ) ๐‘“ ๐‘ก = ๐พ เถฑ ๐‘ฃ ๐‘ก ๐‘‘๐‘ก ๐‘“ ๐‘ก = ๐พ๐‘ฅ(๐‘ก) ๐พ 0 Viscous Damper ๐‘‘๐‘ฅ ๐‘ก ๐‘“ ๐‘ก = ๐ต๐‘ฃ(๐‘ก) ๐‘“ ๐‘ก =๐ต ๐ต๐‘  ๐‘‘๐‘ก ๐ต Mass ๐‘‘๐‘ฃ ๐‘ก ๐‘‘2๐‘ฅ ๐‘ก ๐‘“ ๐‘ก =๐‘€ ๐‘“ ๐‘ก =๐‘€ ๐‘€๐‘  2 ๐‘‘๐‘ก ๐‘‘๐‘ก 2 EE326 Dept. of E & E, NITK Surathkal 11 Simple Translational mechanical system P1: Write the differential Equation of motion using Newtonโ€™s Law and derive ๐น ๐‘  the transfer function ๐‘‹ ๐‘  Transfer Function 1 ๐‘‹ ๐‘  ๐‘€ = ๐น ๐‘  ๐ต ๐‘˜ ๐‘ 2 + ๐‘€ ๐‘  + ๐‘€ Free Body Diagram Remember: 1 ๐ผ ๐‘  ๐ฟ๐ถ = ๐‘‰ ๐‘  ๐‘… 1 ๐‘  2 + ๐ฟ ๐‘  + ๐ฟ๐ถ EE326 Dept. of E & E, NITK Surathkal 12 Simple Translational mechanical system ๏‚— Different components and their units: โ—ฆ Spring constant ,K (N/m) โ—ฆ Coefficient of friction, B (N-s/m) โ—ฆ Mass, M (N s2/m or kg) ๏‚— Steps involved: โ—ฆ Drawing the free body diagram โ—ฆ Writing the differential equation โ—ฆ Converting to frequency domain โ—ฆ Find the transfer function (by solving the linear eqn) ๏‚— Number of independent motion ๏‚— The Degrees of Freedom (DoF/DOF) EE326 Dept. of E & E, NITK Surathkal 13 Simple Translational mechanical system P2: Write the differential Equation of motion using Newtonโ€™s Law Two DOF Free body diagram of ๐‘€1 Two components: (1) due to its own movement ๐‘ฅ1 & (2) due to the movement of ๐‘ฅ2 ๐น(๐‘ ) ๐พ1 ๐‘‹1 (๐‘ ) ๐พ2 ๐‘‹2 (๐‘ ) ๐ต3 ๐‘ ๐‘‹1 (๐‘ ) ๐ต1 ๐‘ ๐‘‹1 (๐‘ ) ๐‘€1 ๐‘€1 ๐พ2 ๐‘‹1 (๐‘ ) ๐‘€1 ๐‘  2 ๐‘‹1 (๐‘ ) ๐ต3 ๐‘ ๐‘‹2 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 14 Simple Translational mechanical system Two DOF Free body diagram of ๐‘€1 Net effect by using superposition ๐พ1 ๐‘‹1 (๐‘ ) ๐พ2 ๐‘‹1 ๐‘  โˆ’ ๐‘‹2 ๐‘  ๐น(๐‘ ) ๐ต3 ๐‘  ๐‘‹1 ๐‘  โˆ’ ๐‘‹2 ๐‘  ๐‘€1 ๐ต1 ๐‘ ๐‘‹1 (๐‘ ) ๐‘€1 ๐‘  2 ๐‘‹1 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 15 Simple Translational mechanical system Two DOF Free body diagram of ๐‘€2 Two components: (1) due to its own movement ๐‘ฅ2 & (2) due to the movement of ๐‘ฅ1 ๐พ3 ๐‘‹2 (๐‘ ) ๐พ2 ๐‘‹2 (๐‘ ) ๐พ2 ๐‘‹1 (๐‘ ) ๐ต3 ๐‘ ๐‘‹2 (๐‘ ) ๐‘€2 ๐‘€2 ๐ต2 ๐‘ ๐‘‹2 (๐‘ ) ๐‘€2 ๐‘  2 ๐‘‹2 (๐‘ ) ๐ต3 ๐‘ ๐‘‹1 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 16 Simple Translational mechanical system Two DOF Free body diagram of ๐‘€2 Net effect by using superposition ๐พ2 ๐‘‹2 ๐‘  โˆ’ ๐‘‹1 ๐‘  ๐พ3 ๐‘‹2 (๐‘ ) ๐ต3 ๐‘  ๐‘‹2 ๐‘  โˆ’ ๐‘‹1 ๐‘  ๐‘€2 ๐ต2 ๐‘ ๐‘‹2 (๐‘ ) ๐‘€2 ๐‘  2 ๐‘‹2 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 17 Simple Translational mechanical system ๐‘‹2 ๐‘  Find G ๐‘  = ๐น ๐‘  ๐‘  2 + 3๐‘  + 1 โˆ’ 3๐‘  โˆ’ 1 ๐‘‹1 (๐‘ ) = ๐น ๐‘  โˆ’3๐‘  โˆ’ 1 ๐‘  2 + 4๐‘  + 1 ๐‘‹2 ๐‘  0 Applying Cramerโ€™s rule ๐‘  2 + 3๐‘  + 1 ๐น(๐‘ ) 3๐‘  + 1 ๐‘‹2 ๐‘  = 2 โˆ’3๐‘  โˆ’ 1 0 G ๐‘  = ๐‘  + 3๐‘  + 1 โˆ’ 3๐‘  โˆ’ 1 ๐‘  ๐‘  3 + 7๐‘  2 + 5๐‘  + 1 โˆ’3๐‘  โˆ’ 1 ๐‘  2 + 4๐‘  + 1 EE326 Dept. of E & E, NITK Surathkal 18 Rotational mechanical systems Component Torque-Angular Displacement Unit N-m/rad N-m-s/rad N-m-s2/rad or kg-m2 EE326 Dept. of E & E, NITK Surathkal 19 Rotational mechanical system Write the equation(s) of motion for the system Lumped system modeling Free body diagram of ๐ฝ1 Two components: (1) due to its own movement ๐œƒ1 & (2) due to the movement of ๐œƒ2 ๐‘‡(๐‘ ) ๐‘‡(๐‘ ) ๐ท1๐‘ ๐œƒ1 (๐‘ ) ๐ท1๐‘ ๐œƒ1 (๐‘ ) ๐ฝ1 + ๐ฝ1 = ๐ฝ1 ๐พ๐œƒ2 (๐‘ ) ๐พ๐œƒ1 (๐‘ ) ๐ฝ1 ๐‘ 2๐œƒ1 (๐‘ ) ๐พ[๐œƒ1 ๐‘  โˆ’ ๐ฝ1 ๐‘ 2๐œƒ 1 (๐‘ ) ๐œƒ2 (๐‘ )] EE326 Dept. of E & E, NITK Surathkal 20 Rotational mechanical system Write the equation(s) of motion for the system Lumped system modeling Free body diagram of ๐ฝ2 Two components: (1) due to its own movement ๐œƒ2 & (2) due to the movement of ๐œƒ1 ๐ท2๐‘ ๐œƒ2 (๐‘ ) ๐ท2๐‘ ๐œƒ2 (๐‘ ) ๐ฝ2 + ๐ฝ2 = ๐ฝ2 ๐พ๐œƒ1 (๐‘ ) ๐พ๐œƒ2 (๐‘ ) ๐ฝ2 ๐‘ 2๐œƒ2 (๐‘ ) ๐พ[๐œƒ2 ๐‘  โˆ’ ๐ฝ2 ๐‘ 2๐œƒ 2 (๐‘ ) ๐œƒ1 (๐‘ )] EE326 Dept. of E & E, NITK Surathkal 21 Rotational mechanical system Write the equation(s) of motion for the system Lumped system modeling Equations ๐ฝ1๐‘  2 + ๐ท1๐‘  + ๐พ โˆ’ ๐พ ๐œƒ1 (๐‘ ) ๐‘‡ ๐‘  = โˆ’๐พ ๐ฝ2๐‘  2 + ๐ท2๐‘  + ๐พ ๐œƒ2 ๐‘  0 EE326 Dept. of E & E, NITK Surathkal 22 Rotational mechanical system Write the equation(s) of motion for the system ๐œƒ2 (๐‘ก) ๐œƒ1 (๐‘ก) ๐‘  2 + 1๐‘  + 1 โˆ’ 1๐‘  โˆ’ 1 ๐œƒ1 (๐‘ ) = ๐‘‡ ๐‘  โˆ’1๐‘  โˆ’ 1 2(๐‘  + 1) ๐œƒ2 ๐‘  0 ๐œƒ2 ๐‘  ๐‘ +1 1 = = ๐‘‡ ๐‘  2 ๐‘ 2 + ๐‘  + 1 ๐‘  + 1 โˆ’ ๐‘  + 1 2 2๐‘ 2 + ๐‘  + 1 EE326 Dept. of E & E, NITK Surathkal 23 Rotational mechanical system with gears Simple Gear arrangement 2๐œ‹๐‘Ÿ ๐œƒ๐‘Ÿ ๐œƒ Assuming No Backlash ๐œƒ1๐‘Ÿ1 = ๐œƒ2๐‘Ÿ2 ๐‘1 ๐‘Ÿ1 ๐œƒ2 = = ๐‘1 โˆ ๐‘Ÿ1& ๐‘2 โˆ ๐‘Ÿ2 ๐‘2 ๐‘Ÿ1 ๐œƒ1 Also Assuming gear to be lossless Energy remains the same ๐‘1 ๐‘‡1 = ๐‘‡1๐œƒ1 = ๐‘‡2๐œƒ2 ๐‘2 ๐‘‡2 EE326 Dept. of E & E, NITK Surathkal 24 Rotational mechanical system with gears Equation connecting the number of teeth with torque and angular displacement ๐‘1 ๐‘‡1 ๐œƒ2 = = ๐‘2 ๐‘‡2 ๐œƒ1 Example-1 Writing the total equation EE326 Dept. of E & E, NITK Surathkal 25 Rotational mechanical system with gears Equation connecting the number of teeth with torque and angular displacement ๐‘1 ๐‘‡1 ๐œƒ2 = = Example-1 ๐‘2 ๐‘‡2 ๐œƒ1 Removing the gear Writing eqn w.r.t. (2) ๐‘2 ๐œƒ2 ๐‘‡1 ๐‘2 ๐‘1 ๐‘‡1 ๐‘  = Js2 + Ds + K ๐œƒ2(๐‘ ) ๐‘1 ๐‘1 Writing eqn w.r.t. (1) ร— ๐‘2 ๐‘1 E.g.: Js2๐œƒ2(๐‘ ) Js2๐œƒ2(๐‘ ) ร— ๐‘1 2 From 2 to 1 ๐‘2 ๐ท ๐‘2 2 ๐‘1 ๐ฝ ๐‘ ๐‘2 ๐‘‡1 ๐‘  = Js2 + Ds + K ๐œƒ2(๐‘ ) ร— ๐‘1 2 2 ๐‘1 ๐พ ๐‘2 ๐‘1 2 ๐‘‡1 ๐‘  = Js2 + Ds + K ๐œƒ1(๐‘ ) ร— EE326 Dept. of E & E, NITK Surathkal ๐‘2 26 Rotational mechanical system with gears P1: Find the quantities ๐ฝ๐‘’ , ๐ท๐‘’ & ๐พ๐‘’ so that the systems are similar. In Fig ๐œƒ ๐‘  (a) and (b). Also find the resulting transfer function ๐‘‡2 1 ๐‘  2 ๐‘2 ๐‘2 2 ๐ฝ๐‘’ = ๐ฝ2 + ๐ฝ1 ๐ท๐‘’ = ๐ท2 + ๐ท1 ๐พ๐‘’ = ๐พ2 ๐‘1 ๐‘1 ๐œƒ2 ๐‘  ๐‘2 1 = ๐‘‡1 ๐‘  ๐‘1 ๐ฝ๐‘’ ๐‘  2 + ๐ท๐‘’ ๐‘  + ๐พ2 EE326 Dept. of E & E, NITK Surathkal 27 Rotational mechanical system with gears P2: write ๐œƒ4 in terms of ๐œƒ1 ๐‘2 ๐œƒ1 ๐‘ก = ๐œƒ ๐‘ก ๐‘1 2 ๐‘2 ๐‘4 ๐œƒ1 ๐‘ก = ๐œƒ ๐‘ก ๐‘1 ๐‘3 3 ๐‘2 ๐‘4 ๐‘6 ๐œƒ1 ๐‘ก = ๐œƒ ๐‘ก ๐‘1 ๐‘3 ๐‘5 4 EE326 Dept. of E & E, NITK Surathkal 28 Rotational mechanical system with gears P3: Find the quantities ๐ฝ๐‘’ , ๐ท๐‘’ such that the two systems are similar. Also ๐œƒ1 ๐‘  find the resulting transfer function ๐‘‡ ๐‘ . Note that the moment of inertia and the friction are not neglected for the gearing arrangement. 2 2 ๐‘3 ๐‘1 ๐ฝ1 + (๐ฝ4 + ๐ฝ5 ) +(๐ฝ2 + ๐ฝ3 ) = ๐ฝ๐‘’ ๐‘4 ๐‘2 2 ๐‘1 ๐œƒ1 ๐‘  1 ๐ท1 + ๐ท2 = ๐ท๐‘’ = ๐‘2 ๐‘‡1 ๐‘  ๐ฝ๐‘’ ๐‘  2 + ๐ท๐‘’ ๐‘  EE326 Dept. of E & E, NITK Surathkal 29 Rotational mechanical system with gears P4:write the equation for the system shown below. 50 ๐œƒ1 (๐‘ก) ๐œƒ21 ๐‘ก = ๐œƒ (๐‘ก) 25 2 2 ๐‘‡ ๐‘  = ๐‘  2 + ๐‘  ๐œƒ1 ๐‘  โˆ’ ๐‘ ๐œƒ21 (๐‘ ) ๐‘2 ๐‘1 0 = 4๐œƒ2 ๐‘  + 1๐‘  ๐œƒ2 ๐‘  โˆ’ ๐œƒ (๐‘ ) ๐‘1 ๐‘2 1 ๐‘2 ๐‘‡ ๐‘  = ๐‘ 2 + ๐‘  ๐œƒ1 ๐‘  โˆ’ ๐‘ ๐œƒ2 (๐‘ ) 0 = 4๐œƒ2 ๐‘  + 4๐‘  ๐œƒ2 ๐‘  โˆ’ 0.5 ๐œƒ1 (๐‘ ) ๐‘1 ๐‘‡ ๐‘  = ๐‘  2 + ๐‘  ๐œƒ1 ๐‘  โˆ’ 2๐‘ ๐œƒ2 (๐‘ ) 0 = โˆ’2๐‘ ๐œƒ1 ๐‘  + 4๐‘  + 4 ๐œƒ2 ๐‘  EE326 Dept. of E & E, NITK Surathkal 30 Armature controlled DC motor ๐‘ฃ๐‘ : back emf ๐‘‘๐œƒ๐‘š ๐‘ฃ๐‘ ๐‘ก = ๐พ๐‘ ๐‘‘๐‘ก ๐พ๐‘ : back emf constant (V-s/rad) ๐‘‡๐‘š (๐‘ก) = ๐พ๐‘ก ๐‘–๐‘Ž (๐‘ก) ๐พ๐‘ก : Torque constant Electrical Ckt (N-m/A) ๐‘‘๐‘–๐‘Ž ๐‘ก ๐‘’๐‘Ž ๐‘ก = ๐‘…๐‘Ž ๐‘–๐‘Ž ๐‘ก + ๐ฟ๐‘Ž + ๐‘ฃ๐‘ (๐‘ก) ๐‘‘๐‘ก ๐‘‡๐‘š ๐‘  ๐ธ๐‘Ž ๐‘  = ๐‘…๐‘Ž + ๐ฟ๐‘Ž ๐‘  + ๐พ๐‘ ๐‘ ฮ˜m (๐‘ ) ๐พ๐‘ก ? ๐ธ๐‘Ž ๐‘  ฮ˜m (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 31 Armature controlled DC motor ๐‘‡๐‘š ๐‘  ๐ธ๐‘Ž ๐‘  = ๐‘…๐‘Ž + ๐ฟ๐‘Ž ๐‘  + ๐พ๐‘ ๐‘ ฮ˜๐‘š (๐‘ ) ๐พ๐‘ก ? ๐ธ๐‘Ž ๐‘  ฮ˜(๐‘ ) ฮ˜๐‘€ ๐‘  ๐พ๐‘ก ฮค๐‘…๐‘Ž ๐ฝ๐‘š = ๐ธ๐‘Ž ๐‘  1 ๐พ๐‘ก ๐พ๐‘ ๐‘  ๐‘  + ๐ฝ ๐ท๐‘š + ๐‘… ๐‘š ๐‘Ž Motor Load Mechanical Model ๐‘‡๐‘š ๐‘  = ๐ฝ๐‘š ๐‘  2 + ๐ท๐‘š ๐‘  ฮ˜๐‘š (๐‘ ) What is the composition of ๐ฝ๐‘š & ๐ท๐‘€ EE326 Dept. of E & E, NITK Surathkal 32 Armature controlled DC motor ฮ˜๐‘€ ๐‘  ๐พ๐‘ก ฮค๐‘…๐‘Ž ๐ฝ๐‘š = ๐ธ๐‘Ž ๐‘  1 ๐พ๐‘ก ๐พ๐‘ ๐‘  ๐‘  + ๐ฝ ๐ท๐‘š + ๐‘… ๐‘š ๐‘Ž Composition of ๐ฝ๐‘š & ๐ท๐‘€ 2 ๐‘1 ๐ฝ๐‘š = ๐ฝ๐‘Ž + ๐ฝ๐ฟ ๐‘2 2 ๐‘1 ๐ท๐‘š = ๐ท๐‘Ž + ๐ท๐ฟ ๐‘2 Mechanical Constants EE326 Dept. of E & E, NITK Surathkal 33 Armature controlled DC motor ฮ˜๐‘€ ๐‘  ๐พ๐‘ก ฮค๐‘…๐‘Ž ๐ฝ๐‘š = ๐ธ๐‘Ž ๐‘  1 ๐พ๐‘ก ๐พ๐‘ ๐‘  ๐‘  + ๐ฝ ๐ท๐‘š + ๐‘… ๐‘š ๐‘Ž 2 ๐‘1 ๐ฝ๐‘š = ๐ฝ๐‘Ž + ๐ฝ๐ฟ ๐‘2 2 ๐‘1 ๐ท๐‘š = ๐ท๐‘Ž + ๐ท๐ฟ ๐‘2 Finding the electrical Constants ๐‘‡๐‘š Torque-Speed Curve We have ๐‘‡๐‘š ๐‘  ๐‘‡stall ๐ธ๐‘Ž ๐‘  = ๐‘…๐‘Ž + ๐ฟ๐‘Ž ๐‘  + ๐พ๐‘ ๐‘ ฮ˜๐‘š (๐‘ ) ๐‘’๐‘Ž1 > ๐‘’๐‘Ž2 ๐พ๐‘ก ๐‘’๐‘Ž1 At steady state while taking inv Laplace transform and keeping ๐ฟ๐‘Ž = 0 ๐‘’๐‘Ž2 ๐‘‡๐‘š ๐พ๐‘ก ๐พ๐‘ ๐พ๐‘ก ๐‘’๐‘Ž = ๐‘…๐‘Ž + ๐พ๐‘ ๐œ”๐‘š ๐‘‡๐‘š = โˆ’ ๐œ” + ๐‘’ ๐พ๐‘ก ๐‘…๐‘Ž ๐‘š ๐‘…๐‘Ž ๐‘Ž ๐œ”noโˆ’load๐œ”๐‘š ๐พ๐‘ก ๐‘’๐‘Ž ๐‘‡stall = ๐‘’ ๐œ”noโˆ’load = ๐‘…๐‘Ž ๐‘Ž ๐พ๐‘ EE326 Dept. of E & E, NITK Surathkal 34 Armature controlled DC motor ฮ˜ P1: Given the system and torque-speed curve find the transfer function ๐ธ ๐ฟ(๐‘ ) ๐‘  ๐‘Ž ๐‘1 2 ๐พ๐‘ก ฮ˜๐‘€ ๐‘  ๐พ๐‘ก ฮค๐‘…๐‘Ž ๐ฝ๐‘š ๐ฝ๐‘š = ๐ฝ๐‘Ž + ๐ฝ๐ฟ ๐‘‡stall = ๐‘’ = ๐‘2 ๐‘…๐‘Ž ๐‘Ž ๐ธ๐‘Ž ๐‘  1 ๐พ๐‘ก ๐พ๐‘ ๐‘  ๐‘  + ๐ฝ ๐ท๐‘š + ๐‘… 2 ๐‘š ๐‘Ž ๐‘1 ๐‘’๐‘Ž ๐ท๐‘š = ๐ท๐‘Ž + ๐ท๐ฟ ๐œ”noโˆ’load = ๐‘2 ๐พ๐‘ ฮ˜๐ฟ ๐‘  0.0417 = ๐ธ๐‘Ž ๐‘  ๐‘  ๐‘  + 1.667 EE326 Dept. of E & E, NITK Surathkal 35 Electrical Series analogy (translational) Eqn (in terms of velocity): 1 ๐พ ๐ฟ๐‘  + ๐‘… + ๐ผ ๐‘  = ๐ธ(๐‘ ) ๐‘€๐‘  + ๐ต + ๐‘‰ ๐‘  = ๐น(๐‘ ) ๐ถ๐‘  ๐‘  ๐‘€ ๐ต Mass ๐‘€ Inductor M ๐ป Viscous Damper ๐ต Resistor B ฮฉ 1 ๐น(๐‘ ) Spring Const ๐พ 1 ๐‘‰(๐‘ ) ๐พ Capacitor K F Force ๐‘“(๐‘ก) Voltage ๐‘“ ๐‘ก ๐‘‰ Velocity ๐‘ฃ(๐‘ก) Current ๐‘ฃ ๐‘ก ๐ด EE326 Dept. of E & E, NITK Surathkal Force-Voltage analogy 36 Electrical Series analogy (translational) P1: Draw the Electrical Series Analogy of the given translational system 1 1 ๐‘€1 ๐พ1 ๐ต1 ๐‘€2 ๐พ2 ๐น(๐‘ ) ๐ต3 ๐‘‰1 (๐‘ ) ๐‘‰2 (๐‘ ) ๐ต2 1 ๐พ3 EE326 Dept. of E & E, NITK Surathkal 37 Electrical parallel analogy (translational) Eqn (in terms of velocity): 1 1 ๐พ ๐ถ๐‘  + + ๐ธ ๐‘  = ๐ผ(๐‘ ) ๐‘€๐‘  + ๐ต + ๐‘‰ ๐‘  = ๐น(๐‘ ) ๐‘… ๐ฟ๐‘  ๐‘  Mass ๐‘€ Capacitor M ๐น ๐‘‰(๐‘ ) 1 Viscous Damper ๐ต Resistor B ฮฉ ๐น(๐‘ ) 1 Spring Const ๐พ 1 ๐‘€ 1 ๐พ Inductor K H ๐ต Force ๐‘“(๐‘ก) Current ๐‘“ ๐‘ก ๐ด Velocity ๐‘ฃ(๐‘ก) Voltage ๐‘ฃ ๐‘ก ๐‘‰ EE326 Dept. of E & E, NITK Surathkal Force-Current analogy 38 Electrical Parallel analogy (translational) P2: Draw the Electrical Parallel Analogy of the given translational system 1 ๐ต3 ๐‘‰1 (๐‘ ) ๐‘‰2 (๐‘ ) ๐น(๐‘ ) 1 1 1 1 1 ๐‘€1 ๐พ2 ๐‘€2 ๐ต1 ๐พ1 ๐ต2 ๐พ3 EE326 Dept. of E & E, NITK Surathkal 39 Electrical analogy (rotational) HW: Draw the Electrical Series and Parallel Analogy of the following rotational system EE326 Dept. of E & E, NITK Surathkal 40 Azimuth Angle Control System ๐œƒ๐‘– ๐‘ก Desired azimuth potentiometer angle input ๐œƒ0 ๐‘ก Azimuth angle output Differential amplifier potentiometer and Power amplifier motor Detailed Layout Functional Block Diagram ๐œƒ๐‘– ๐‘ก + error Signal and ๐œƒ0 ๐‘ก Motor, load Potentiometer Power and gears โˆ’ amplifiers Potentiometer EE326 Dept. of E & E, NITK Surathkal 41 Azimuth +๐‘‰ Angle Control System ๐‘›- turn potentiometer ๐œƒ๐‘– ๐‘ก โˆ’๐‘‰ ๐ฝ๐‘Ž ๐พ1 ๐ท๐‘Ž ๐œƒ๐‘š ๐‘ก ๐‘1 ๐‘ +๐‘Ž ๐พ๐‘ ๐พ๐‘ก ๐‘2 +๐‘‰ ๐œƒ0 ๐‘ก ๐ท๐ฟ ๐ฝ๐ฟ ๐‘› -turn ๐‘3 potentiometer โˆ’๐‘‰ ๐‘‰ = 10 ๐‘‰ 20 1 ๐‘› = 10 Potentiometer 10 turns = 20V โ‡’ ๐พ๐‘๐‘œ๐‘ก = = 20๐œ‹ ๐œ‹ ๐พ1 = 100 Motor Load 2 ๐‘1 ๐‘Ž = 100 ๐ฝ๐‘š = ๐ฝ๐‘Ž + ๐ฝ๐ฟ = 0.02 + 0.1 2 ร— 1 = 0.03 ๐ท๐‘š = 0.02 ๐‘…๐‘Ž = 8 ฮฉ ๐‘2 ๐ฝ๐‘Ž = 0.02 ๐‘˜๐‘” โˆ’ ๐‘š2 ๐œƒ๐‘š ๐‘  ๐พ๐‘ก ฮค๐‘…๐‘Ž ๐ฝ๐‘š 2.083 ๐ท๐‘Ž = 0.01 ๐‘ โˆ’ ๐‘š ๐‘ ฮค๐‘Ÿ๐‘Ž๐‘‘ = = ๐ธ๐‘Ž ๐‘  1 ๐พ๐พ ๐‘  ๐‘  + 1.708 ๐พ๐‘ = 0.5 ๐‘‰ ๐‘ ฮค๐‘Ÿ๐‘Ž๐‘‘ ๐‘  ๐‘ + ๐ท๐‘š + ๐‘ก ๐‘ ๐ฝ๐‘š ๐‘…๐‘Ž ๐พ๐‘ก = 0.5 ๐‘ โˆ’ ๐‘šฮค๐ด TF ๐‘1 = 25, ๐‘2 = ๐‘3 = 250 ๐œƒ0 ๐‘  0.2083 = ๐ฝ๐ฟ = 1 ๐‘˜๐‘” โˆ’ ๐‘š2 ๐ธ๐‘Ž ๐‘  ๐‘  ๐‘  + 1.708 ๐ท๐ฟ = 1 ๐‘ โˆ’ ๐‘š ๐‘ ฮค๐‘Ÿ๐‘Ž๐‘‘ EE326 Dept. of E & E, NITK Surathkal 42 Azimuth Angle Control System Power Motor and Potentiometer Preamplifier amplifier Load Gear ๐œƒ๐‘š (๐‘ ) ๐œƒ0 (๐‘ ) + 100 ๐ธ๐‘Ž (๐‘ ) 2.083 1ฮค๐œ‹ 1 0.1 Desired ๐‘‰๐‘ (๐‘ ) ๐‘  + 100 ๐‘ (๐‘  + 1.708) Azimuth โˆ’ ๐‘‰๐‘’ (๐‘ ) angle ๐œƒ๐‘– (๐‘ ) 1ฮค๐œ‹ Assumptions: Potentiometer All components are linear. The amplifier is assumed to have no saturation. Dynamics of the pre-amplifier is neglected. ๐ฟ ๐ฝ Electrical time constant ๐‘…๐‘Ž is neglected (โˆตโ‰ช ๐ท๐‘š ). ๐‘Ž ๐‘š ๐œƒ0 ๐‘  20.83 = ๐œƒ๐‘– ๐‘  ๐‘  ๐‘  + 100 ๐‘  + 1.7088 ๐œ‹ + 20.83 EE326 Dept. of E & E, NITK Surathkal 43 Components of a block diagram (linear System) ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐บ(๐‘ ) input Output Signals System ๐‘…(๐‘ ) ๐‘…1 (๐‘ ) ๐ถ ๐‘  = ๐‘…1 ๐‘  + ๐‘…2 ๐‘  โˆ’ ๐‘…3 (๐‘ ) ๐‘…(๐‘ ) + ๐‘…(๐‘ ) + ๐‘…2 (๐‘ ) โˆ’ ๐‘…(๐‘ ) ๐‘…3 (๐‘ ) Summing Junction Pickoff Point EE326 Dept. of E & E, NITK Surathkal 44 Familiar Configurations 1) Cascade Form ๐‘‹1 ๐‘  = ๐‘‹2 ๐‘  = ๐‘… ๐‘  ๐บ1 ๐‘  ๐บ2 ๐‘  ๐‘…(๐‘ ) ๐‘… ๐‘  ๐บ1 (๐‘ ) ๐บ1 (๐‘ ) ๐บ2 (๐‘ ) ๐ถ ๐‘  = ๐บ3 (๐‘ ) ๐‘… ๐‘  ๐บ1 ๐‘  ๐บ2 ๐‘  ๐บ3 (๐‘ ) ๐บ๐‘’ ๐‘  = ๐บ1 ๐‘  ๐บ2 ๐‘  ๐บ3 (๐‘ ) 2) Parallel Form ๐บ1 (๐‘ ) ๐‘…(๐‘ ) ยฑ ๐ถ ๐‘  = ๐บ2 (๐‘ ) ยฑ ๐‘… ๐‘  ๐บ1 ๐‘  ยฑ ๐บ2 ๐‘  ยฑ ๐บ3 (๐‘ ) ยฑ ๐บ3 (๐‘ ) ๐บ๐‘’ ๐‘  = ๐บ1 ๐‘  ยฑ ๐บ2 ๐‘  ยฑ ๐บ3 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 45 Familiar Configurations 3) Feedback Form ๐‘…(๐‘ ) + ๐ถ(๐‘ ) ๐บ(๐‘ ) โˆ“ ๐ป(๐‘ ) ๐บ ๐‘  ๐บ๐‘’ ๐‘  = 1 ยฑ ๐บ ๐‘  ๐ป(๐‘ ) EE326 Dept. of E & E, NITK Surathkal 46 Moving Blocks to Create Familiar Configurations 1) Basic Block moves left or right past summing junctions ๐‘…(๐‘ ) Left ๐‘…(๐‘ ) ๐ถ(๐‘ ) + ๐ถ(๐‘ ) + ๐บ(๐‘ ) โ‰ก ๐บ(๐‘ ) โˆ“ โˆ“ ๐‘‹(๐‘ ) ๐บ(๐‘ ) ๐‘‹(๐‘ ) ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐‘…(๐‘ ) + Right + ๐ถ(๐‘ ) ๐บ(๐‘ ) ๐บ(๐‘ ) โˆ“ โ‰ก ๐‘‹(๐‘ ) โˆ“ 1 ๐บ(๐‘ ) EE326 Dept. of E & E, NITK Surathkal ๐‘‹(๐‘ ) 47 Moving Blocks to Create Familiar Configurations 2) Basic Block moves left or right past pickoff points ๐‘… ๐‘  ๐บ(๐‘ ) ๐‘… ๐‘  ๐บ(๐‘ ) Left ๐บ(๐‘ ) ๐‘…(๐‘ ) โ‰ก ๐‘…(๐‘ ) 1 ๐‘…(๐‘ ) ๐บ(๐‘ ) ๐‘…(๐‘ ) ๐บ(๐‘ ) ๐‘…(๐‘ ) 1 ๐‘…(๐‘ ) ๐บ(๐‘ ) ๐‘… ๐‘  ๐บ(๐‘ ) ๐บ(๐‘ ) ๐‘… ๐‘  ๐บ(๐‘ ) Right ๐‘…(๐‘ ) ๐‘… ๐‘  ๐บ(๐‘ ) ๐‘…(๐‘ ) ๐บ(๐‘ ) โ‰ก ๐บ(๐‘ ) ๐‘… ๐‘  ๐บ(๐‘ ) ๐‘… ๐‘  ๐บ(๐‘ ) ๐บ(๐‘ ) ๐‘… ๐‘  ๐บ(๐‘ ) EE326 Dept. of E & E, NITK Surathkal 48 Block Diagram Reduction Problems P1 ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐บ1 (๐‘ ) ๐บ2 (๐‘ ) ๐บ3 (๐‘ ) + + + โˆ’ โˆ’ + ๐ป1 (๐‘ ) + โˆ’ ๐ป2 (๐‘ ) โˆ’ + ๐ป3 (๐‘ ) Step-1: Feedback TF โ†’ โˆ’ ๐ป1 โˆ’ ๐ป2 + ๐ป3 and ๐บ2 ๐บ3 (cascade) ๐‘…(๐‘ ) + ๐ถ(๐‘ ) ๐บ1 (๐‘ ) ๐บ2 ๐‘  ๐บ3 (๐‘ ) โˆ’ ๐ป1 ๐‘  โˆ’ ๐ป2 ๐‘  + ๐ป3 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 49 Block Diagram Reduction Problems P1 ๐‘…(๐‘ ) + ๐ถ(๐‘ ) ๐บ1 (๐‘ ) ๐บ2 ๐‘  ๐บ3 (๐‘ ) โˆ’ ๐ป1 ๐‘  โˆ’ ๐ป2 ๐‘  + ๐ป3 (๐‘ ) Step-2: Feedback TF cascaded with ๐บ1 (๐‘ ) ๐บ1 ๐‘  ๐บ2 ๐‘  ๐บ3 ๐‘  1 + ๐บ2 ๐‘  ๐บ3 ๐‘  ๐ป1 ๐‘  โˆ’ ๐ป2 ๐‘  + ๐ป3 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 50 Block Diagram Reduction Problems P2 Step-1 EE326 Dept. of E & E, NITK Surathkal 51 Block Diagram Reduction Problems P2 Step-2 EE326 Dept. of E & E, NITK Surathkal 52 Block Diagram Reduction Problems P2 Step-3 EE326 Dept. of E & E, NITK Surathkal 53 Block Diagram Reduction Problems P2 Step-4 Step-5: Answer EE326 Dept. of E & E, NITK Surathkal 54 Block Diagram Reduction Problems P2 MATLAB CODE 1 2 3 5 6 4 1 1 Let ๐บ1 = ๐บ2 = ๐บ3 = ๐‘ +1 and ๐ป1 = ๐ป2 = ๐ป3 = ๐‘  Code: G1= tf(1,[1 1]); G2=G1; G3 = G1; H1 = tf(1,[1 0]); H2=H1;H3=H1; Sys = append(G1,G2,G3,H1,H2,H3); inp=1;out=3; Q = [1 -4 0 0 0; T=connect(Sys,Q, inp, out); 2 1 -5 0 0; T=tf(T); 3 1 -5 2 -6 ; 4 2 0 0 0; 5 2 0 0 0; 6 3 0 0 0]; EE326 Dept. of E & E, NITK Surathkal 55 Block Diagram Reduction Problems P3 โˆ’ ๐ถ(๐‘ ) ๐‘…(๐‘ ) + 1 + ๐‘  ๐‘  ๐‘  โˆ’ + 1 ๐‘  ๐‘  โˆ’ ๐ถ(๐‘ ) ๐‘…(๐‘ ) ๐‘ 3 + 1 1 + ๐‘  ๐‘  โˆ’ ๐‘  EE326 Dept. of E & E, NITK Surathkal 56 Block Diagram Reduction Problems P3 ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐‘ 3 + 1 1 + ๐‘ 3 + ๐‘  + 1 ๐‘  โˆ’ ๐‘  ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐‘ 3 + 1 2๐‘  4 + ๐‘  2 + 2๐‘  EE326 Dept. of E & E, NITK Surathkal 57 Components of a Signal Flow Graphs ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐บ(๐‘ ) input Output Signals System ๐‘…(๐‘ ) ๐ถ(๐‘ ) ๐‘…(๐‘ ) ๐บ(๐‘ ) ๐ถ(๐‘ ) ๐‘…(๐‘ ) ๐‘…1 (๐‘ ) ๐ถ ๐‘  = ๐‘…1 ๐‘  + ๐‘…2 ๐‘  โˆ’ ๐‘…3 (๐‘ ) ๐‘…(๐‘ ) + ๐‘…(๐‘ ) + ๐‘…2 (๐‘ ) โˆ’ ๐‘…(๐‘ ) ๐‘…3 (๐‘ ) ๐‘…1 (๐‘ ) ๐บ1 (๐‘ ) ๐ถ(๐‘ ) 1 ๐‘…(๐‘ ) ๐บ3 (๐‘ ) ๐‘…(๐‘ ) 1 ๐‘…(๐‘ ) Summing Junction ๐‘…3 (๐‘ ) Pickoff Point EE326 Dept. of E & E, NITK Surathkal 58 Familiar Configurations 1) Cascade Form โ€“ In block Diagram ๐‘‹1 ๐‘  = ๐‘‹2 ๐‘  = ๐‘… ๐‘  ๐บ1 ๐‘  ๐บ2 ๐‘  ๐‘…(๐‘ ) ๐‘… ๐‘  ๐บ1 (๐‘ ) ๐บ1 (๐‘ ) ๐บ2 (๐‘ ) ๐ถ ๐‘  = ๐บ3 (๐‘ ) ๐‘… ๐‘  ๐บ1 ๐‘  ๐บ2 ๐‘  ๐บ3 (๐‘ ) ๐บ๐‘’ ๐‘  = ๐บ1 ๐‘  ๐บ2 ๐‘  ๐บ3 (๐‘ ) In Signal Flow Graph ๐‘…(๐‘ ) ๐บ1 (๐‘ ) ๐‘‹2 (๐‘ ) ๐บ2 (๐‘ ) ๐‘‹1 (๐‘ ) ๐บ3 (๐‘ ) ๐ถ(๐‘ ) EE326 Dept. of E & E, NITK Surathkal 59 Familiar Configurations 2) Parallel Form ๐บ1 (๐‘ ) ๐‘…(๐‘ ) ยฑ ๐ถ ๐‘  = ๐บ2 (๐‘ ) ยฑ ๐‘… ๐‘  ๐บ1 ๐‘  ยฑ ๐บ2 ๐‘  ยฑ ๐บ3 (๐‘ ) ยฑ ๐บ3 (๐‘ ) ๐บ๐‘’ ๐‘  = ๐บ1 ๐‘  ยฑ ๐บ2 ๐‘  ยฑ ๐บ3 (๐‘ ) In Signal Flow Graph ยฑ๐บ1 (๐‘ ) ๐‘…(๐‘ ) C(๐‘ ) ยฑ๐บ2 (๐‘ ) ยฑ๐บ3 (๐‘ ) EE326 Dept. of E & E, NITK Surathkal 60 Familiar Configurations 3) Feedback Form ๐‘…(๐‘ ) + ๐ถ(๐‘ ) ๐บ(๐‘ ) โˆ“ ๐ป(๐‘ ) ๐บ ๐‘  ๐บ๐‘’ ๐‘  = 1 ยฑ ๐บ ๐‘  ๐ป(๐‘ ) In Signal Flow Graph ๐‘…(๐‘ ) 1 ๐ธ(๐‘ ) ๐บ(๐‘ ) ๐ถ(๐‘ ) โˆ“๐ป(๐‘ ) EE326 Dept. of E & E, NITK Surathkal 61 Block Diagram Reduction Problems P1: Convert this block diagram to signal flow graph EE326 Dept. of E & E, NITK Surathkal 62 Masonโ€™s Rule Demo Example Terminology Loop Gains: The product of branch gains found by traversing a path that starts at a node and ends at the same node, following the direction of the signal flow, without passing through any other node more than once ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ4 ๐บ5 ๐ป3 ๐บ4 ๐บ6 ๐ป3 EE326 Dept. of E & E, NITK Surathkal 63 Masonโ€™s Rule Demo Example Terminology Forward-Path Gain: The product of gains found by traversing a path from the input node to the output node of the signal-flow graph in the direction of signal flow ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 EE326 Dept. of E & E, NITK Surathkal 64 Masonโ€™s Rule Demo Example Terminology Non-touching Loops: Loops that do not have any nodes in common. Non-touching Loop Gain: The product of loop gains from non-touching loops taken two, three, four, or more at a time. Non-touching Loop ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 Gains ๐บ4 ๐ป2 ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 ๐บ4 ๐บ6 ๐ป3 ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 Set of touching loops EE326 Dept. of E & E, NITK Surathkal 65 Masonโ€™s Rule Loop Gains: ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ4 ๐บ5 ๐ป3 ๐บ4 ๐บ6 ๐ป3 Demo Example Forward-Path Gain: ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 Non-touching Loop Gains ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ๐บ ๐‘  = ๐ถ ๐‘  = ฯƒ๐‘˜ ๐‘‡๐‘˜ ฮ”๐‘˜ ๐‘˜ :no of forward-paths Transfer Function: ๐‘… ๐‘  ฮ” ๐‘‡๐‘˜ :forward-path gains ฮ” :1 โˆ’ ฮฃ loop gains + ฮฃ nontouching-loop gains taken two at a time โˆ’ ฮฃ nontouching-loop gains taken three at a time +โ€ฆ ฮ”k : formed by eliminating those loops from ฮ” which touches the ๐‘˜th forward path ฮ” = 1 โˆ’(๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ4 ๐บ5 ๐ป3 + ๐บ4 ๐บ6 ๐ป3 ) +(๐บ2 ๐ป1 ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 + ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ) ๐‘‡1 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐‘‡2 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 ฮ”1 = 1 ฮ”2 = 1 EE326 Dept. of E & E, NITK Surathkal 66 Masonโ€™s Rule Demo Example ๐ถ ๐‘  ฯƒ๐‘˜ ๐‘‡๐‘˜ ฮ”๐‘˜ ๐บ ๐‘  = = ๐‘… ๐‘  ฮ” ฮ” = 1 โˆ’(๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ4 ๐บ5 ๐ป3 + ๐บ4 ๐บ6 ๐ป3 ) +(๐บ2 ๐ป1 ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 + ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ) ๐‘‡1 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐‘‡2 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 ฮ”1 = 1 ฮ”2 = 1 G s 1 ร— ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 + 1 ร— ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 = 1 โˆ’ (๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ4 ๐บ5 ๐ป3 + ๐บ4 ๐บ6 ๐ป3 ) + (๐บ2 ๐ป1 ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 + ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ) EE326 Dept. of E & E, NITK Surathkal 67 Masonโ€™s Rule P1: Loop Gains: 1. ๐บ2 ๐ป1 2. ๐บ4 ๐ป2 3. ๐บ7 ๐ป4 4. ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ6 ๐บ7 ๐บ8 Forward Paths: 1. ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ฮ” = 1 โˆ’ ๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ7 ๐ป4 + ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ6 ๐บ7 ๐บ8 + ๐บ2 ๐ป1 ร— ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ร— ๐บ7 ๐ป4 + ๐บ4 ๐ป2 ร— ๐บ7 ๐ป4 โˆ’ ๐บ2 ๐ป1 ร— ๐บ4 ๐ป2 ร— ๐บ7 ๐ป4 ๐‘‡1 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ฮ”1 = 1 โˆ’ ๐บ7 ๐ป4 ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 1 โˆ’ ๐บ7 ๐ป4 ๐บ(๐‘ ) = ฮ” EE326 Dept. of E & E, NITK Surathkal 68 Linear Control Theory (EE 326): 1.1 Introduction Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal Definition of a Control System Input/Stimulus Output/Response Control System Desired Response Actual Response Elevator Example 4th Floor Input Command 3rd Floor 2nd Floor Steady-State Error 1st Floor G Floor Time Transient Response Steady-State Response Loose patience Passenger Safety Uncomfortable EE326 Dept. of E & E, NITK Surathkal 2 Why we need a Control System? 1. Power Amplification ๐œƒ๐‘Ÿ๐‘’๐‘“ 0ยฐ 270ยฐ Amplifier Antenna knob Motor 2. Remote Control 3. Convenience of input form 25ยฐ๐ถ Deployment in Dangerous environments Thermostat Positionโ†’ Heating 4. Compensation of disturbance Examples: Wind disturbance in an antenna position. Door opening in a room changing the temperature. EE326 Dept. of E & E, NITK Surathkal 3 System Configurations Open loop Disturbance-1 Disturbance-2 Input / Input + + Output/ Controller Plant reference Transducer + + Controlled Variable Input transducer converts input/reference to a form that controller can process controller drives the plant Examples of Open loop systems 1. A bread toaster. 2. Hair dryer 3. Water tank Issues with a open loop system Never correct itself. Does not account for the disturbances (like wind on the antenna position) EE326 Dept. of E & E, NITK Surathkal 4 System Configurations Closed loop Error/Actuating Signal Disturbance-1 Disturbance-2 Input / Input + + + Output/ Controller Plant reference Transducer + + Controlled โˆ’ Variable Output Transducer (sensor) Output transducer converts output/controlled variable to a form that controller can process Actuating signal (error) is the difference between the reference and the feedback (Feedback control systems ) Greater accuracy Less sensitive to noise and disturbance Transient response and steady-state error โ€“ controlled with a compensator. Expensive compared to open loop. EE326 Dept. of E & E, NITK Surathkal 5 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability EE326 Dept. of E & E, NITK Surathkal 6 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability Too fast - uncomfortable Elevator Example 4th Floor Input Command 3rd Floor 2nd Floor Too slow - impatient 1st Floor Optimal Speed G Floor Objectives in this course: Time Create a quantitative definition for the transient response Analyze the existing transient response and With design, yield a desired transient response EE326 Dept. of E & E, NITK Surathkal 7 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability No steady state error ๐œƒ๐‘Ÿ Input Command ๐œƒ๐‘Ÿ Error in locating the satellite Time Objectives in this course: Quantitatively define this error Analyze the existing error and With design, correct the steady state behavior EE326 Dept. of E & E, NITK Surathkal 8 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability E.g. RLC circuit step response Total Response Forced Response ๐‘‰0 Stable Natural Response Time What if the natural response is growing/unbounded? Think of the antenna control or elevator EE326 Dept. of E & E, NITK Surathkal 9 Azimuth Antenna position control ๐œƒ๐‘– ๐‘ก potentiometer Desired azimuth angle ๐œƒ0 ๐‘ก input Azimuth angle System Concept output ๐œƒ๐‘– ๐‘ก Desired potentiometer azimuth angle ๐œƒ0 ๐‘ก input Azimuth angle output Differential amplifier potentiometer and Power amplifier motor Detailed Layout EE326 Dept. of E & E, NITK Surathkal 10 Azimuth๐œƒ Antenna ๐‘ก position control ๐‘– Desired potentiometer azimuth angle ๐œƒ0 ๐‘ก input Azimuth angle output Differential amplifier potentiometer and Power amplifier + motor potentiometer Detailed Layout ๐œƒ๐‘– ๐‘ก โˆ’ Differential Motor and power Fixed Field Gear amplifier ๐พ DC motor Gear + ๐œƒ0 ๐‘ก Viscous Schematic Inertia damping potentiometer โˆ’ Gear EE326 Dept. of E & E, NITK Surathkal 11 Azimuth Antenna position control + potentiometer ๐œƒ๐‘– ๐‘ก โˆ’ Differential Motor and power Fixed Field Gear amplifier ๐พ DC motor Gear + ๐œƒ0 ๐‘ก Viscous Inertia damping Schematic potentiometer โˆ’ Gear Functional Block Diagram ๐œƒ๐‘– ๐‘ก + error Signal and ๐œƒ0 ๐‘ก Motor, load Potentiometer Power and gears โˆ’ amplifiers Potentiometer EE326 Dept. of E & E, NITK Surathkal

Use Quizgecko on...
Browser
Browser