Linear Control Theory (EE 326) PDF
Document Details
Uploaded by Deleted User
NITK Surathkal
Dharavath Kishan
Tags
Summary
These notes provide a detailed study of linear control theory, specifically focusing on time response analysis for first and second-order systems. The document explores step responses, time constants, rise times, settling times, damping ratios, and natural frequencies for various system configurations. The analysis also incorporates the effect of additional zeros on the overall step response.
Full Transcript
Linear Control Theory (EE 326): 3. Time Response Analysis Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal First Order System Step Response 1 ๐ 1 ๐ ๐ ๐ = ๐บ ๐ =...
Linear Control Theory (EE 326): 3. Time Response Analysis Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal First Order System Step Response 1 ๐ 1 ๐ ๐ ๐ = ๐บ ๐ = ๐ ๐ = ๐ ๐ +๐ ๐ ๐ +๐ Taking Partial Fraction and solving for ๐ฆ ๐ก we get ๐ฆ ๐ก = 1 โ ๐ โ๐๐ก ๐ข ๐ก 1 ๐ฆ ๐กโโ =1 ๐ฆ ๐ก= = 1 โ ๐ โ1 = 0.632 ๐ 1 ๐ก = ๐ is called the time constant of the system: time it takes for the step response to rise to 63% of its final value (or the exponent ๐ โ๐๐ก to decay to 37% of the initial value of unity) Time constant = 1/ (magnitude of the pole) Pole is also called as exponential frequency (as it has the unit of frequency) d๐ฆ ๐ก=0 Initial slope: = ๐ ๐๐ก EE326 Dept. of E & E, NITK Surathkal 2 First Order System Step Response 1 ๐ 1 ๐ ๐ ๐ = ๐บ ๐ = ๐ ๐ = ๐ ๐ +๐ ๐ ๐ +๐ Taking Partial Fraction and solving for ๐ฆ ๐ก we get ๐ฆ ๐ก = 1 โ ๐ โ๐๐ก ๐ข ๐ก 4 ๐ฆ ๐ก= = 1 โ ๐ โ4 = 0.981 ๐ Settling time (four time constants) to reach within ยฑ2 % tolerance Rise time: time required for 10 % to 90% transition 2.2 ๐๐ = ๐ EE326 Dept. of E & E, NITK Surathkal 3 First Order System Step Response ๐ Transfer function ๐บ ๐ = ๐ +๐ 1 Time Constant ๐ ๐ seconds 2.2 Rise time ๐๐ seconds ๐ 4 ยฑ2 % tolerance seconds ๐ Settling time ๐๐ 3 ๐ seconds ยฑ5 % tolerance 5 seconds we assume that steady-state has reached ๐ EE326 Dept. of E & E, NITK Surathkal 4 First Order System Step Response Slope = ๐ ๐๐ EE326 Dept. of E & E, NITK Surathkal 5 Second Order Systems 1 ๐พ 1 ๐พ ๐ ๐ = ๐บ ๐ = 2 ๐ ๐ = ๐ ๐ + ๐๐ + ๐ ๐ ๐ 2 + ๐๐ + ๐ Find ๐พ such that the final value is 1 (for critically stable systems) ๐พ ๐ฆ โ = lim ๐ ๐(๐ ) lim =1 โ๐พ=๐ ๐ โ0 ๐ โ0 ๐ 2 + ๐๐ + ๐ 9 ๐บ ๐ = 2 ๐ + ๐๐ + 9 ๐ โ 0: 0.5: 10 EE326 Dept. of E & E, NITK Surathkal 6 9 Second Order Systems ๐บ ๐ = 2 ๐ + ๐๐ + 9 Undamped ๐ = 0 Underdamped ๐ =2 overdamped ๐ = 8 EE326 Dept. of E & E, NITK Surathkal 7 9 Second Order Systems ๐บ ๐ = 2 ๐ + ๐๐ + 9 Underdamped: fast but with oscillations Critically damped: fastest possible without oscillations ๐ =? Overdamped: no oscillations but slow EE326 Dept. of E & E, NITK Surathkal 8 9 Second Order Systems ๐บ ๐ = 2 ๐ + ๐๐ + 9 Analyse step by step Value of a Roots of the ch. eqn Natural response Case I: ๐ = 0 ยฑ๐3 ๐ sin 3๐ก + ๐ Case II: ๐ = 9 โ1.146, โ7.854 ๐1 ๐ โ1.146๐ก + ๐2 ๐ โ7.854๐ก Case III: ๐ = 2 ๐ผ ๐ โ๐ก sin 8๐ก + ๐ โ1 ยฑ ๐ 8 What is critically damped (i.e., fastest possible without oscillations) Hint: exponential is slow, sinusoidal is oscillatory, polynomial may be? โบ Case IV: ๐ = 6 โ3, โ3 ๐1 ๐ก๐ โ3๐ก + ๐2 ๐ โ3๐ก EE326 Dept. of E & E, NITK Surathkal 9 Step Response: Second Order Systems 9 ๐บ ๐ = Case I: ๐ = ๐ Case II: ๐ = ๐ ๐ 2 + ๐๐ + 9 Undamped Underdamped Case IV: ๐ =6 Case III: ๐ = ๐ Critically Overdamped damped Not to be confused with critically stable!! EE326 Dept. of E & E, NITK Surathkal 10 The General Second Order System ๐ Some definitions ๐บ ๐ = 2 ๐ + ๐๐ + ๐ Natural frequency ๐๐ Frequency of oscillation of the system without damping Ex. Tank circuit ๐๐ =1/ ๐ฟ๐ถ rad/sec Take ๐ = 0 โ poles = ยฑ๐ ๐ Exponential decay frequency 1 Natural period Damping ratio ๐ป (zeta) = = ๐๐ ๐ ฮค2 2๐ Time constant โ ๐๐ Thus ๐ = 2๐๐๐ A general second order system T. F. is given by ๐๐2 ๐บ ๐ = 2 ๐ + 2๐๐๐๐ + ๐๐2 EE326 Dept. of E & E, NITK Surathkal 11 The General Second Order System ๐๐2 ๐บ ๐ = 2 ๐ + 2๐๐๐๐ + ๐๐2 Poles: ๐๐๐ ยฑ ๐๐ ๐ 2 โ 1 Damping ratio and the type of step response of the system ๐=0โ โ0 5 2 (neglect the term ๐ + 15 ) 360 ๏ ๐บ2 ๐ = (๐ +4)(๐ 2 +2๐ +90) 4 0) Vary 0.1 โค ๐ โค 10) zoom EE326 Dept. of E & E, NITK Surathkal 35 Effect of additional zeros Lets take an example: 9 ๐ +๐ ๐บ ๐ = ๐ ๐ 2 + 2๐ + 9 First consider only LHS zeros (i.e., ๐ > 0) Vary 0.1 โค ๐ โค 10) EE326 Dept. of E & E, NITK Surathkal 36 Effect of additional zeros Lets take an example: 9 ๐ +๐ ๐บ ๐ = ๐ ๐ 2 + 2๐ + 9 First consider only LHS zeros (i.e., ๐ > 0) Vary 0.1 โค ๐ โค 10) Error as a function of value of a (when the term ๐ + ๐ is neglected) EE326 Dept. of E & E, NITK Surathkal 37 Effect of additional zeros More general explanation (for LHS zeros only) โ โ1 ๐ + ๐ ๐(๐ ) ๐ฆ1 ๐ก = ๐ฆแถ ๐ก + ๐๐ฆ(๐ก) โ๐ง ๐ โ plane ๐ฆแถ ๐ก โช ๐๐ฆ(๐ก) ๏ Step response is affected when the derivative term dominates ๏ Since initial slope is usually +ve โฆ Higher overshoot is expected for lower values of โaโ ๐ = 0.1 EE326 Dept. of E & E, NITK Surathkal 38 Effect of additional zeros More general explanation (for RHS zeros only) ๐ โ plane ๐งโ ๐ฆ1 ๐ก = ๐ฆ(๐ก) แถ + ๐๐ฆ ๐ก ; ๐ < 0 EE326 Dept. of E & E, NITK Surathkal 39 Effect of additional zeros More general explanation (for RHS zeros only) ๐ฆ1 ๐ก = ๐ฆ(๐ก) แถ + ๐๐ฆ ๐ก ; ๐ < 0 Normalized: 9/๐ ๏ When a is small +ve โฆ Derivative is dominating โฆ The step response will follow derivative ๏ When a increases โฆ Step response go negative โฆ In contrast to LHS zeros Nonminimum phase systems EE326 Dept. of E & E, NITK Surathkal 40 P1 For each of the systems, find ๐, ๐๐, ๐๐ , ๐๐, ๐๐ (๐๐ %) 16 (i) ๐บ ๐ = 2 ๐๐ = 4 rad/s ๐ = 0.375 ๐ + 3๐ + 16 ๐๐ = 2.667 s ๐๐ = 0.847 s ๐๐ = 0.28 (ii) ๐บ ๐ = 0.04 ๐ 2 + 0.02๐ + 0.04 ๐๐ = 0.2 rad/s ๐ = 0.05 ๐๐ = 400 s ๐๐ = 15.727 s ๐๐ = 0. 85 EE326 Dept. of E & E, NITK Surathkal 41 P1 (iii) For each of the systems, find ๐, ๐๐, ๐๐ , ๐๐, ๐๐ (๐๐ %) 14.145 ๐บ ๐ = 2 (๐ + 0.842๐ + 2.829)(๐ + 5) ๐๐ = 1.682 rad/s ๐ = 0.25 ๐๐ = 9.501 s ๐๐ = 1.929 s ๐๐ = 0. 432 Note: 5 = 11.87 > 5 0.842 14.145 2 14.145 (๐ 2 + 0.842๐ + 2.829)(๐ + 5) 5 2 (๐ + 0.842๐ + 2.829) Step response plot with 2nd order approximation EE326 Dept. of E & E, NITK Surathkal 42 P2 For each of the pair of the second order specifications, find the location of the complex conjugate poles (i) Percentage overshoot = 12, ๐๐ = 0.6 seconds ๐ = 0.559 ๐๐ = 11.917 rad/s poles = โ6.661 ยฑ ๐9.88 (ii) Percentage overshoot = 10, ๐๐ = 5 seconds ๐ = 0.591 ๐๐ = 0.779 rad/s poles = โ0.460 ยฑ ๐0.628 EE326 Dept. of E & E, NITK Surathkal 43 P3 For the system shown find the percentage overshoot, settling time (๐๐ ) and peak time (๐๐) of ๐2(๐ก) when a step torque ๐ ๐ก = ๐ข ๐ก is applied as shown. ๐ ๐ = 1.07๐ 2 + 1.53๐ ๐1 ๐ โ 1.53๐ ๐2 (๐ ) 0 = โ1.53๐ ๐1 ๐ + 1.53๐ + 1.92 ๐2 (๐ ) 1.07๐ 2 + 1.53๐ ๐ ๐2 ๐ โ1.53๐ 0 1.53 = = ๐ ๐ 1.07๐ 2 + 1.53๐ โ1.53๐ 1.6371๐ 2 + 2.0544๐ + 2.9376 โ1.53๐ 1.53๐ + 1.92 โ ๐ท ๐ = ๐ 2 + 1.255๐ + 1.794 ๐๐ = 1.3394 rad/s ๐ = 0.4685 ๐๐ = 6.374 s ๐๐ = 2.6549 s ๐๐ = 0.189 EE326 Dept. of E & E, NITK Surathkal 44 P4 (Matlab): Home Work Problems The matlab code given below simulates a system with Transfer function 1. Try using the two different inputs (one sinusoidal corrupted by ๐ 2 +0.2๐ +4 noise) and the other pure noise. What do you observe? %Code Q7 clc; clear all; t=linspace(0,50,1001); Sys=tf(1,[1 0.2 4]); x=sin(2*t)+2*sin(.1*t)+0.2*cos(10*t)+rand(1,length(t)); % x=rand(1,length(t))-0.5; %commented, uncomment to check for this input y=lsim(Sys,x,t); plot(t,x,'b--',t,y,'r'); EE326 Dept. of E & E, NITK Surathkal 45 P4 (Matlab): Home Work Problems The matlab code given below simulates a system with Transfer function 1. Try using the two different inputs (one sinusoidal corrupted by ๐ 2 +0.2๐ +4 noise) and the other pure noise. What do you observe? EE326 Dept. of E & E, NITK Surathkal 46 P4 (Matlab): Home Work Problems Plotting the frequency response of the system and the spectrum of the input as well as the output F=linspace(0,4,100); G=bode(Sys,2*pi*F); figure(2) plot(F,db(abs(squeeze(G)))); xlabel('Frequency (Hz)') ylabel('20log_{10}|G(\omega)|') X=fft(x); Y=fft(y); F1=(0:1000)*20/1000; figure(3) plot(F1(1:200),db(X(1:200))); xlabel('Frequency (Hz)') ylabel('20log_{10}|X(\omega)|') figure(4) plot(F1(1:200),db(Y(1:200))); xlabel('Frequency (Hz)') ylabel('20log_{10}|Y(\omega)|') EE326 Dept. of E & E, NITK Surathkal 47 P4 (Matlab): Home Work Problems 1 Frequency response of ๐ 2 +0.2๐ +4 ร 2๐ = 2.03 rad System poles: โ0.1 ยฑ ๐2 System modes: ๐ โ0.1ยฑ๐2 ๐ก Natural response: ๐ถ ๐ โ0.1๐ก sin 2๐ก + ๐โ EE326 Dept. of E & E, NITK Surathkal 48 P4 (Matlab): Home Work Problems Input signal (rand signal) spectrum EE326 Dept. of E & E, NITK Surathkal 49 P4 (Matlab): Home Work Problems Output signal spectrum EE326 Dept. of E & E, NITK Surathkal 50 P4 (Matlab): Home Work Problems 1 ๐ 2 +0.2๐ +4 Can be viewed in two ways: Filtering only a component with 2 rad/sec (signal processing perspective) Responding only to 2 rad/sec (system perspective) EE326 Dept. of E & E, NITK Surathkal 51 Linear Control Theory (EE 326): 2.1 Review of Laplace Transform Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal Definition Laplace Transform โ โ ๐(๐ก) = เถฑ ๐ ๐ก ๐ โ๐ ๐ก ๐๐ก ๐ โ ROC = ๐น(๐ ) 0โ Lower limit is 0โ โ integrate even when ๐ ๐ก is discontinuous at ๐ก = 0 E.g. ๐ฟ(๐ก) Solving differential equation: does require only initial conditions (i.e., at 0โ ) No need of auxiliary conditions (i.e., at 0+ ) Remember, initial conditions are discontinuities at ๐ก = 0 Inverse Laplace Transform 1 ๐+๐โ โ โ1 ๐น(๐ ) = เถฑ ๐ ๐ก ๐ โ๐ ๐ก ๐๐ก = ๐ ๐ก ๐ข(๐ก) 2๐๐ ๐โ๐โ Here ๐ข ๐ก is the unit step function Since it is unilateral Laplace Transfrom EE326 Dept. of E & E, NITK Surathkal 2 Definition Laplace Transform Table Sl. ๐(๐ก) ๐น(๐ ) No. 1 ๐ฟ(๐ก) 1 2 ๐ข(๐ก) 1 ๐ 3 ๐ก๐ข(๐ก) 1 ๐ 2 4 ๐ก ๐ ๐ข(๐ก) ๐! ๐ ๐+1 5 ๐ โ๐๐ก ๐ข(๐ก) 1 ๐ +๐ 6 sin ๐๐ก ๐ข(๐ก) ๐ ๐ 2 + ๐2 7 cos ๐๐ก ๐ข(๐ก) ๐ ๐ 2 + ๐2 EE326 Dept. of E & E, NITK Surathkal 3 Definition Laplace Transform Properties Sl. Properties Name No. โ 1 Definition โ ๐(๐ก) = ๐น ๐ = เถฑ ๐ ๐ก ๐ โ๐ ๐ก ๐๐ก 0โ 2 โ ๐ผ๐(๐ก) = ๐ผ๐น ๐ Linearity 3 โ ๐1 ๐ก + ๐2 (๐ก) = ๐น1 ๐ + ๐น2 (๐ ) Linearity 4 โ ๐ โ๐๐ก ๐(๐ก) = ๐น ๐ โ ๐ Frequency Shift 5 โ ๐(๐ก โ ๐) = ๐น ๐ ๐ โ๐ ๐ Delay 6 1 ๐ Scaling โ ๐(๐๐ก) = ๐น ๐ ๐ 7 ๐๐ ๐ก Differentiati โ = ๐ ๐น ๐ โ ๐ 0โ on ๐๐ก ๐ 8 ๐๐ ๐ ๐ก ๐ ๐โ1 ๐ 0โ Differentiati โ = ๐ ๐๐น ๐ โ เท ๐ ๐โ๐ on ๐๐ก ๐ ๐๐ก๐โ1 ๐=1 EE326 Dept. of E & E, NITK Surathkal 4 Definition Laplace Transform Properties, continuedโฆ Sl. Properties Name No. ๐ก 9 ๐น ๐ Integration โ เถฑ ๐ ๐ ๐๐ = 0โ ๐ 10 ๐ โ = lim ๐ ๐น ๐ Final Value ๐กโ0 11 ๐ 0+ = lim ๐ ๐น ๐ Initial Value ๐กโโ EE326 Dept. of E & E, NITK Surathkal 5 Problems: Partial Fraction Expansion P1: Find the inverse Laplace Transform of 2 ๐น ๐ = โ ๐ ๐ก = 2๐ โ๐ก โ 2๐ โ2๐ก ๐ข ๐ก ๐ +1 ๐ +2 P2: Solve the differential equation using Laplace transform (with zero initial condition) ๐2๐ฆ ๐๐ฆ + 12 + 32๐ฆ = 32๐ข ๐ก โ ๐ฆ ๐ก = 1 โ 2๐ โ4๐ก + ๐ โ8๐ก ๐ข ๐ก ๐๐ก 2 ๐๐ก P3: Find inverse Laplace Transform of (repeated roots) 2 ๐น ๐ = 2 โ ๐ ๐ก = 2๐ โ๐ก โ 2๐ก๐ โ2๐ก โ 2๐ โ2๐ก ๐ข ๐ก ๐ +1 ๐ +2 P4: Find inverse Laplace Transform of (Complex conjugate roots) 3 3 3 โ๐ก ๐น ๐ = โ๐ ๐ก = โ ๐ 4 cos 2๐ก + 2 sin 2๐ก ๐ข ๐ก 2 ๐ 2 + 2๐ + 5 5 20 EE326 Dept. of E & E, NITK Surathkal 6 Components Passive Linear Components Impedance Admittance Component Voltage-current Current-Voltage ๐ ๐ ๐ผ ๐ ๐ ๐ = ๐ ๐ = ๐ผ(๐ ) ๐(๐ ) Capacitor 1 ๐ก ๐๐ฃ ๐ก 1 ๐ฃ ๐ก = เถฑ ๐ ๐ก ๐๐ก ๐ ๐ก =๐ถ ๐ถ๐ ๐ถ 0 ๐๐ก ๐ถ๐ Resistor ๐ฃ ๐ก 1 ๐ฃ ๐ก = ๐ ๐(๐ก) ๐ ๐ก = ๐ ๐ ๐ ๐๐ ๐ก 1 ๐ก 1 Inductor ๐ฃ ๐ก =๐ฟ ๐ ๐ก = เถฑ ๐ฃ ๐ก ๐๐ก ๐ฟ๐ ๐๐ก ๐ฟ 0 ๐ฟ๐ EE326 Dept. of E & E, NITK Surathkal 7 Problems: Electrical Networks P1: Write the differential Equation using mesh ๐๐ ๐ analysis and derive the transfer function ๐ ๐ ๐ฟ๐๐ ๐ก 1 ๐ก ๐ผ ๐ ๐ฃ ๐ก = + ๐ ๐ ๐ก + เถฑ ๐ ๐ก ๐๐ก โ ๐ ๐ = ๐ฟ๐ ๐ผ ๐ + ๐ ๐ผ ๐ + ๐๐ก ๐ถ 0 ๐ถ๐ 1 = ๐ฟ๐ + ๐ + ๐ผ ๐ 1 ๐ถ๐ ๐๐ถ ๐ ๐ฟ๐ถ Also, = ๐ ๐ ๐ 1 ๐๐ถ ๐ ๐ถ๐ = ๐ผ(๐ ) ๐ 2 + ๐ฟ ๐ + ๐ฟ๐ถ 1 ๐ ๐ ๐๐ถ ๐ ๐ฟ๐ถ ๐๐ถ ๐ = ๐ ๐ ๐ 1 ๐ 2 + ๐ฟ ๐ + ๐ฟ๐ถ EE326 Dept. of E & E, NITK Surathkal 8 Problems: Electrical Networks P2: Write the Algebraic Equation in Laplace transformed domain using mesh analysis and derive the ๐๐ ๐ transfer function ๐ ๐ ๐ ๐ = ๐ 1 ๐ผ1 ๐ + ๐ฟ๐ ๐ผ1 ๐ โ ๐ผ2 ๐ โ 1 ๐ 1 + ๐ฟ๐ โ๐ฟ๐ ๐ผ1 (๐ ) ๐(๐ ) ๐ผ2 ๐ 1 = โ๐ฟ๐ ๐ 2 + ๐ฟ๐ + ๐ผ2 ๐ 0 0 = ๐ 2 ๐ผ2 ๐ + + ๐ฟ๐ ๐ผ2 ๐ โ ๐ผ1 ๐ โ 2 ๐ถ๐ ๐ถ๐ Using Cramerโs Rule ๐ 1 + ๐ฟ๐ ๐(๐ ) ๐ผ2 (๐ ) = โ๐ฟ๐ 0 ๐ผ2 ๐ ๐ฟ๐ ๐ 1 + ๐ฟ๐ โ๐ฟ๐ โ = ๐ ๐ 1 2 1 ๐ 1 + ๐ฟ๐ ๐ 2 + ๐ฟ๐ + โ ๐ฟ๐ โ๐ฟ๐ ๐ 2 + ๐ฟ๐ + ๐ถ๐ ๐ถ๐ ๐๐ ๐ 1 ๐ผ2 ๐ โ = ๐ ๐ ๐ถ๐ ๐ ๐ EE326 Dept. of E & E, NITK Surathkal 9 Problems: Electrical Networks ๐๐ฟ ๐ P3: Find the TF ๐ ๐ 1 1 ๐1 ๐ 1 + + 1 โ ๐๐ฟ ๐ = ๐(๐ ) โ 1 2+ โ1 ๐(๐ ) ๐ ๐ ๐1 (๐ ) = 1 2 ๐๐ฟ ๐ ๐ ๐ 1 1 1 โ1 +1 ๐ โ๐1 ๐ + + + 1 ๐๐ฟ ๐ = ๐(๐ ) โ 2 ๐ ๐ ๐ ๐ Using Cramerโs Rule 1 ๐๐ฟ ๐ ๐ 2 + 2๐ + 1 2+ ๐(๐ ) ๐ โ = 2 1 ๐ ๐ ๐ + 5๐ + 2 โ1 ๐๐ฟ (๐ ) = ๐ ๐ ๐ 1 2+๐ โ1 Can we calculate the step response? 2 โ1 ๐ +1 EE326 Dept. of E & E, NITK Surathkal 10 Components Translation System Impedance Component Force-Velocity Force-Displacement ๐น ๐ ๐๐ ๐ = Spring ๐ก ๐(๐ ) ๐ ๐ก = ๐พ เถฑ ๐ฃ ๐ก ๐๐ก ๐ ๐ก = ๐พ๐ฅ(๐ก) ๐พ 0 Viscous Damper ๐๐ฅ ๐ก ๐ ๐ก = ๐ต๐ฃ(๐ก) ๐ ๐ก =๐ต ๐ต๐ ๐๐ก ๐ต Mass ๐๐ฃ ๐ก ๐2๐ฅ ๐ก ๐ ๐ก =๐ ๐ ๐ก =๐ ๐๐ 2 ๐๐ก ๐๐ก 2 EE326 Dept. of E & E, NITK Surathkal 11 Simple Translational mechanical system P1: Write the differential Equation of motion using Newtonโs Law and derive ๐น ๐ the transfer function ๐ ๐ Transfer Function 1 ๐ ๐ ๐ = ๐น ๐ ๐ต ๐ ๐ 2 + ๐ ๐ + ๐ Free Body Diagram Remember: 1 ๐ผ ๐ ๐ฟ๐ถ = ๐ ๐ ๐ 1 ๐ 2 + ๐ฟ ๐ + ๐ฟ๐ถ EE326 Dept. of E & E, NITK Surathkal 12 Simple Translational mechanical system ๏ Different components and their units: โฆ Spring constant ,K (N/m) โฆ Coefficient of friction, B (N-s/m) โฆ Mass, M (N s2/m or kg) ๏ Steps involved: โฆ Drawing the free body diagram โฆ Writing the differential equation โฆ Converting to frequency domain โฆ Find the transfer function (by solving the linear eqn) ๏ Number of independent motion ๏ The Degrees of Freedom (DoF/DOF) EE326 Dept. of E & E, NITK Surathkal 13 Simple Translational mechanical system P2: Write the differential Equation of motion using Newtonโs Law Two DOF Free body diagram of ๐1 Two components: (1) due to its own movement ๐ฅ1 & (2) due to the movement of ๐ฅ2 ๐น(๐ ) ๐พ1 ๐1 (๐ ) ๐พ2 ๐2 (๐ ) ๐ต3 ๐ ๐1 (๐ ) ๐ต1 ๐ ๐1 (๐ ) ๐1 ๐1 ๐พ2 ๐1 (๐ ) ๐1 ๐ 2 ๐1 (๐ ) ๐ต3 ๐ ๐2 (๐ ) EE326 Dept. of E & E, NITK Surathkal 14 Simple Translational mechanical system Two DOF Free body diagram of ๐1 Net effect by using superposition ๐พ1 ๐1 (๐ ) ๐พ2 ๐1 ๐ โ ๐2 ๐ ๐น(๐ ) ๐ต3 ๐ ๐1 ๐ โ ๐2 ๐ ๐1 ๐ต1 ๐ ๐1 (๐ ) ๐1 ๐ 2 ๐1 (๐ ) EE326 Dept. of E & E, NITK Surathkal 15 Simple Translational mechanical system Two DOF Free body diagram of ๐2 Two components: (1) due to its own movement ๐ฅ2 & (2) due to the movement of ๐ฅ1 ๐พ3 ๐2 (๐ ) ๐พ2 ๐2 (๐ ) ๐พ2 ๐1 (๐ ) ๐ต3 ๐ ๐2 (๐ ) ๐2 ๐2 ๐ต2 ๐ ๐2 (๐ ) ๐2 ๐ 2 ๐2 (๐ ) ๐ต3 ๐ ๐1 (๐ ) EE326 Dept. of E & E, NITK Surathkal 16 Simple Translational mechanical system Two DOF Free body diagram of ๐2 Net effect by using superposition ๐พ2 ๐2 ๐ โ ๐1 ๐ ๐พ3 ๐2 (๐ ) ๐ต3 ๐ ๐2 ๐ โ ๐1 ๐ ๐2 ๐ต2 ๐ ๐2 (๐ ) ๐2 ๐ 2 ๐2 (๐ ) EE326 Dept. of E & E, NITK Surathkal 17 Simple Translational mechanical system ๐2 ๐ Find G ๐ = ๐น ๐ ๐ 2 + 3๐ + 1 โ 3๐ โ 1 ๐1 (๐ ) = ๐น ๐ โ3๐ โ 1 ๐ 2 + 4๐ + 1 ๐2 ๐ 0 Applying Cramerโs rule ๐ 2 + 3๐ + 1 ๐น(๐ ) 3๐ + 1 ๐2 ๐ = 2 โ3๐ โ 1 0 G ๐ = ๐ + 3๐ + 1 โ 3๐ โ 1 ๐ ๐ 3 + 7๐ 2 + 5๐ + 1 โ3๐ โ 1 ๐ 2 + 4๐ + 1 EE326 Dept. of E & E, NITK Surathkal 18 Rotational mechanical systems Component Torque-Angular Displacement Unit N-m/rad N-m-s/rad N-m-s2/rad or kg-m2 EE326 Dept. of E & E, NITK Surathkal 19 Rotational mechanical system Write the equation(s) of motion for the system Lumped system modeling Free body diagram of ๐ฝ1 Two components: (1) due to its own movement ๐1 & (2) due to the movement of ๐2 ๐(๐ ) ๐(๐ ) ๐ท1๐ ๐1 (๐ ) ๐ท1๐ ๐1 (๐ ) ๐ฝ1 + ๐ฝ1 = ๐ฝ1 ๐พ๐2 (๐ ) ๐พ๐1 (๐ ) ๐ฝ1 ๐ 2๐1 (๐ ) ๐พ[๐1 ๐ โ ๐ฝ1 ๐ 2๐ 1 (๐ ) ๐2 (๐ )] EE326 Dept. of E & E, NITK Surathkal 20 Rotational mechanical system Write the equation(s) of motion for the system Lumped system modeling Free body diagram of ๐ฝ2 Two components: (1) due to its own movement ๐2 & (2) due to the movement of ๐1 ๐ท2๐ ๐2 (๐ ) ๐ท2๐ ๐2 (๐ ) ๐ฝ2 + ๐ฝ2 = ๐ฝ2 ๐พ๐1 (๐ ) ๐พ๐2 (๐ ) ๐ฝ2 ๐ 2๐2 (๐ ) ๐พ[๐2 ๐ โ ๐ฝ2 ๐ 2๐ 2 (๐ ) ๐1 (๐ )] EE326 Dept. of E & E, NITK Surathkal 21 Rotational mechanical system Write the equation(s) of motion for the system Lumped system modeling Equations ๐ฝ1๐ 2 + ๐ท1๐ + ๐พ โ ๐พ ๐1 (๐ ) ๐ ๐ = โ๐พ ๐ฝ2๐ 2 + ๐ท2๐ + ๐พ ๐2 ๐ 0 EE326 Dept. of E & E, NITK Surathkal 22 Rotational mechanical system Write the equation(s) of motion for the system ๐2 (๐ก) ๐1 (๐ก) ๐ 2 + 1๐ + 1 โ 1๐ โ 1 ๐1 (๐ ) = ๐ ๐ โ1๐ โ 1 2(๐ + 1) ๐2 ๐ 0 ๐2 ๐ ๐ +1 1 = = ๐ ๐ 2 ๐ 2 + ๐ + 1 ๐ + 1 โ ๐ + 1 2 2๐ 2 + ๐ + 1 EE326 Dept. of E & E, NITK Surathkal 23 Rotational mechanical system with gears Simple Gear arrangement 2๐๐ ๐๐ ๐ Assuming No Backlash ๐1๐1 = ๐2๐2 ๐1 ๐1 ๐2 = = ๐1 โ ๐1& ๐2 โ ๐2 ๐2 ๐1 ๐1 Also Assuming gear to be lossless Energy remains the same ๐1 ๐1 = ๐1๐1 = ๐2๐2 ๐2 ๐2 EE326 Dept. of E & E, NITK Surathkal 24 Rotational mechanical system with gears Equation connecting the number of teeth with torque and angular displacement ๐1 ๐1 ๐2 = = ๐2 ๐2 ๐1 Example-1 Writing the total equation EE326 Dept. of E & E, NITK Surathkal 25 Rotational mechanical system with gears Equation connecting the number of teeth with torque and angular displacement ๐1 ๐1 ๐2 = = Example-1 ๐2 ๐2 ๐1 Removing the gear Writing eqn w.r.t. (2) ๐2 ๐2 ๐1 ๐2 ๐1 ๐1 ๐ = Js2 + Ds + K ๐2(๐ ) ๐1 ๐1 Writing eqn w.r.t. (1) ร ๐2 ๐1 E.g.: Js2๐2(๐ ) Js2๐2(๐ ) ร ๐1 2 From 2 to 1 ๐2 ๐ท ๐2 2 ๐1 ๐ฝ ๐ ๐2 ๐1 ๐ = Js2 + Ds + K ๐2(๐ ) ร ๐1 2 2 ๐1 ๐พ ๐2 ๐1 2 ๐1 ๐ = Js2 + Ds + K ๐1(๐ ) ร EE326 Dept. of E & E, NITK Surathkal ๐2 26 Rotational mechanical system with gears P1: Find the quantities ๐ฝ๐ , ๐ท๐ & ๐พ๐ so that the systems are similar. In Fig ๐ ๐ (a) and (b). Also find the resulting transfer function ๐2 1 ๐ 2 ๐2 ๐2 2 ๐ฝ๐ = ๐ฝ2 + ๐ฝ1 ๐ท๐ = ๐ท2 + ๐ท1 ๐พ๐ = ๐พ2 ๐1 ๐1 ๐2 ๐ ๐2 1 = ๐1 ๐ ๐1 ๐ฝ๐ ๐ 2 + ๐ท๐ ๐ + ๐พ2 EE326 Dept. of E & E, NITK Surathkal 27 Rotational mechanical system with gears P2: write ๐4 in terms of ๐1 ๐2 ๐1 ๐ก = ๐ ๐ก ๐1 2 ๐2 ๐4 ๐1 ๐ก = ๐ ๐ก ๐1 ๐3 3 ๐2 ๐4 ๐6 ๐1 ๐ก = ๐ ๐ก ๐1 ๐3 ๐5 4 EE326 Dept. of E & E, NITK Surathkal 28 Rotational mechanical system with gears P3: Find the quantities ๐ฝ๐ , ๐ท๐ such that the two systems are similar. Also ๐1 ๐ find the resulting transfer function ๐ ๐ . Note that the moment of inertia and the friction are not neglected for the gearing arrangement. 2 2 ๐3 ๐1 ๐ฝ1 + (๐ฝ4 + ๐ฝ5 ) +(๐ฝ2 + ๐ฝ3 ) = ๐ฝ๐ ๐4 ๐2 2 ๐1 ๐1 ๐ 1 ๐ท1 + ๐ท2 = ๐ท๐ = ๐2 ๐1 ๐ ๐ฝ๐ ๐ 2 + ๐ท๐ ๐ EE326 Dept. of E & E, NITK Surathkal 29 Rotational mechanical system with gears P4:write the equation for the system shown below. 50 ๐1 (๐ก) ๐21 ๐ก = ๐ (๐ก) 25 2 2 ๐ ๐ = ๐ 2 + ๐ ๐1 ๐ โ ๐ ๐21 (๐ ) ๐2 ๐1 0 = 4๐2 ๐ + 1๐ ๐2 ๐ โ ๐ (๐ ) ๐1 ๐2 1 ๐2 ๐ ๐ = ๐ 2 + ๐ ๐1 ๐ โ ๐ ๐2 (๐ ) 0 = 4๐2 ๐ + 4๐ ๐2 ๐ โ 0.5 ๐1 (๐ ) ๐1 ๐ ๐ = ๐ 2 + ๐ ๐1 ๐ โ 2๐ ๐2 (๐ ) 0 = โ2๐ ๐1 ๐ + 4๐ + 4 ๐2 ๐ EE326 Dept. of E & E, NITK Surathkal 30 Armature controlled DC motor ๐ฃ๐ : back emf ๐๐๐ ๐ฃ๐ ๐ก = ๐พ๐ ๐๐ก ๐พ๐ : back emf constant (V-s/rad) ๐๐ (๐ก) = ๐พ๐ก ๐๐ (๐ก) ๐พ๐ก : Torque constant Electrical Ckt (N-m/A) ๐๐๐ ๐ก ๐๐ ๐ก = ๐ ๐ ๐๐ ๐ก + ๐ฟ๐ + ๐ฃ๐ (๐ก) ๐๐ก ๐๐ ๐ ๐ธ๐ ๐ = ๐ ๐ + ๐ฟ๐ ๐ + ๐พ๐ ๐ ฮm (๐ ) ๐พ๐ก ? ๐ธ๐ ๐ ฮm (๐ ) EE326 Dept. of E & E, NITK Surathkal 31 Armature controlled DC motor ๐๐ ๐ ๐ธ๐ ๐ = ๐ ๐ + ๐ฟ๐ ๐ + ๐พ๐ ๐ ฮ๐ (๐ ) ๐พ๐ก ? ๐ธ๐ ๐ ฮ(๐ ) ฮ๐ ๐ ๐พ๐ก ฮค๐ ๐ ๐ฝ๐ = ๐ธ๐ ๐ 1 ๐พ๐ก ๐พ๐ ๐ ๐ + ๐ฝ ๐ท๐ + ๐ ๐ ๐ Motor Load Mechanical Model ๐๐ ๐ = ๐ฝ๐ ๐ 2 + ๐ท๐ ๐ ฮ๐ (๐ ) What is the composition of ๐ฝ๐ & ๐ท๐ EE326 Dept. of E & E, NITK Surathkal 32 Armature controlled DC motor ฮ๐ ๐ ๐พ๐ก ฮค๐ ๐ ๐ฝ๐ = ๐ธ๐ ๐ 1 ๐พ๐ก ๐พ๐ ๐ ๐ + ๐ฝ ๐ท๐ + ๐ ๐ ๐ Composition of ๐ฝ๐ & ๐ท๐ 2 ๐1 ๐ฝ๐ = ๐ฝ๐ + ๐ฝ๐ฟ ๐2 2 ๐1 ๐ท๐ = ๐ท๐ + ๐ท๐ฟ ๐2 Mechanical Constants EE326 Dept. of E & E, NITK Surathkal 33 Armature controlled DC motor ฮ๐ ๐ ๐พ๐ก ฮค๐ ๐ ๐ฝ๐ = ๐ธ๐ ๐ 1 ๐พ๐ก ๐พ๐ ๐ ๐ + ๐ฝ ๐ท๐ + ๐ ๐ ๐ 2 ๐1 ๐ฝ๐ = ๐ฝ๐ + ๐ฝ๐ฟ ๐2 2 ๐1 ๐ท๐ = ๐ท๐ + ๐ท๐ฟ ๐2 Finding the electrical Constants ๐๐ Torque-Speed Curve We have ๐๐ ๐ ๐stall ๐ธ๐ ๐ = ๐ ๐ + ๐ฟ๐ ๐ + ๐พ๐ ๐ ฮ๐ (๐ ) ๐๐1 > ๐๐2 ๐พ๐ก ๐๐1 At steady state while taking inv Laplace transform and keeping ๐ฟ๐ = 0 ๐๐2 ๐๐ ๐พ๐ก ๐พ๐ ๐พ๐ก ๐๐ = ๐ ๐ + ๐พ๐ ๐๐ ๐๐ = โ ๐ + ๐ ๐พ๐ก ๐ ๐ ๐ ๐ ๐ ๐ ๐noโload๐๐ ๐พ๐ก ๐๐ ๐stall = ๐ ๐noโload = ๐ ๐ ๐ ๐พ๐ EE326 Dept. of E & E, NITK Surathkal 34 Armature controlled DC motor ฮ P1: Given the system and torque-speed curve find the transfer function ๐ธ ๐ฟ(๐ ) ๐ ๐ ๐1 2 ๐พ๐ก ฮ๐ ๐ ๐พ๐ก ฮค๐ ๐ ๐ฝ๐ ๐ฝ๐ = ๐ฝ๐ + ๐ฝ๐ฟ ๐stall = ๐ = ๐2 ๐ ๐ ๐ ๐ธ๐ ๐ 1 ๐พ๐ก ๐พ๐ ๐ ๐ + ๐ฝ ๐ท๐ + ๐ 2 ๐ ๐ ๐1 ๐๐ ๐ท๐ = ๐ท๐ + ๐ท๐ฟ ๐noโload = ๐2 ๐พ๐ ฮ๐ฟ ๐ 0.0417 = ๐ธ๐ ๐ ๐ ๐ + 1.667 EE326 Dept. of E & E, NITK Surathkal 35 Electrical Series analogy (translational) Eqn (in terms of velocity): 1 ๐พ ๐ฟ๐ + ๐ + ๐ผ ๐ = ๐ธ(๐ ) ๐๐ + ๐ต + ๐ ๐ = ๐น(๐ ) ๐ถ๐ ๐ ๐ ๐ต Mass ๐ Inductor M ๐ป Viscous Damper ๐ต Resistor B ฮฉ 1 ๐น(๐ ) Spring Const ๐พ 1 ๐(๐ ) ๐พ Capacitor K F Force ๐(๐ก) Voltage ๐ ๐ก ๐ Velocity ๐ฃ(๐ก) Current ๐ฃ ๐ก ๐ด EE326 Dept. of E & E, NITK Surathkal Force-Voltage analogy 36 Electrical Series analogy (translational) P1: Draw the Electrical Series Analogy of the given translational system 1 1 ๐1 ๐พ1 ๐ต1 ๐2 ๐พ2 ๐น(๐ ) ๐ต3 ๐1 (๐ ) ๐2 (๐ ) ๐ต2 1 ๐พ3 EE326 Dept. of E & E, NITK Surathkal 37 Electrical parallel analogy (translational) Eqn (in terms of velocity): 1 1 ๐พ ๐ถ๐ + + ๐ธ ๐ = ๐ผ(๐ ) ๐๐ + ๐ต + ๐ ๐ = ๐น(๐ ) ๐ ๐ฟ๐ ๐ Mass ๐ Capacitor M ๐น ๐(๐ ) 1 Viscous Damper ๐ต Resistor B ฮฉ ๐น(๐ ) 1 Spring Const ๐พ 1 ๐ 1 ๐พ Inductor K H ๐ต Force ๐(๐ก) Current ๐ ๐ก ๐ด Velocity ๐ฃ(๐ก) Voltage ๐ฃ ๐ก ๐ EE326 Dept. of E & E, NITK Surathkal Force-Current analogy 38 Electrical Parallel analogy (translational) P2: Draw the Electrical Parallel Analogy of the given translational system 1 ๐ต3 ๐1 (๐ ) ๐2 (๐ ) ๐น(๐ ) 1 1 1 1 1 ๐1 ๐พ2 ๐2 ๐ต1 ๐พ1 ๐ต2 ๐พ3 EE326 Dept. of E & E, NITK Surathkal 39 Electrical analogy (rotational) HW: Draw the Electrical Series and Parallel Analogy of the following rotational system EE326 Dept. of E & E, NITK Surathkal 40 Azimuth Angle Control System ๐๐ ๐ก Desired azimuth potentiometer angle input ๐0 ๐ก Azimuth angle output Differential amplifier potentiometer and Power amplifier motor Detailed Layout Functional Block Diagram ๐๐ ๐ก + error Signal and ๐0 ๐ก Motor, load Potentiometer Power and gears โ amplifiers Potentiometer EE326 Dept. of E & E, NITK Surathkal 41 Azimuth +๐ Angle Control System ๐- turn potentiometer ๐๐ ๐ก โ๐ ๐ฝ๐ ๐พ1 ๐ท๐ ๐๐ ๐ก ๐1 ๐ +๐ ๐พ๐ ๐พ๐ก ๐2 +๐ ๐0 ๐ก ๐ท๐ฟ ๐ฝ๐ฟ ๐ -turn ๐3 potentiometer โ๐ ๐ = 10 ๐ 20 1 ๐ = 10 Potentiometer 10 turns = 20V โ ๐พ๐๐๐ก = = 20๐ ๐ ๐พ1 = 100 Motor Load 2 ๐1 ๐ = 100 ๐ฝ๐ = ๐ฝ๐ + ๐ฝ๐ฟ = 0.02 + 0.1 2 ร 1 = 0.03 ๐ท๐ = 0.02 ๐ ๐ = 8 ฮฉ ๐2 ๐ฝ๐ = 0.02 ๐๐ โ ๐2 ๐๐ ๐ ๐พ๐ก ฮค๐ ๐ ๐ฝ๐ 2.083 ๐ท๐ = 0.01 ๐ โ ๐ ๐ ฮค๐๐๐ = = ๐ธ๐ ๐ 1 ๐พ๐พ ๐ ๐ + 1.708 ๐พ๐ = 0.5 ๐ ๐ ฮค๐๐๐ ๐ ๐ + ๐ท๐ + ๐ก ๐ ๐ฝ๐ ๐ ๐ ๐พ๐ก = 0.5 ๐ โ ๐ฮค๐ด TF ๐1 = 25, ๐2 = ๐3 = 250 ๐0 ๐ 0.2083 = ๐ฝ๐ฟ = 1 ๐๐ โ ๐2 ๐ธ๐ ๐ ๐ ๐ + 1.708 ๐ท๐ฟ = 1 ๐ โ ๐ ๐ ฮค๐๐๐ EE326 Dept. of E & E, NITK Surathkal 42 Azimuth Angle Control System Power Motor and Potentiometer Preamplifier amplifier Load Gear ๐๐ (๐ ) ๐0 (๐ ) + 100 ๐ธ๐ (๐ ) 2.083 1ฮค๐ 1 0.1 Desired ๐๐ (๐ ) ๐ + 100 ๐ (๐ + 1.708) Azimuth โ ๐๐ (๐ ) angle ๐๐ (๐ ) 1ฮค๐ Assumptions: Potentiometer All components are linear. The amplifier is assumed to have no saturation. Dynamics of the pre-amplifier is neglected. ๐ฟ ๐ฝ Electrical time constant ๐ ๐ is neglected (โตโช ๐ท๐ ). ๐ ๐ ๐0 ๐ 20.83 = ๐๐ ๐ ๐ ๐ + 100 ๐ + 1.7088 ๐ + 20.83 EE326 Dept. of E & E, NITK Surathkal 43 Components of a block diagram (linear System) ๐ (๐ ) ๐ถ(๐ ) ๐ (๐ ) ๐ถ(๐ ) ๐บ(๐ ) input Output Signals System ๐ (๐ ) ๐ 1 (๐ ) ๐ถ ๐ = ๐ 1 ๐ + ๐ 2 ๐ โ ๐ 3 (๐ ) ๐ (๐ ) + ๐ (๐ ) + ๐ 2 (๐ ) โ ๐ (๐ ) ๐ 3 (๐ ) Summing Junction Pickoff Point EE326 Dept. of E & E, NITK Surathkal 44 Familiar Configurations 1) Cascade Form ๐1 ๐ = ๐2 ๐ = ๐ ๐ ๐บ1 ๐ ๐บ2 ๐ ๐ (๐ ) ๐ ๐ ๐บ1 (๐ ) ๐บ1 (๐ ) ๐บ2 (๐ ) ๐ถ ๐ = ๐บ3 (๐ ) ๐ ๐ ๐บ1 ๐ ๐บ2 ๐ ๐บ3 (๐ ) ๐บ๐ ๐ = ๐บ1 ๐ ๐บ2 ๐ ๐บ3 (๐ ) 2) Parallel Form ๐บ1 (๐ ) ๐ (๐ ) ยฑ ๐ถ ๐ = ๐บ2 (๐ ) ยฑ ๐ ๐ ๐บ1 ๐ ยฑ ๐บ2 ๐ ยฑ ๐บ3 (๐ ) ยฑ ๐บ3 (๐ ) ๐บ๐ ๐ = ๐บ1 ๐ ยฑ ๐บ2 ๐ ยฑ ๐บ3 (๐ ) EE326 Dept. of E & E, NITK Surathkal 45 Familiar Configurations 3) Feedback Form ๐ (๐ ) + ๐ถ(๐ ) ๐บ(๐ ) โ ๐ป(๐ ) ๐บ ๐ ๐บ๐ ๐ = 1 ยฑ ๐บ ๐ ๐ป(๐ ) EE326 Dept. of E & E, NITK Surathkal 46 Moving Blocks to Create Familiar Configurations 1) Basic Block moves left or right past summing junctions ๐ (๐ ) Left ๐ (๐ ) ๐ถ(๐ ) + ๐ถ(๐ ) + ๐บ(๐ ) โก ๐บ(๐ ) โ โ ๐(๐ ) ๐บ(๐ ) ๐(๐ ) ๐ (๐ ) ๐ถ(๐ ) ๐ (๐ ) + Right + ๐ถ(๐ ) ๐บ(๐ ) ๐บ(๐ ) โ โก ๐(๐ ) โ 1 ๐บ(๐ ) EE326 Dept. of E & E, NITK Surathkal ๐(๐ ) 47 Moving Blocks to Create Familiar Configurations 2) Basic Block moves left or right past pickoff points ๐ ๐ ๐บ(๐ ) ๐ ๐ ๐บ(๐ ) Left ๐บ(๐ ) ๐ (๐ ) โก ๐ (๐ ) 1 ๐ (๐ ) ๐บ(๐ ) ๐ (๐ ) ๐บ(๐ ) ๐ (๐ ) 1 ๐ (๐ ) ๐บ(๐ ) ๐ ๐ ๐บ(๐ ) ๐บ(๐ ) ๐ ๐ ๐บ(๐ ) Right ๐ (๐ ) ๐ ๐ ๐บ(๐ ) ๐ (๐ ) ๐บ(๐ ) โก ๐บ(๐ ) ๐ ๐ ๐บ(๐ ) ๐ ๐ ๐บ(๐ ) ๐บ(๐ ) ๐ ๐ ๐บ(๐ ) EE326 Dept. of E & E, NITK Surathkal 48 Block Diagram Reduction Problems P1 ๐ (๐ ) ๐ถ(๐ ) ๐บ1 (๐ ) ๐บ2 (๐ ) ๐บ3 (๐ ) + + + โ โ + ๐ป1 (๐ ) + โ ๐ป2 (๐ ) โ + ๐ป3 (๐ ) Step-1: Feedback TF โ โ ๐ป1 โ ๐ป2 + ๐ป3 and ๐บ2 ๐บ3 (cascade) ๐ (๐ ) + ๐ถ(๐ ) ๐บ1 (๐ ) ๐บ2 ๐ ๐บ3 (๐ ) โ ๐ป1 ๐ โ ๐ป2 ๐ + ๐ป3 (๐ ) EE326 Dept. of E & E, NITK Surathkal 49 Block Diagram Reduction Problems P1 ๐ (๐ ) + ๐ถ(๐ ) ๐บ1 (๐ ) ๐บ2 ๐ ๐บ3 (๐ ) โ ๐ป1 ๐ โ ๐ป2 ๐ + ๐ป3 (๐ ) Step-2: Feedback TF cascaded with ๐บ1 (๐ ) ๐บ1 ๐ ๐บ2 ๐ ๐บ3 ๐ 1 + ๐บ2 ๐ ๐บ3 ๐ ๐ป1 ๐ โ ๐ป2 ๐ + ๐ป3 (๐ ) EE326 Dept. of E & E, NITK Surathkal 50 Block Diagram Reduction Problems P2 Step-1 EE326 Dept. of E & E, NITK Surathkal 51 Block Diagram Reduction Problems P2 Step-2 EE326 Dept. of E & E, NITK Surathkal 52 Block Diagram Reduction Problems P2 Step-3 EE326 Dept. of E & E, NITK Surathkal 53 Block Diagram Reduction Problems P2 Step-4 Step-5: Answer EE326 Dept. of E & E, NITK Surathkal 54 Block Diagram Reduction Problems P2 MATLAB CODE 1 2 3 5 6 4 1 1 Let ๐บ1 = ๐บ2 = ๐บ3 = ๐ +1 and ๐ป1 = ๐ป2 = ๐ป3 = ๐ Code: G1= tf(1,[1 1]); G2=G1; G3 = G1; H1 = tf(1,[1 0]); H2=H1;H3=H1; Sys = append(G1,G2,G3,H1,H2,H3); inp=1;out=3; Q = [1 -4 0 0 0; T=connect(Sys,Q, inp, out); 2 1 -5 0 0; T=tf(T); 3 1 -5 2 -6 ; 4 2 0 0 0; 5 2 0 0 0; 6 3 0 0 0]; EE326 Dept. of E & E, NITK Surathkal 55 Block Diagram Reduction Problems P3 โ ๐ถ(๐ ) ๐ (๐ ) + 1 + ๐ ๐ ๐ โ + 1 ๐ ๐ โ ๐ถ(๐ ) ๐ (๐ ) ๐ 3 + 1 1 + ๐ ๐ โ ๐ EE326 Dept. of E & E, NITK Surathkal 56 Block Diagram Reduction Problems P3 ๐ (๐ ) ๐ถ(๐ ) ๐ 3 + 1 1 + ๐ 3 + ๐ + 1 ๐ โ ๐ ๐ (๐ ) ๐ถ(๐ ) ๐ 3 + 1 2๐ 4 + ๐ 2 + 2๐ EE326 Dept. of E & E, NITK Surathkal 57 Components of a Signal Flow Graphs ๐ (๐ ) ๐ถ(๐ ) ๐ (๐ ) ๐ถ(๐ ) ๐บ(๐ ) input Output Signals System ๐ (๐ ) ๐ถ(๐ ) ๐ (๐ ) ๐บ(๐ ) ๐ถ(๐ ) ๐ (๐ ) ๐ 1 (๐ ) ๐ถ ๐ = ๐ 1 ๐ + ๐ 2 ๐ โ ๐ 3 (๐ ) ๐ (๐ ) + ๐ (๐ ) + ๐ 2 (๐ ) โ ๐ (๐ ) ๐ 3 (๐ ) ๐ 1 (๐ ) ๐บ1 (๐ ) ๐ถ(๐ ) 1 ๐ (๐ ) ๐บ3 (๐ ) ๐ (๐ ) 1 ๐ (๐ ) Summing Junction ๐ 3 (๐ ) Pickoff Point EE326 Dept. of E & E, NITK Surathkal 58 Familiar Configurations 1) Cascade Form โ In block Diagram ๐1 ๐ = ๐2 ๐ = ๐ ๐ ๐บ1 ๐ ๐บ2 ๐ ๐ (๐ ) ๐ ๐ ๐บ1 (๐ ) ๐บ1 (๐ ) ๐บ2 (๐ ) ๐ถ ๐ = ๐บ3 (๐ ) ๐ ๐ ๐บ1 ๐ ๐บ2 ๐ ๐บ3 (๐ ) ๐บ๐ ๐ = ๐บ1 ๐ ๐บ2 ๐ ๐บ3 (๐ ) In Signal Flow Graph ๐ (๐ ) ๐บ1 (๐ ) ๐2 (๐ ) ๐บ2 (๐ ) ๐1 (๐ ) ๐บ3 (๐ ) ๐ถ(๐ ) EE326 Dept. of E & E, NITK Surathkal 59 Familiar Configurations 2) Parallel Form ๐บ1 (๐ ) ๐ (๐ ) ยฑ ๐ถ ๐ = ๐บ2 (๐ ) ยฑ ๐ ๐ ๐บ1 ๐ ยฑ ๐บ2 ๐ ยฑ ๐บ3 (๐ ) ยฑ ๐บ3 (๐ ) ๐บ๐ ๐ = ๐บ1 ๐ ยฑ ๐บ2 ๐ ยฑ ๐บ3 (๐ ) In Signal Flow Graph ยฑ๐บ1 (๐ ) ๐ (๐ ) C(๐ ) ยฑ๐บ2 (๐ ) ยฑ๐บ3 (๐ ) EE326 Dept. of E & E, NITK Surathkal 60 Familiar Configurations 3) Feedback Form ๐ (๐ ) + ๐ถ(๐ ) ๐บ(๐ ) โ ๐ป(๐ ) ๐บ ๐ ๐บ๐ ๐ = 1 ยฑ ๐บ ๐ ๐ป(๐ ) In Signal Flow Graph ๐ (๐ ) 1 ๐ธ(๐ ) ๐บ(๐ ) ๐ถ(๐ ) โ๐ป(๐ ) EE326 Dept. of E & E, NITK Surathkal 61 Block Diagram Reduction Problems P1: Convert this block diagram to signal flow graph EE326 Dept. of E & E, NITK Surathkal 62 Masonโs Rule Demo Example Terminology Loop Gains: The product of branch gains found by traversing a path that starts at a node and ends at the same node, following the direction of the signal flow, without passing through any other node more than once ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ4 ๐บ5 ๐ป3 ๐บ4 ๐บ6 ๐ป3 EE326 Dept. of E & E, NITK Surathkal 63 Masonโs Rule Demo Example Terminology Forward-Path Gain: The product of gains found by traversing a path from the input node to the output node of the signal-flow graph in the direction of signal flow ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 EE326 Dept. of E & E, NITK Surathkal 64 Masonโs Rule Demo Example Terminology Non-touching Loops: Loops that do not have any nodes in common. Non-touching Loop Gain: The product of loop gains from non-touching loops taken two, three, four, or more at a time. Non-touching Loop ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 Gains ๐บ4 ๐ป2 ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 ๐บ4 ๐บ6 ๐ป3 ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 Set of touching loops EE326 Dept. of E & E, NITK Surathkal 65 Masonโs Rule Loop Gains: ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ4 ๐บ5 ๐ป3 ๐บ4 ๐บ6 ๐ป3 Demo Example Forward-Path Gain: ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 Non-touching Loop Gains ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 ๐บ2 ๐ป1 ๐บ4 ๐ป2 ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ๐บ ๐ = ๐ถ ๐ = ฯ๐ ๐๐ ฮ๐ ๐ :no of forward-paths Transfer Function: ๐ ๐ ฮ ๐๐ :forward-path gains ฮ :1 โ ฮฃ loop gains + ฮฃ nontouching-loop gains taken two at a time โ ฮฃ nontouching-loop gains taken three at a time +โฆ ฮk : formed by eliminating those loops from ฮ which touches the ๐th forward path ฮ = 1 โ(๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ4 ๐บ5 ๐ป3 + ๐บ4 ๐บ6 ๐ป3 ) +(๐บ2 ๐ป1 ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 + ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ) ๐1 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐2 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 ฮ1 = 1 ฮ2 = 1 EE326 Dept. of E & E, NITK Surathkal 66 Masonโs Rule Demo Example ๐ถ ๐ ฯ๐ ๐๐ ฮ๐ ๐บ ๐ = = ๐ ๐ ฮ ฮ = 1 โ(๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ4 ๐บ5 ๐ป3 + ๐บ4 ๐บ6 ๐ป3 ) +(๐บ2 ๐ป1 ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 + ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ) ๐1 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 ๐2 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 ฮ1 = 1 ฮ2 = 1 G s 1 ร ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ7 + 1 ร ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ6 ๐บ7 = 1 โ (๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ4 ๐บ5 ๐ป3 + ๐บ4 ๐บ6 ๐ป3 ) + (๐บ2 ๐ป1 ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ๐บ4 ๐บ5 ๐ป3 + ๐บ2 ๐ป1 ๐บ4 ๐บ6 ๐ป3 ) EE326 Dept. of E & E, NITK Surathkal 67 Masonโs Rule P1: Loop Gains: 1. ๐บ2 ๐ป1 2. ๐บ4 ๐ป2 3. ๐บ7 ๐ป4 4. ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ6 ๐บ7 ๐บ8 Forward Paths: 1. ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ฮ = 1 โ ๐บ2 ๐ป1 + ๐บ4 ๐ป2 + ๐บ7 ๐ป4 + ๐บ2 ๐บ3 ๐บ4 ๐บ5 ๐บ6 ๐บ7 ๐บ8 + ๐บ2 ๐ป1 ร ๐บ4 ๐ป2 + ๐บ2 ๐ป1 ร ๐บ7 ๐ป4 + ๐บ4 ๐ป2 ร ๐บ7 ๐ป4 โ ๐บ2 ๐ป1 ร ๐บ4 ๐ป2 ร ๐บ7 ๐ป4 ๐1 = ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 ฮ1 = 1 โ ๐บ7 ๐ป4 ๐บ1 ๐บ2 ๐บ3 ๐บ4 ๐บ5 1 โ ๐บ7 ๐ป4 ๐บ(๐ ) = ฮ EE326 Dept. of E & E, NITK Surathkal 68 Linear Control Theory (EE 326): 1.1 Introduction Dharavath Kishan Dept. of Electrical and Electronics Engineering NITK Surathkal Definition of a Control System Input/Stimulus Output/Response Control System Desired Response Actual Response Elevator Example 4th Floor Input Command 3rd Floor 2nd Floor Steady-State Error 1st Floor G Floor Time Transient Response Steady-State Response Loose patience Passenger Safety Uncomfortable EE326 Dept. of E & E, NITK Surathkal 2 Why we need a Control System? 1. Power Amplification ๐๐๐๐ 0ยฐ 270ยฐ Amplifier Antenna knob Motor 2. Remote Control 3. Convenience of input form 25ยฐ๐ถ Deployment in Dangerous environments Thermostat Positionโ Heating 4. Compensation of disturbance Examples: Wind disturbance in an antenna position. Door opening in a room changing the temperature. EE326 Dept. of E & E, NITK Surathkal 3 System Configurations Open loop Disturbance-1 Disturbance-2 Input / Input + + Output/ Controller Plant reference Transducer + + Controlled Variable Input transducer converts input/reference to a form that controller can process controller drives the plant Examples of Open loop systems 1. A bread toaster. 2. Hair dryer 3. Water tank Issues with a open loop system Never correct itself. Does not account for the disturbances (like wind on the antenna position) EE326 Dept. of E & E, NITK Surathkal 4 System Configurations Closed loop Error/Actuating Signal Disturbance-1 Disturbance-2 Input / Input + + + Output/ Controller Plant reference Transducer + + Controlled โ Variable Output Transducer (sensor) Output transducer converts output/controlled variable to a form that controller can process Actuating signal (error) is the difference between the reference and the feedback (Feedback control systems ) Greater accuracy Less sensitive to noise and disturbance Transient response and steady-state error โ controlled with a compensator. Expensive compared to open loop. EE326 Dept. of E & E, NITK Surathkal 5 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability EE326 Dept. of E & E, NITK Surathkal 6 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability Too fast - uncomfortable Elevator Example 4th Floor Input Command 3rd Floor 2nd Floor Too slow - impatient 1st Floor Optimal Speed G Floor Objectives in this course: Time Create a quantitative definition for the transient response Analyze the existing transient response and With design, yield a desired transient response EE326 Dept. of E & E, NITK Surathkal 7 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability No steady state error ๐๐ Input Command ๐๐ Error in locating the satellite Time Objectives in this course: Quantitatively define this error Analyze the existing error and With design, correct the steady state behavior EE326 Dept. of E & E, NITK Surathkal 8 Analysis and Design Objectives Analysis is the process by which the performance of a system is determined Design is the process by which the performance of a system is created or changed Major Objectives 1. Transient Response 2. Steady-State Response 3. Stability E.g. RLC circuit step response Total Response Forced Response ๐0 Stable Natural Response Time What if the natural response is growing/unbounded? Think of the antenna control or elevator EE326 Dept. of E & E, NITK Surathkal 9 Azimuth Antenna position control ๐๐ ๐ก potentiometer Desired azimuth angle ๐0 ๐ก input Azimuth angle System Concept output ๐๐ ๐ก Desired potentiometer azimuth angle ๐0 ๐ก input Azimuth angle output Differential amplifier potentiometer and Power amplifier motor Detailed Layout EE326 Dept. of E & E, NITK Surathkal 10 Azimuth๐ Antenna ๐ก position control ๐ Desired potentiometer azimuth angle ๐0 ๐ก input Azimuth angle output Differential amplifier potentiometer and Power amplifier + motor potentiometer Detailed Layout ๐๐ ๐ก โ Differential Motor and power Fixed Field Gear amplifier ๐พ DC motor Gear + ๐0 ๐ก Viscous Schematic Inertia damping potentiometer โ Gear EE326 Dept. of E & E, NITK Surathkal 11 Azimuth Antenna position control + potentiometer ๐๐ ๐ก โ Differential Motor and power Fixed Field Gear amplifier ๐พ DC motor Gear + ๐0 ๐ก Viscous Inertia damping Schematic potentiometer โ Gear Functional Block Diagram ๐๐ ๐ก + error Signal and ๐0 ๐ก Motor, load Potentiometer Power and gears โ amplifiers Potentiometer EE326 Dept. of E & E, NITK Surathkal