🎧 New: AI-Generated Podcasts Turn your study notes into engaging audio conversations. Learn more

Module 12- The Nervous System.pdf

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Full Transcript

‭ ODULE‬‭12.1:‬‭THE‬‭NERVOUS‬‭SYSTEM‬‭-‬‭NERVOUS‬ M ‭THREE STAGES OF INFORMATION PROCESSING‬ ‭COMMUNICATION‬ ‭ ensory‬ ‭Input:‬ ‭Sensors‬ ‭detect‬ ‭external...

‭ ODULE‬‭12.1:‬‭THE‬‭NERVOUS‬‭SYSTEM‬‭-‬‭NERVOUS‬ M ‭THREE STAGES OF INFORMATION PROCESSING‬ ‭COMMUNICATION‬ ‭ ensory‬ ‭Input:‬ ‭Sensors‬ ‭detect‬ ‭external‬ ‭stimuli‬ ‭and‬ S ‭LINES OF COMMUNICATION‬ ‭internal‬ ‭conditions‬ ‭and‬ ‭transmit‬ ‭information‬ ‭along‬ ‭sensory neurons.‬ ‭ eurons:‬ ‭These‬ ‭are‬ ‭nerve‬ ‭cells‬ ‭that‬ ‭transfer‬ N ‭information within the body.‬ I‭ntegration:‬ ‭Sensory‬ ‭information‬ ‭is‬ ‭sent‬ ‭to‬‭the‬‭brain‬ ‭or‬ ‭ganglia,‬ ‭where‬ ‭interneurons‬ ‭integrate‬ ‭the‬ ‭It uses two types of signals to communicate:‬ ‭information‬‭.‬ ‭‬ ‭Electrical signals‬‭(long-distance)‬ ‭‬ ‭Chemical signals‬‭(short-distance)‬ ‭ otor‬ ‭Output:‬ ‭Motor‬ ‭output‬ ‭leaves‬ ‭the‬ ‭brain‬ ‭or‬ M ‭ganglia‬ ‭via‬ ‭motor‬‭neurons‬‭,‬‭which‬‭trigger‬‭muscle‬‭or‬ ‭ anglia:‬‭These‬‭are‬‭simple‬‭clusters‬‭of‬‭neurons‬‭where‬ G ‭gland activity‬‭.‬ ‭the processing of information takes place.‬ ‭ rain:‬ ‭It‬ ‭has‬ ‭a‬ ‭more‬ ‭complex‬ ‭organization‬ ‭of‬ B ‭neurons.‬ ‭NEURON STRUCTURE & FUNCTION‬ ‭ ell‬ ‭Body:‬ ‭This‬ ‭is‬ ‭where‬ ‭most‬ ‭of‬ ‭a‬ ‭neuron’s‬ C ‭organelles are in.‬ ‭ endrites:‬ ‭Highly‬ ‭branched‬ ‭extensions‬‭that‬‭receive‬ D ‭signals‬‭from other neurons.‬ ‭ xon:‬ ‭It‬ ‭is‬ ‭a‬ ‭much‬ ‭longer‬ ‭extension‬ ‭that‬ ‭transmits‬ A I‭n‬‭this‬‭example,‬‭the‬‭siphon‬‭surveys‬‭the‬‭environment‬ ‭signals‬‭to other cells at synapses.‬ ‭through‬ ‭external‬ ‭stimuli.‬ ‭That‬ ‭information‬ ‭is‬ ‭then‬ ‭integrated‬‭and‬‭processed‬‭(concluding‬‭that‬‭there‬‭is‬ ‭ xon‬ ‭Hillock:‬ ‭It‬ ‭is‬ ‭a‬ ‭cone-shaped‬ ‭base‬ ‭of‬ ‭an‬ A ‭prey).‬ ‭The‬ ‭motor‬ ‭output‬ ‭is‬ ‭then‬ ‭acted‬‭upon‬‭which‬ ‭axon.‬ ‭means catching the prey.‬ ‭ ynapse:‬ ‭It‬ ‭is‬ ‭a‬ ‭junction‬ ‭between‬‭an‬‭axon‬‭and‬ S I‭on‬ ‭pumps‬ ‭and‬ ‭Ion‬ ‭Channels‬ ‭establish‬ ‭the‬ ‭resting‬ ‭another‬ ‭cell‬ ‭→‬ ‭passing‬ ‭of‬ ‭neurotransmitters‬ ‭to‬ ‭potential of a neuron‬ ‭another cell.‬ ‭ embrane‬ ‭Potential:‬ ‭Every‬ ‭cell‬ ‭has‬ ‭a‬ ‭voltage‬ M ‭(difference‬ ‭in‬ ‭electrical‬ ‭charge)‬ ‭across‬ ‭its‬ ‭plasma‬ ‭membrane.‬ ‭ esting‬ ‭Potential:‬ ‭The‬ ‭membrane‬ ‭potential‬ ‭of‬ ‭a‬ R ‭neuron not sending signals‬‭(negatively charged).‬ ‭ hanges‬ ‭in‬ ‭membrane‬ ‭potential‬ ‭act‬ ‭as‬ ‭signals,‬ C ‭transmitting and processing information.‬ ‭26‬ ‭RESTING POTENTIAL IN MAMMALIAN NEURON‬ ‭ ‬‭+‬ ‭concentration → highest INSIDE the cell‬ K ‭Na‬‭+‬ ‭concentration → highest OUTSIDE the cell‬ ‭ odium-potassium‬ ‭Pumps‬ ‭maintain‬ ‭these‬‭gradients‬ S ‭across the plasma membrane.‬ ‭ ‬ ‭neuron‬ ‭at‬ ‭resting‬ ‭potential‬ ‭has‬ ‭many‬ ‭open‬ ‭K‭+‬ ‬ A ‭channels; K‬‭+‬ ‭diffuses out of the cell‬‭.‬ T‭ he‬‭buildup‬‭of‬‭negative‬‭charge‬‭within‬‭the‬‭neuron‬‭is‬ ‭the‬‭major source‬‭of membrane potential.‬ T‭ he‬ ‭resting‬ ‭potential‬ ‭is‬ ‭always‬ ‭negative.‬ ‭It‬ ‭is‬ ‭only‬ ‭when‬ ‭a‬ ‭strong‬ ‭depolarizing‬ ‭stimulus‬ ‭causes‬ ‭the‬ ‭neuron‬‭cell‬‭to‬‭be‬‭slightly‬‭less‬‭negative‬‭and‬‭reaches‬ ‭a certain threshold will an action potential occur.‬ ‭ efractory‬ ‭Period:‬ ‭After‬ ‭an‬ ‭action‬ ‭potential,‬ ‭a‬ R ‭second action potential cannot be initiated.‬ I‭t‬ ‭is‬ ‭a‬ ‭result‬ ‭of‬ ‭a‬ ‭temporary‬ ‭inactivation‬‭of‬‭the‬‭Na‬‭+‬ ‭channels.‬ ‭The‬ ‭nerve‬ ‭is‬ ‭unable‬ ‭to‬ ‭create‬ ‭an‬‭action‬ ‭potential.‬ ‭ CTION POTENTIAL‬ A ‭Summary‬ ‭It‬ ‭is‬ ‭a‬‭massive‬‭change‬‭in‬‭membrane‬‭voltage‬‭when‬ ‭1.‬ ‭Neurons‬ ‭are‬ ‭not‬ ‭sending‬ ‭signals;‬‭negatively‬ ‭the‬‭membrane potential passes a certain level‬‭.‬ ‭charged.‬ ‭2.‬ ‭All‬‭or‬‭none:‬‭Neurons‬‭will‬‭either‬‭be‬‭stimulated‬ I‭t‬ ‭has‬ ‭a‬‭constant‬‭magnitude,‬‭all-or-none‬‭(triggered‬ ‭or not.‬ ‭or‬ ‭not‬ ‭at‬ ‭all)‬‭,‬ ‭and‬ ‭can‬ ‭transmit‬ ‭signals‬ ‭over‬ ‭long‬ ‭3.‬ ‭Ion‬‭gated‬‭channels‬‭open:‬‭(1)‬‭Cell‬‭becomes‬ ‭distances.‬ ‭more positive, and (2) Action potential‬ ‭4.‬ ‭Period‬ ‭of‬ ‭no‬ ‭action‬ ‭potential‬ ‭and‬ ‭neurons‬ I‭t‬‭occurs‬‭when‬‭neurons‬‭contain‬‭gated‬‭ion‬‭channels‬ ‭cannot be activated (5).‬ ‭open or closed in response to stimuli.‬ ‭ epolarization:‬ ‭It‬ ‭is‬ ‭triggered‬ ‭by‬ ‭the‬ ‭opening‬ ‭ion‬ D ‭channels‬‭.‬ ‭It‬ ‭is‬ ‭a‬ ‭reduction‬ ‭in‬ ‭the‬‭magnitude‬‭of‬‭the‬ ‭membrane potential.‬ ‭ n‬ ‭action‬ ‭potential‬ ‭occurs‬ ‭when‬ ‭the‬ ‭resting‬ A ‭potential is depolarized.‬ ‭27‬ ‭EVOLUTIONARY ADAPTATIONS OF THE AXON‬ T‭ he‬ ‭neurotransmitter‬ ‭diffuses‬ ‭across‬ ‭the‬ ‭synaptic‬ ‭STRUCTURE‬ ‭cleft‬‭and is‬‭received‬‭by the‬‭postsynaptic cell‬‭.‬ ‭The‬‭speed‬‭of‬‭an‬‭action‬‭potential‬‭increases‬‭with‬‭the‬ ‭axon’s diameter‬‭(directly proportional).‬ ‭ yelin‬‭Sheaths:‬‭It‬‭insulates‬‭the‬‭axons‬‭in‬‭vertebrates‬‭,‬ M ‭which‬ ‭causes‬ ‭an‬ ‭action‬ ‭potential’s‬ ‭speed‬ ‭to‬ ‭increase.‬ I‭t‬ ‭is‬ ‭made‬ ‭by‬ ‭glia‬ ‭(glial‬ ‭cells).‬ ‭The‬ ‭glial‬ ‭cells‬ ‭are‬ ‭called differently by location:‬ ‭‬ ‭Oligodendrocytes‬ ‭in‬ ‭the‬ ‭CNS‬ ‭(Central‬ ‭Nervous System)‬ ‭‬ ‭Schwann‬ ‭cells‬ ‭in‬ ‭the‬ ‭PNS‬ ‭(Peripheral‬ ‭Nervous System)‬ ‭ EUROTRANSMITTERS‬ N ‭A‬ ‭single‬ ‭neurotransmitter‬ ‭may‬ ‭bind‬ ‭specifically‬ ‭to‬ ‭more than a dozen different receptors‬‭.‬ ‭ eceptor‬ ‭activation‬ ‭and‬ ‭postsynaptic‬ ‭response‬ R ‭ odes‬‭of‬‭Ranvier:‬‭It‬‭is‬‭the‬‭gaps‬‭between‬‭the‬‭myelin‬ N ‭ends‬‭when‬‭neurotransmitters‬‭are‬‭removed‬‭from‬‭the‬ ‭sheaths‬ ‭where‬ ‭voltage-gated‬ ‭Na‬‭+‬ ‭channels‬ ‭are‬ ‭synaptic cleft.‬ ‭found. It is where‬‭action potentials are performed‬‭.‬ ‭ cetylcholine:‬ ‭It‬ ‭is‬ ‭a‬ ‭common‬ ‭neurotransmitter‬ ‭in‬ A ‭ altatory‬ ‭Conduction:‬ ‭It‬ ‭is‬ ‭a‬ ‭process‬ ‭where‬ S ‭vertebrates‬ ‭and‬ ‭invertebrates.‬ ‭It‬ ‭is‬ ‭involved‬ ‭in‬ ‭action‬ ‭potentials‬ ‭in‬ ‭myelinated‬ ‭axons‬ ‭jump‬ ‭muscle‬ ‭stimulation,‬ ‭memory‬ ‭formation,‬ ‭and‬ ‭between the nodes of Ranvier‬‭.‬ ‭learning.‬ ‭NEURON COMMUNICATION AT SYNAPSES‬ T‭ he‬ ‭presynaptic‬ ‭neuron‬ ‭synthesizes‬ ‭and‬ ‭packages‬ ‭the‬‭neurotransmitters‬‭in‬‭synaptic‬‭vesicles‬‭located‬‭in‬ ‭the synaptic terminal.‬ T‭ he‬ ‭action‬ ‭potential‬ ‭causes‬ ‭the‬ ‭release‬ ‭of‬ ‭the‬ ‭neurotransmitter‬‭.‬ ‭28‬ ‭ ODULE‬ ‭12.2:‬ ‭THE‬ ‭DIVISIONS‬ ‭AND‬ ‭FUNCTIONS‬ M ‭GLIA / GLIAL CELLS‬ ‭OF THE VERTEBRATE NERVOUS SYSTEM‬ ‭Functions to nourish, support, and regulate neurons.‬ ‭ ervous‬ ‭systems‬ ‭consist‬ ‭of‬ ‭circuits‬ ‭of‬ ‭neurons‬ ‭and‬ N ‭supporting cells‬ ‭ y‬ ‭the‬ ‭time‬‭of‬‭the‬‭Cambrian‬‭explosion,‬‭specialized‬ B ‭systems‬ ‭of‬ ‭neurons‬ ‭had‬ ‭appeared‬ ‭that‬ ‭enabled‬ ‭animals‬ ‭to‬ ‭sense‬ ‭their‬ ‭environments‬ ‭and‬ ‭respond‬ ‭rapidly.‬ ‭ nidarians:‬ ‭The‬ ‭simplest‬ ‭animals‬ ‭with‬ ‭nervous‬ C ‭systems that have‬‭neurons arranged in nerve nets‬‭.‬ ‭These types of Glia are part of the CNS:‬ ‭‬ ‭Ependymal Cells‬ ‭ ore‬ ‭complex‬ ‭animals‬ ‭have‬ ‭nerves‬‭,‬ ‭in‬ ‭which‬ ‭the‬ M ‭‬ ‭Astrocytes‬ ‭axons of multiple neurons are bundled together.‬ ‭‬ ‭Oligodendrocytes‬ ‭BILATERAL ANIMALS & CEPHALIZATION‬ ‭These types of Glia are part of the PNS:‬ ‭‬ ‭Schwann Cells‬ ‭ ephalization:‬ ‭The‬ ‭clustering‬ ‭of‬ ‭sensory‬ ‭organs‬ ‭at‬ C ‭‬ ‭Microglia‬ ‭the front end of the body.‬ ‭ORGANIZATION OF THE VERTEBRATE NERVOUS‬ ‭ entral‬ ‭Nervous‬‭System‬‭(CNS):‬‭It‬‭consists‬‭of‬‭a‬‭brain‬ C ‭SYSTEM‬ ‭and‬ ‭longitudinal‬ ‭nerve‬ ‭cords.‬ ‭Flatworms‬ ‭are‬ ‭the‬ ‭The CNS develops from the hollow nerve cord.‬ ‭simplest cephalized animals.‬ T‭ he‬‭cavity‬‭of‬‭the‬‭nerve‬‭cord‬‭gives‬‭rise‬‭to‬‭the‬‭narrow‬ ‭ eripheral‬ ‭Nervous‬ ‭System‬ ‭(PNS):‬ ‭It‬ ‭consists‬ ‭of‬ P ‭central‬ ‭canal‬ ‭of‬ ‭the‬ ‭spinal‬ ‭cord‬‭and‬‭the‬‭ventricles‬ ‭neurons‬ ‭carrying‬ ‭information‬ ‭into‬ ‭and‬ ‭out‬ ‭of‬ ‭the‬ ‭of the brain.‬ ‭CNS.‬ T‭ he‬‭canal‬‭and‬‭ventricles‬‭fill‬‭with‬‭cerebrospinal‬‭fluid‬‭,‬ ‭Nervous system organization correlates with Lifestyle‬ ‭which‬‭supplies‬‭the‬‭CNS‬‭with‬‭nutrients‬‭and‬‭hormone‬‭s‬ ‭and‬‭carries‬‭away‬‭wastes‬‭.‬‭The‬‭brain‬‭and‬‭spinal‬‭cord‬ S‭ essile‬‭molluscs‬‭(ex:‬‭clams‬‭and‬‭chitons)‬‭have‬‭simple‬ ‭contain:‬ ‭systems (they don’t really move).‬ ‭ ray‬ ‭Matter:‬ ‭Consists‬ ‭of‬ ‭neuron‬ ‭cell‬ ‭bodies,‬ G ‭ ore‬ ‭complex‬ ‭molluscs‬‭(ex:‬‭octopuses‬‭and‬‭squids)‬ M ‭dendrites and‬‭unmyelinated axons‬‭.‬ ‭have more sophisticated systems.‬ ‭ hite‬ ‭Matter:‬ ‭Consists‬‭of‬‭bundles‬‭of‬‭myelinated‬ W ‭axons‬‭.‬ ‭29‬ ‭ pinal‬‭Cord:‬‭It‬‭conveys‬‭information‬‭to‬‭and‬‭from‬‭the‬ S ‭brain‬ ‭and‬ ‭generates‬ ‭basic‬ ‭patterns‬‭of‬‭locomotion.‬ ‭It also produces reflexes independent of the brain.‬ T‭ HE PERIPHERAL NERVOUS SYSTEM‬ ‭It‬‭transmits‬‭the‬‭information‬‭to‬‭and‬‭from‬‭the‬‭CNS‬‭and‬ ‭regulates movement and the internal environment.‬ ‭REGIONALLY SPECIALIZED VERTEBRATE BRAIN‬ ‭Afferent Neurons‬‭→ transmit information TO the CNS‬ ‭Efferent Neurons‬‭→ transmit information AWAY‬ ‭The vertebrate brain has three major regions.‬ ‭FROM the CNS‬ F‭ orebrain:‬ ‭Activities‬ ‭include‬ ‭processing‬ ‭of‬ ‭olfactory‬ ‭input,‬ ‭regulation‬ ‭of‬ ‭sleep,‬ ‭and‬ ‭any‬ ‭complex processing.‬ ‭Midbrain:‬‭Coordinates routing of sensory input.‬ ‭ indbrain:‬ ‭Controls‬ ‭involuntary‬ ‭activities‬ ‭and‬ H ‭coordinates motor activities.‬ ‭The PNS has 2 Efferent Components‬ ‭ otor‬ ‭System:‬ ‭It‬ ‭carries‬ ‭signals‬ ‭to‬ ‭skeletal‬ ‭muscles‬ M ‭and is voluntary.‬ ‭ utonomic‬‭Nervous‬‭System:‬‭It‬‭regulates‬‭the‬‭smooth‬ A ‭ omparison‬ ‭of‬ ‭vertebrates‬‭shows‬‭that‬‭relative‬‭sizes‬ C ‭and cardiac muscles and is generally involuntary.‬ ‭of particular brain regions vary.‬ ‭ ympathetic‬ ‭Division:‬ ‭Regulates‬ ‭arousal‬ ‭and‬ S ‭energy generation (fight-or-flight response)‬ ‭ arasympathetic‬ ‭Division:‬ ‭It‬ ‭has‬ ‭antagonistic‬ P ‭effects‬‭on‬‭target‬‭organs‬‭and‬‭promotes‬‭calming‬ ‭and a return to “rest and digest” functions.‬ ‭30‬ T‭ hese‬ ‭size‬ ‭differences‬ ‭reflect‬ ‭the‬ ‭relative‬ ‭importance of the particular brain function.‬ T‭ he‬ ‭Cerebral‬ ‭Cortex‬ ‭controls‬ ‭voluntary‬ ‭movement‬ ‭and cognitive functions.‬ ‭Frontal Lobe:‬‭It has the following functions‬ ‭‬ ‭Control of skeletal muscles (motor cortex)‬ ‭‬ ‭Decision‬ ‭making‬ ‭&‬ ‭planning‬ ‭(prefrontal‬ ‭cortex)‬ ‭‬ ‭Forming speech (Broca’s area)‬ ‭Temporal Lobe:‬‭It has the following functions‬ ‭‬ ‭Hearing (auditory cortex)‬ ‭‬ ‭Comprehending‬ ‭language‬ ‭(Wernicke’s‬ ‭area)‬ ‭Parietal Lobe:‬‭It has the following functions‬ ‭‬ ‭Sense of touch (somatosensory cortex)‬ ‭‬ ‭Integration‬ ‭of‬ ‭sensory‬ ‭information‬ ‭(Sensory‬ ‭association cortex)‬ ‭Occipital Lobe:‬‭It has the following functions‬ ‭‬ ‭Combining‬ ‭images‬ ‭and‬ ‭object‬ ‭recognition‬ ‭(visual association cortex)‬ ‭31‬

Use Quizgecko on...
Browser
Browser