Module 12 - The Nervous System PDF

Summary

This document provides an overview of the nervous system, covering topics such as neuron structure and function, lines of communication, and the three stages of information processing. It also delves into the resting and action potentials in neurons.

Full Transcript

‭ ODULE‬‭12.1:‬‭THE‬‭NERVOUS‬‭SYSTEM‬‭-‬‭NERVOUS‬ M ‭THREE STAGES OF INFORMATION PROCESSING‬ ‭COMMUNICATION‬ ‭ ensory‬ ‭Input:‬ ‭Sensors‬ ‭detect‬ ‭external...

‭ ODULE‬‭12.1:‬‭THE‬‭NERVOUS‬‭SYSTEM‬‭-‬‭NERVOUS‬ M ‭THREE STAGES OF INFORMATION PROCESSING‬ ‭COMMUNICATION‬ ‭ ensory‬ ‭Input:‬ ‭Sensors‬ ‭detect‬ ‭external‬ ‭stimuli‬ ‭and‬ S ‭LINES OF COMMUNICATION‬ ‭internal‬ ‭conditions‬ ‭and‬ ‭transmit‬ ‭information‬ ‭along‬ ‭sensory neurons.‬ ‭ eurons:‬ ‭These‬ ‭are‬ ‭nerve‬ ‭cells‬ ‭that‬ ‭transfer‬ N ‭information within the body.‬ I‭ntegration:‬ ‭Sensory‬ ‭information‬ ‭is‬ ‭sent‬ ‭to‬‭the‬‭brain‬ ‭or‬ ‭ganglia,‬ ‭where‬ ‭interneurons‬ ‭integrate‬ ‭the‬ ‭It uses two types of signals to communicate:‬ ‭information‬‭.‬ ‭‬ ‭Electrical signals‬‭(long-distance)‬ ‭‬ ‭Chemical signals‬‭(short-distance)‬ ‭ otor‬ ‭Output:‬ ‭Motor‬ ‭output‬ ‭leaves‬ ‭the‬ ‭brain‬ ‭or‬ M ‭ganglia‬ ‭via‬ ‭motor‬‭neurons‬‭,‬‭which‬‭trigger‬‭muscle‬‭or‬ ‭ anglia:‬‭These‬‭are‬‭simple‬‭clusters‬‭of‬‭neurons‬‭where‬ G ‭gland activity‬‭.‬ ‭the processing of information takes place.‬ ‭ rain:‬ ‭It‬ ‭has‬ ‭a‬ ‭more‬ ‭complex‬ ‭organization‬ ‭of‬ B ‭neurons.‬ ‭NEURON STRUCTURE & FUNCTION‬ ‭ ell‬ ‭Body:‬ ‭This‬ ‭is‬ ‭where‬ ‭most‬ ‭of‬ ‭a‬ ‭neuron’s‬ C ‭organelles are in.‬ ‭ endrites:‬ ‭Highly‬ ‭branched‬ ‭extensions‬‭that‬‭receive‬ D ‭signals‬‭from other neurons.‬ ‭ xon:‬ ‭It‬ ‭is‬ ‭a‬ ‭much‬ ‭longer‬ ‭extension‬ ‭that‬ ‭transmits‬ A I‭n‬‭this‬‭example,‬‭the‬‭siphon‬‭surveys‬‭the‬‭environment‬ ‭signals‬‭to other cells at synapses.‬ ‭through‬ ‭external‬ ‭stimuli.‬ ‭That‬ ‭information‬ ‭is‬ ‭then‬ ‭integrated‬‭and‬‭processed‬‭(concluding‬‭that‬‭there‬‭is‬ ‭ xon‬ ‭Hillock:‬ ‭It‬ ‭is‬ ‭a‬ ‭cone-shaped‬ ‭base‬ ‭of‬ ‭an‬ A ‭prey).‬ ‭The‬ ‭motor‬ ‭output‬ ‭is‬ ‭then‬ ‭acted‬‭upon‬‭which‬ ‭axon.‬ ‭means catching the prey.‬ ‭ ynapse:‬ ‭It‬ ‭is‬ ‭a‬ ‭junction‬ ‭between‬‭an‬‭axon‬‭and‬ S I‭on‬ ‭pumps‬ ‭and‬ ‭Ion‬ ‭Channels‬ ‭establish‬ ‭the‬ ‭resting‬ ‭another‬ ‭cell‬ ‭→‬ ‭passing‬ ‭of‬ ‭neurotransmitters‬ ‭to‬ ‭potential of a neuron‬ ‭another cell.‬ ‭ embrane‬ ‭Potential:‬ ‭Every‬ ‭cell‬ ‭has‬ ‭a‬ ‭voltage‬ M ‭(difference‬ ‭in‬ ‭electrical‬ ‭charge)‬ ‭across‬ ‭its‬ ‭plasma‬ ‭membrane.‬ ‭ esting‬ ‭Potential:‬ ‭The‬ ‭membrane‬ ‭potential‬ ‭of‬ ‭a‬ R ‭neuron not sending signals‬‭(negatively charged).‬ ‭ hanges‬ ‭in‬ ‭membrane‬ ‭potential‬ ‭act‬ ‭as‬ ‭signals,‬ C ‭transmitting and processing information.‬ ‭26‬ ‭RESTING POTENTIAL IN MAMMALIAN NEURON‬ ‭ ‬‭+‬ ‭concentration → highest INSIDE the cell‬ K ‭Na‬‭+‬ ‭concentration → highest OUTSIDE the cell‬ ‭ odium-potassium‬ ‭Pumps‬ ‭maintain‬ ‭these‬‭gradients‬ S ‭across the plasma membrane.‬ ‭ ‬ ‭neuron‬ ‭at‬ ‭resting‬ ‭potential‬ ‭has‬ ‭many‬ ‭open‬ ‭K‭+‬ ‬ A ‭channels; K‬‭+‬ ‭diffuses out of the cell‬‭.‬ T‭ he‬‭buildup‬‭of‬‭negative‬‭charge‬‭within‬‭the‬‭neuron‬‭is‬ ‭the‬‭major source‬‭of membrane potential.‬ T‭ he‬ ‭resting‬ ‭potential‬ ‭is‬ ‭always‬ ‭negative.‬ ‭It‬ ‭is‬ ‭only‬ ‭when‬ ‭a‬ ‭strong‬ ‭depolarizing‬ ‭stimulus‬ ‭causes‬ ‭the‬ ‭neuron‬‭cell‬‭to‬‭be‬‭slightly‬‭less‬‭negative‬‭and‬‭reaches‬ ‭a certain threshold will an action potential occur.‬ ‭ efractory‬ ‭Period:‬ ‭After‬ ‭an‬ ‭action‬ ‭potential,‬ ‭a‬ R ‭second action potential cannot be initiated.‬ I‭t‬ ‭is‬ ‭a‬ ‭result‬ ‭of‬ ‭a‬ ‭temporary‬ ‭inactivation‬‭of‬‭the‬‭Na‬‭+‬ ‭channels.‬ ‭The‬ ‭nerve‬ ‭is‬ ‭unable‬ ‭to‬ ‭create‬ ‭an‬‭action‬ ‭potential.‬ ‭ CTION POTENTIAL‬ A ‭Summary‬ ‭It‬ ‭is‬ ‭a‬‭massive‬‭change‬‭in‬‭membrane‬‭voltage‬‭when‬ ‭1.‬ ‭Neurons‬ ‭are‬ ‭not‬ ‭sending‬ ‭signals;‬‭negatively‬ ‭the‬‭membrane potential passes a certain level‬‭.‬ ‭charged.‬ ‭2.‬ ‭All‬‭or‬‭none:‬‭Neurons‬‭will‬‭either‬‭be‬‭stimulated‬ I‭t‬ ‭has‬ ‭a‬‭constant‬‭magnitude,‬‭all-or-none‬‭(triggered‬ ‭or not.‬ ‭or‬ ‭not‬ ‭at‬ ‭all)‬‭,‬ ‭and‬ ‭can‬ ‭transmit‬ ‭signals‬ ‭over‬ ‭long‬ ‭3.‬ ‭Ion‬‭gated‬‭channels‬‭open:‬‭(1)‬‭Cell‬‭becomes‬ ‭distances.‬ ‭more positive, and (2) Action potential‬ ‭4.‬ ‭Period‬ ‭of‬ ‭no‬ ‭action‬ ‭potential‬ ‭and‬ ‭neurons‬ I‭t‬‭occurs‬‭when‬‭neurons‬‭contain‬‭gated‬‭ion‬‭channels‬ ‭cannot be activated (5).‬ ‭open or closed in response to stimuli.‬ ‭ epolarization:‬ ‭It‬ ‭is‬ ‭triggered‬ ‭by‬ ‭the‬ ‭opening‬ ‭ion‬ D ‭channels‬‭.‬ ‭It‬ ‭is‬ ‭a‬ ‭reduction‬ ‭in‬ ‭the‬‭magnitude‬‭of‬‭the‬ ‭membrane potential.‬ ‭ n‬ ‭action‬ ‭potential‬ ‭occurs‬ ‭when‬ ‭the‬ ‭resting‬ A ‭potential is depolarized.‬ ‭27‬ ‭EVOLUTIONARY ADAPTATIONS OF THE AXON‬ T‭ he‬ ‭neurotransmitter‬ ‭diffuses‬ ‭across‬ ‭the‬ ‭synaptic‬ ‭STRUCTURE‬ ‭cleft‬‭and is‬‭received‬‭by the‬‭postsynaptic cell‬‭.‬ ‭The‬‭speed‬‭of‬‭an‬‭action‬‭potential‬‭increases‬‭with‬‭the‬ ‭axon’s diameter‬‭(directly proportional).‬ ‭ yelin‬‭Sheaths:‬‭It‬‭insulates‬‭the‬‭axons‬‭in‬‭vertebrates‬‭,‬ M ‭which‬ ‭causes‬ ‭an‬ ‭action‬ ‭potential’s‬ ‭speed‬ ‭to‬ ‭increase.‬ I‭t‬ ‭is‬ ‭made‬ ‭by‬ ‭glia‬ ‭(glial‬ ‭cells).‬ ‭The‬ ‭glial‬ ‭cells‬ ‭are‬ ‭called differently by location:‬ ‭‬ ‭Oligodendrocytes‬ ‭in‬ ‭the‬ ‭CNS‬ ‭(Central‬ ‭Nervous System)‬ ‭‬ ‭Schwann‬ ‭cells‬ ‭in‬ ‭the‬ ‭PNS‬ ‭(Peripheral‬ ‭Nervous System)‬ ‭ EUROTRANSMITTERS‬ N ‭A‬ ‭single‬ ‭neurotransmitter‬ ‭may‬ ‭bind‬ ‭specifically‬ ‭to‬ ‭more than a dozen different receptors‬‭.‬ ‭ eceptor‬ ‭activation‬ ‭and‬ ‭postsynaptic‬ ‭response‬ R ‭ odes‬‭of‬‭Ranvier:‬‭It‬‭is‬‭the‬‭gaps‬‭between‬‭the‬‭myelin‬ N ‭ends‬‭when‬‭neurotransmitters‬‭are‬‭removed‬‭from‬‭the‬ ‭sheaths‬ ‭where‬ ‭voltage-gated‬ ‭Na‬‭+‬ ‭channels‬ ‭are‬ ‭synaptic cleft.‬ ‭found. It is where‬‭action potentials are performed‬‭.‬ ‭ cetylcholine:‬ ‭It‬ ‭is‬ ‭a‬ ‭common‬ ‭neurotransmitter‬ ‭in‬ A ‭ altatory‬ ‭Conduction:‬ ‭It‬ ‭is‬ ‭a‬ ‭process‬ ‭where‬ S ‭vertebrates‬ ‭and‬ ‭invertebrates.‬ ‭It‬ ‭is‬ ‭involved‬ ‭in‬ ‭action‬ ‭potentials‬ ‭in‬ ‭myelinated‬ ‭axons‬ ‭jump‬ ‭muscle‬ ‭stimulation,‬ ‭memory‬ ‭formation,‬ ‭and‬ ‭between the nodes of Ranvier‬‭.‬ ‭learning.‬ ‭NEURON COMMUNICATION AT SYNAPSES‬ T‭ he‬ ‭presynaptic‬ ‭neuron‬ ‭synthesizes‬ ‭and‬ ‭packages‬ ‭the‬‭neurotransmitters‬‭in‬‭synaptic‬‭vesicles‬‭located‬‭in‬ ‭the synaptic terminal.‬ T‭ he‬ ‭action‬ ‭potential‬ ‭causes‬ ‭the‬ ‭release‬ ‭of‬ ‭the‬ ‭neurotransmitter‬‭.‬ ‭28‬ ‭ ODULE‬ ‭12.2:‬ ‭THE‬ ‭DIVISIONS‬ ‭AND‬ ‭FUNCTIONS‬ M ‭GLIA / GLIAL CELLS‬ ‭OF THE VERTEBRATE NERVOUS SYSTEM‬ ‭Functions to nourish, support, and regulate neurons.‬ ‭ ervous‬ ‭systems‬ ‭consist‬ ‭of‬ ‭circuits‬ ‭of‬ ‭neurons‬ ‭and‬ N ‭supporting cells‬ ‭ y‬ ‭the‬ ‭time‬‭of‬‭the‬‭Cambrian‬‭explosion,‬‭specialized‬ B ‭systems‬ ‭of‬ ‭neurons‬ ‭had‬ ‭appeared‬ ‭that‬ ‭enabled‬ ‭animals‬ ‭to‬ ‭sense‬ ‭their‬ ‭environments‬ ‭and‬ ‭respond‬ ‭rapidly.‬ ‭ nidarians:‬ ‭The‬ ‭simplest‬ ‭animals‬ ‭with‬ ‭nervous‬ C ‭systems that have‬‭neurons arranged in nerve nets‬‭.‬ ‭These types of Glia are part of the CNS:‬ ‭‬ ‭Ependymal Cells‬ ‭ ore‬ ‭complex‬ ‭animals‬ ‭have‬ ‭nerves‬‭,‬ ‭in‬ ‭which‬ ‭the‬ M ‭‬ ‭Astrocytes‬ ‭axons of multiple neurons are bundled together.‬ ‭‬ ‭Oligodendrocytes‬ ‭BILATERAL ANIMALS & CEPHALIZATION‬ ‭These types of Glia are part of the PNS:‬ ‭‬ ‭Schwann Cells‬ ‭ ephalization:‬ ‭The‬ ‭clustering‬ ‭of‬ ‭sensory‬ ‭organs‬ ‭at‬ C ‭‬ ‭Microglia‬ ‭the front end of the body.‬ ‭ORGANIZATION OF THE VERTEBRATE NERVOUS‬ ‭ entral‬ ‭Nervous‬‭System‬‭(CNS):‬‭It‬‭consists‬‭of‬‭a‬‭brain‬ C ‭SYSTEM‬ ‭and‬ ‭longitudinal‬ ‭nerve‬ ‭cords.‬ ‭Flatworms‬ ‭are‬ ‭the‬ ‭The CNS develops from the hollow nerve cord.‬ ‭simplest cephalized animals.‬ T‭ he‬‭cavity‬‭of‬‭the‬‭nerve‬‭cord‬‭gives‬‭rise‬‭to‬‭the‬‭narrow‬ ‭ eripheral‬ ‭Nervous‬ ‭System‬ ‭(PNS):‬ ‭It‬ ‭consists‬ ‭of‬ P ‭central‬ ‭canal‬ ‭of‬ ‭the‬ ‭spinal‬ ‭cord‬‭and‬‭the‬‭ventricles‬ ‭neurons‬ ‭carrying‬ ‭information‬ ‭into‬ ‭and‬ ‭out‬ ‭of‬ ‭the‬ ‭of the brain.‬ ‭CNS.‬ T‭ he‬‭canal‬‭and‬‭ventricles‬‭fill‬‭with‬‭cerebrospinal‬‭fluid‬‭,‬ ‭Nervous system organization correlates with Lifestyle‬ ‭which‬‭supplies‬‭the‬‭CNS‬‭with‬‭nutrients‬‭and‬‭hormone‬‭s‬ ‭and‬‭carries‬‭away‬‭wastes‬‭.‬‭The‬‭brain‬‭and‬‭spinal‬‭cord‬ S‭ essile‬‭molluscs‬‭(ex:‬‭clams‬‭and‬‭chitons)‬‭have‬‭simple‬ ‭contain:‬ ‭systems (they don’t really move).‬ ‭ ray‬ ‭Matter:‬ ‭Consists‬ ‭of‬ ‭neuron‬ ‭cell‬ ‭bodies,‬ G ‭ ore‬ ‭complex‬ ‭molluscs‬‭(ex:‬‭octopuses‬‭and‬‭squids)‬ M ‭dendrites and‬‭unmyelinated axons‬‭.‬ ‭have more sophisticated systems.‬ ‭ hite‬ ‭Matter:‬ ‭Consists‬‭of‬‭bundles‬‭of‬‭myelinated‬ W ‭axons‬‭.‬ ‭29‬ ‭ pinal‬‭Cord:‬‭It‬‭conveys‬‭information‬‭to‬‭and‬‭from‬‭the‬ S ‭brain‬ ‭and‬ ‭generates‬ ‭basic‬ ‭patterns‬‭of‬‭locomotion.‬ ‭It also produces reflexes independent of the brain.‬ T‭ HE PERIPHERAL NERVOUS SYSTEM‬ ‭It‬‭transmits‬‭the‬‭information‬‭to‬‭and‬‭from‬‭the‬‭CNS‬‭and‬ ‭regulates movement and the internal environment.‬ ‭REGIONALLY SPECIALIZED VERTEBRATE BRAIN‬ ‭Afferent Neurons‬‭→ transmit information TO the CNS‬ ‭Efferent Neurons‬‭→ transmit information AWAY‬ ‭The vertebrate brain has three major regions.‬ ‭FROM the CNS‬ F‭ orebrain:‬ ‭Activities‬ ‭include‬ ‭processing‬ ‭of‬ ‭olfactory‬ ‭input,‬ ‭regulation‬ ‭of‬ ‭sleep,‬ ‭and‬ ‭any‬ ‭complex processing.‬ ‭Midbrain:‬‭Coordinates routing of sensory input.‬ ‭ indbrain:‬ ‭Controls‬ ‭involuntary‬ ‭activities‬ ‭and‬ H ‭coordinates motor activities.‬ ‭The PNS has 2 Efferent Components‬ ‭ otor‬ ‭System:‬ ‭It‬ ‭carries‬ ‭signals‬ ‭to‬ ‭skeletal‬ ‭muscles‬ M ‭and is voluntary.‬ ‭ utonomic‬‭Nervous‬‭System:‬‭It‬‭regulates‬‭the‬‭smooth‬ A ‭ omparison‬ ‭of‬ ‭vertebrates‬‭shows‬‭that‬‭relative‬‭sizes‬ C ‭and cardiac muscles and is generally involuntary.‬ ‭of particular brain regions vary.‬ ‭ ympathetic‬ ‭Division:‬ ‭Regulates‬ ‭arousal‬ ‭and‬ S ‭energy generation (fight-or-flight response)‬ ‭ arasympathetic‬ ‭Division:‬ ‭It‬ ‭has‬ ‭antagonistic‬ P ‭effects‬‭on‬‭target‬‭organs‬‭and‬‭promotes‬‭calming‬ ‭and a return to “rest and digest” functions.‬ ‭30‬ T‭ hese‬ ‭size‬ ‭differences‬ ‭reflect‬ ‭the‬ ‭relative‬ ‭importance of the particular brain function.‬ T‭ he‬ ‭Cerebral‬ ‭Cortex‬ ‭controls‬ ‭voluntary‬ ‭movement‬ ‭and cognitive functions.‬ ‭Frontal Lobe:‬‭It has the following functions‬ ‭‬ ‭Control of skeletal muscles (motor cortex)‬ ‭‬ ‭Decision‬ ‭making‬ ‭&‬ ‭planning‬ ‭(prefrontal‬ ‭cortex)‬ ‭‬ ‭Forming speech (Broca’s area)‬ ‭Temporal Lobe:‬‭It has the following functions‬ ‭‬ ‭Hearing (auditory cortex)‬ ‭‬ ‭Comprehending‬ ‭language‬ ‭(Wernicke’s‬ ‭area)‬ ‭Parietal Lobe:‬‭It has the following functions‬ ‭‬ ‭Sense of touch (somatosensory cortex)‬ ‭‬ ‭Integration‬ ‭of‬ ‭sensory‬ ‭information‬ ‭(Sensory‬ ‭association cortex)‬ ‭Occipital Lobe:‬‭It has the following functions‬ ‭‬ ‭Combining‬ ‭images‬ ‭and‬ ‭object‬ ‭recognition‬ ‭(visual association cortex)‬ ‭31‬

Use Quizgecko on...
Browser
Browser