Maths Formula Sheet Class 10th PDF

Summary

This document is a formula sheet for class 10th mathematics. It covers several chapters such as Real Numbers, Polynomials, and Coordinate Geometry. The formulas are presented in a clear and concise manner.

Full Transcript

FORMULA SHEET MATHS CLASS 10TH 2 CHAPTER 1 REAL NUMBERS 1. A number is prime if it has only two factors, 1 and itself. 2. Every composite number can be expressed as a product of prime factors....

FORMULA SHEET MATHS CLASS 10TH 2 CHAPTER 1 REAL NUMBERS 1. A number is prime if it has only two factors, 1 and itself. 2. Every composite number can be expressed as a product of prime factors. B 3. H C F of two numbers = Product of the smaller power of each common factor in the numbers. U H.C.F. of (30, 45) = 3 x 5 = 15. [30 = 2 x 3 x 5 ;45 = 32 x 5] H 4. L C M of two numbers = Product of the greatest power of each prime factor involved in the numbers. P L C M of ( 30, 45 ) = 2 x 32 x 5 = 90 EX 5. 𝐻 𝐢 𝐹 ( π‘Ž, 𝑏 ) x 𝐿 𝐢 𝑀 ( π‘Ž, 𝑏 ) = π‘Ž x 𝑏 6. 𝐻 𝐢 𝐹 ( π‘Ž, 𝑏, 𝑐 ) x 𝐿 𝐢 𝑀 ( π‘Ž, 𝑏, 𝑐 ) β‰  π‘Ž x 𝑏 x 𝑐 3 CHAPTER 2 POLYNOMIALS 1. x is a variable and π‘Ž0 , π‘Ž1 , … … ….. π‘Žπ‘› be real numbers, n is a positive integer then f(x) = π‘Ž0 + π‘Ž1 π‘₯ + π‘Ž2 π‘₯ 2 + βˆ’ βˆ’ βˆ’ βˆ’ π‘Žπ‘› π‘₯ 𝑛 is a polynomial in the variable of x. 2. The exponent of the highest degree term is called the degree of the polynomial. B 3. Constant Polynomial : 𝑓(π‘₯) = π‘Ž , a is constant. U Linear Polynomial : 𝑓(π‘₯) = π‘Žπ‘₯ + 𝑏 , π‘Ž β‰  0 Quadratic Polynomial : 𝑓(π‘₯)=π‘Žπ‘₯ 2 + 𝑏 π‘₯ + 𝑐 , π‘Ž β‰  0 H Cubic Polynomial : 𝑓(π‘₯) = π‘Žπ‘₯ 3 + 𝑏π‘₯ 2 + 𝑐 π‘₯ + 𝑑 , π‘Ž β‰  0 P 4. A real number β€˜a’ is a zero of the polynomial 𝑓(π‘₯) 𝑖𝑓 𝑓(π‘Ž) = 0 EX 5. A polynomial of degree β€˜n’ can have at most β€˜n’ real zeros. 6. Geometrically, the zeros of the polynomial 𝑓(π‘₯) are the π‘₯ coordinates of the points where the graph 𝑦 = 𝑓 (π‘₯ ) intersects the π‘₯ axis. 7. If 𝛼 π‘Žπ‘›π‘‘ 𝛽 are the zeroes of the quadratics polynomial 𝑓(π‘₯) = π‘Žπ‘₯ 2 + 𝑏 π‘₯ + 𝑐 , π‘‘β„Žπ‘’π‘› 𝑏 Sum of the Zeros = 𝜢 + 𝜷 = βˆ’ π‘Ž 𝑐 Product of the Zeros = 𝜢 𝜷 = π‘Ž 4 8. Given the sum of the zeros and product of the zeros, the quadratic polynomial is k[ π‘₯ 2 βˆ’ π‘₯ (π‘ π‘’π‘š π‘œπ‘“ π‘‘β„Žπ‘’ π‘§π‘’π‘Ÿπ‘œπ‘’π‘ ) + (π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘ π‘œπ‘“ π‘‘β„Žπ‘’ π‘§π‘’π‘Ÿπ‘œπ‘’π‘ )] ; π’Œ [π’™πŸ βˆ’ 𝒙 ( 𝜢 + 𝜷) + 𝜢 𝜷] 9. If 𝜢 + 𝜷 and 𝜢 𝜷 are given / known, then π›‚πŸ + π›ƒπŸ = (𝛂 + 𝛃 ) 𝟐 βˆ’ 𝟐 𝜢 𝜷 π›‚πŸ‘ + π›ƒπŸ‘ = (𝛂 + 𝛃 ) πŸ‘ βˆ’ 3 𝜢 𝜷(𝛂 + 𝛃) π›‚πŸ’ + π›ƒπŸ’ = (π›‚πŸ + π›ƒπŸ ) 𝟐 βˆ’ 𝟐( 𝛂 𝛃)𝟐 10. B If 𝛼, 𝛽, 𝛾 are the zeroes of the cubic polynomial U 𝑓(π‘₯) = π‘Žπ‘₯ 3 + 𝑏π‘₯ 2 + 𝑐 π‘₯ + 𝑑 , then H 𝒃 𝜢+𝜷+𝜸=βˆ’ 𝒂 P 𝒄 𝜢𝜷 + 𝜷𝜸 + 𝜸𝜢 = 𝒂 EX 𝒅 𝜢𝜷𝜸=βˆ’ 𝒂 5 CHAPTER 3 PAIR OF LINEAR EQUATIONS IN TWO VARIABLES 1. πΈπ‘Žπ‘β„Ž π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› (π‘₯, 𝑦 ) π‘œπ‘“ π‘Ž π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 = 0 π‘€β„Žπ‘–π‘β„Ž π‘Ÿπ‘’π‘π‘Ÿπ‘’π‘ π‘’π‘›π‘‘π‘  π‘Ž 𝑙𝑖𝑛𝑒, π‘π‘œπ‘Ÿπ‘Ÿπ‘’π‘ π‘π‘œπ‘›π‘‘π‘  π‘‘π‘œ π‘Ž π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘› π‘‘β„Žπ‘’ 𝑙𝑖𝑛𝑒. 2. A pair of linear equations in two variables π‘₯, 𝑦 is π‘Ž1 π‘₯ + 𝑏1 𝑦 + 𝑐1 = 0; π‘Ž2 π‘₯ + 𝑏2 𝑦 + 𝑐2 = 0 3. π‘Ž1 π‘₯ + 𝑏1 𝑦 + 𝑐1 = 0; π‘Ž2 π‘₯ + 𝑏2 𝑦 + 𝑐2 = 0 Graphically the two straight lines are, B a) Intersecting lines, if π‘Ž1 U β‰  𝑏1 π‘Ž2 𝑏2 H π‘Ž1 𝑏1 𝑐1 Parallel lines, if = β‰  π‘Ž2 𝑏2 𝑐2 P π‘Ž1 𝑏1 𝑐1 b) Coincident lines, if = = (The equations are π‘Ž2 𝑏2 𝑐2 EX dependent linear equations) 4. π‘Ž1 π‘₯ + 𝑏1 𝑦 + 𝑐1 = 0; π‘Ž2 π‘₯ + 𝑏2 𝑦 + 𝑐2 = 0 a) Consistent and have unique solution if π‘Ž1 𝑏 β‰  1 π‘Ž2 𝑏2 b) Consistent and have infinite number of solutions if π‘Ž1 𝑏1 𝑐1 = = π‘Ž2 𝑏2 𝑐2 c) Inconsistent and no unique solution if 6 π‘Ž1 𝑏1 𝑐1 = β‰  π‘Ž2 𝑏2 𝑐2 5. Certain basic facts to know : (π’Š) 𝒙 = 𝟎 π’Šπ’” 𝒕𝒉𝒆 π’†π’’π’–π’‚π’•π’Šπ’π’ 𝒐𝒇 π’š π’‚π’™π’Šπ’” 𝒂𝒏𝒅 π’š = 𝟎 π’Šπ’” 𝒕𝒉𝒆 π’†π’’π’–π’‚π’•π’Šπ’π’ 𝒐𝒇 𝒙 π’‚π’™π’Šπ’”. (π’Šπ’Š ) 𝒙 = 𝒂 ( π’”π’π’Žπ’† 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 )𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒔 𝒂 π’π’Šπ’π’† 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒕𝒐 π’š π’‚π’™π’Šπ’”. (π’Šπ’Šπ’Š ) π’š = 𝒃 ( π’”π’π’Žπ’† 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 )𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒔 𝒂 π’π’Šπ’π’† 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒕𝒐 𝒙 π’‚π’™π’Šπ’”. B (π’Šπ’— ) π‘«π’Šπ’”π’•π’‚π’π’„π’† 𝒕𝒓𝒂𝒗𝒆𝒍𝒍𝒆𝒅 = 𝒔𝒑𝒆𝒆𝒅 𝑿 π’•π’Šπ’Žπ’† U (𝒗 ) 𝑰𝒏 π’”π’–π’Žπ’” π’„π’π’π’”π’Šπ’”π’•π’Šπ’π’ˆ 𝒐𝒇 π’”π’–π’Ž 𝒐𝒓 π’…π’Šπ’‡π’‡π’†π’“π’†π’π’„π’† 𝒐𝒇 𝒕𝒉𝒆 π’…π’Šπ’ˆπ’Šπ’•π’” 𝒂𝒏𝒅 π’“π’†π’—π’†π’“π’”π’Šπ’π’ˆ 𝒕𝒉𝒆 π’…π’Šπ’ˆπ’Šπ’•π’”, H π’Šπ’‡ 𝒕𝒉𝒆 π’–π’π’Šπ’• π’…π’Šπ’ˆπ’Šπ’• π’Šπ’” 𝒙 𝒂𝒏𝒅 𝒕𝒆𝒏𝒕𝒉 π’…π’Šπ’ˆπ’Šπ’• π’Šπ’” π’š, 𝒕𝒉𝒆 π’π’–π’Žπ’ƒπ’†π’“ 𝒔𝒉𝒐𝒖𝒍𝒅 𝒃𝒆 π’•π’‚π’Œπ’†π’ 𝒂𝒔 𝟏𝟎 π’š + 𝒙. P EX 6. Consider the two linear equations 49 π‘₯ + 51 𝑦 = 499 π‘Žπ‘›π‘‘ 51 π‘₯ + 49 𝑦 = 501. The coefficients of π‘₯ π‘Žπ‘›π‘‘ 𝑦 are interchanged in the two equations. In such cases add the two equations, simplify ; subtract the two equations , simplify. Very easy method to solve. 7 CHAPTER 4 QUADRATIC EQUATIONS 1.Standard form of a Quadratic Equation is π‘Žπ‘₯ 2 +𝑏 π‘₯ + 𝑐 =0,π‘Ž β‰  0 2. Examples of Quadratic Eq. : π‘₯ 2 βˆ’6 π‘₯ + 4 = 0,2π‘₯ 2 - 7 π‘₯ = 0 3 3. Examples of Equations which are not Quadratic:π‘₯ + = π‘₯ 2 π‘₯ 2 + π‘₯ 2√π‘₯ βˆ’ 3 = 0. 4. A real number 𝛼 is called a root of the quadratic Equation π‘Žπ‘₯ 2 + 𝑏 π‘₯ + 𝑐 if 𝛼 satisfies the quadratic equation i.e. 𝑖𝑓 𝒂 𝛼 2 + 𝒃 𝛼 + 𝒄 = 𝟎. 𝒙 = B 𝛼 is a solution of the quadratic equation. 5. Zeros of the quadratic polynomial is π‘Žπ‘₯ 2 +𝑏 π‘₯ + 𝑐 = 0 are the same as the roots of the quadratic Equation U H π’‚π’™πŸ +𝑏 π‘₯ + 𝑐 = 0 6. Solving a Quadratic Equation by Factorisation Method: If the P Quadratic Equation π’‚π’™πŸ +𝑏 π‘₯ + 𝑐 = 0 is factorizable into a product of EX two linear factors, then the roots of the quadratic equation can be found by equating each linear factor to β€˜0’. 7. Solving a Quadratic Equation by Formula : The real roots of the βˆ’π‘ Β±βˆšπ‘2 βˆ’4π‘Žπ‘ Quadratic Equation π’‚π’™πŸ +𝑏 π‘₯ + 𝑐 = 0 are given by ; 𝑏2 βˆ’ 2π‘Ž 4π‘Žπ‘ β‰₯ 0. 8. Nature of the roots of the Quadratic Equation depends on 𝐷 = 𝑏 2 βˆ’ 4π‘Žπ‘, which is the Discriminant. 9. The Quadratic Equation π’‚π’™πŸ +𝑏 π‘₯ + 𝑐 = 0 has (𝑖) π‘‘π‘€π‘œ 𝑑𝑖𝑠𝑑𝑖𝑛𝑐𝑑 π‘Ÿπ‘’π‘Žπ‘™ π‘Ÿπ‘œπ‘œπ‘‘π‘  , 𝑖𝑓 𝑏 2 βˆ’ 4π‘Žπ‘ > 0 (𝑖𝑖) π‘‘π‘€π‘œ π‘Ÿπ‘’π‘Žπ‘™ π‘Žπ‘›π‘‘ π‘’π‘žπ‘’π‘Žπ‘™ π‘Ÿπ‘œπ‘œπ‘‘π‘  ( π‘π‘œπ‘–π‘›π‘π‘–π‘‘π‘’π‘›π‘‘ π‘Ÿπ‘œπ‘œπ‘‘π‘  ), 𝑖𝑓 𝑏 2 βˆ’ 4π‘Žπ‘ =0 (𝑖𝑖𝑖)π‘›π‘œ π‘Ÿπ‘’π‘Žπ‘™ π‘Ÿπ‘œπ‘œπ‘‘π‘  , 𝑖𝑓𝑏 2 βˆ’ 4π‘Žπ‘ < 0 8 CHAPTER 5 ARITHMETIC PROGRESSION 1. A sequence π‘Ž1 , π‘Ž2 , … … ….. π‘Žπ‘› is an Arithmetic Progression ( A.P ) if the difference between any two consecutive terms is the same and that is the common difference β€˜d’ which can be positive or negative. 2. General A.P is a, a + d, a + 2d, a + 3d________where a is the first term and d is the common difference. B 3. The π‘›π‘‘β„Ž term of an A.P with a as the first term and d as the common difference is given by, U an = a + (n-1) d ( a10 = a + 9 d ; a16 = a + 15 d ) H 4. Easy way to find some term from the end of the sequence which is an A.P : P Find the 7π‘‘β„Ž term from the end of the sequence EX 17,14,11----- (βˆ’ 40 ). Just write the sequence from the end.( - 40 ), (-37 )-----17. Now for this A.P a = - 40.d = 3 ; a7 = a + 6 d a7 = (- 40) + (6 x 3) = - 22. 5. If you want to find out whether a given number belongs to the A.P,you can find out β€˜a’ the first term and β€˜d’ the common difference of that A.P. Use the formula an = a + (n-1) d. In the place of an substitute the given number, and the values of β€˜a’ and β€˜d’. Find β€˜n’. If n is a positive whole number, then the 9 given number belongs to the A.P. Otherwise it doesn’t belong to that A.P. 6. Sum to n terms of an A.P is denoted as Sn. Sn = n/2 [ 2 a + (n-1) d ] or n/2 [ a + 𝒍 ] where 𝑙 is the last term. 7. Sum of the first β€˜n’ natural numbers = 1 + 2 +3 +-------+n = n ( n+1 ) /2. 8. Sum of the first β€˜n’ odd natural numbers = 1 + 3 + 5 + ---- + ( 2n -1 ) = 𝑛2 9. Sum of the first β€˜n’ even natural numbers = 2 + 4 + 6 + ----- + 2n = n ( n+1 ) B U 10. S1 = a1 ( first term ) ; S2 = a 1 + a 2 ; S3 = a 1 + a 2 + a 3 H and so on. S2 – S1 = a 2 ; S3 – S2 = a3 ; ------ In general an = Sn – Sn-1 P EX 10 CHAPTER 6 TRIANGLES 1. Two figures having the same shape and same size are congruent figures. 2. Two figures having the same shape but B not the same size are similar figures. U 3. All congruent figures are similar but all similar figures H need not be congruent. P 4. Two polygons having the same number of sides will be similar if the corresponding angles of the two polygons are EX equal and the corresponding sides are proportional. 5. Basic Proportionality Theorem : If a line is drawn parallel to one side of a triangle to intersect the other two sides in two distinct points, then the other two sides are divided in the same ratio. 𝐴𝑃 𝐴𝑄 PQ || BC; 𝑃𝐡 = 𝑄𝐢 6. Converse of a Basic Proportionality Theorem: If a line divides any two sides of a triangle in the same ratio, then the 11 line is parallel to the third side. 7. SIMILAR TRIANGLES : (A)A A A SIMILARITY : If the corresponding angles of two triangles are equal, then their corresponding sides are proportional. The two triangles are similar. (B)A A SIMILARITY : If two angles of one triangle are equal to the corresponding two angles of another triangle, the two triangles are similar. (C)S S S SIMILARITY : If the corresponding sides of two triangles are proportional ( the corresponding angles are equal ) then the two triangles are similar. B (D)S A S SIMILARITY : If one angle of a triangle is equal to one angle of U another triangle and the sides including these angles are in the same ratio, then the two triangles are similar. H (E)R H S SIMILARITY : In two right triangles, if the hypotenuse and one side are proportional then the two triangles are similar. P 8.PYTHAGORUS THEOREM : In a right triangle, the square on the EX hypotenuse is equal to the sum of the squares on the other two sides. 9.CONVERSE OF PYTHAGORUS THEOREM : If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle. 10. The line joining the mid points of two sides of a triangle is parallel to the third side and half the third side. 11. The diagonals of a trapezium divide each other proportionally. 12 CHAPTER 7 COORDINATE GEOMETRY 1.The distance of a point from y axis is called the x coordinate or abscissa. 2. The distance of a point from x axis is called the y coordinate or ordinate. 3.Any point on the x-axis will be of the form ( 𝒙, 𝟎 ) 4.Any point on the y-axis will be of the form ( 𝟎, π’š ) B 5. A is ( π’™πŸ, π’šπŸ ) and B is ( π’™πŸ, π’šπŸ ) Distance AB = √(π‘₯2 βˆ’ π‘₯1 )2 + (𝑦2 βˆ’ 𝑦1 )2 U 6. Distance of a point A (x,y) from the origin O = OA =√(π‘₯)2 + (𝑦)2 H 7. Distance of a point 𝑷 ( 𝒙, π’š ) π’‡π’“π’π’Ž 𝒕𝒉𝒆 𝒙 βˆ’ π’‚π’™π’Šπ’™ π’Šπ’” | π’š | π’–π’π’Šπ’•π’”. P 8. Distance of a point 𝑷 ( 𝒙, π’š ) π’‡π’“π’π’Ž 𝒕𝒉𝒆 π’š βˆ’ π’‚π’™π’Šπ’™ π’Šπ’” | 𝒙 | π’–π’π’Šπ’•π’” EX 9.Three points A, B, C are collinear if the sum of the distances between two pairs of points = the distance between the third pair. 𝑷𝑸 + 𝑸𝑹 = 𝑷𝑹. 𝑷, 𝑸, 𝑹 𝒂𝒓𝒆 π’„π’π’π’π’Šπ’π’†π’‚π’“ π’‘π’π’Šπ’π’•π’”. 𝑨π‘ͺ + π‘ͺ𝑩 β‰  𝑨𝑩. 𝑨, 𝑩. π‘ͺ 𝒂𝒓𝒆 𝒏𝒐𝒏 π’„π’π’π’π’Šπ’π’†π’‚π’“ π’‘π’π’Šπ’π’•π’”. 10. SECTION FORMULA : INTERNAL DIVISION : 𝑷(𝒙, π’š) π’…π’Šπ’—π’Šπ’…π’†π’” 𝒕𝒉𝒆 π’π’Šπ’π’† π’‹π’π’Šπ’π’Šπ’π’ˆ 𝑨(π’™πŸ, π’šπŸ) 𝒂𝒏𝒅 𝑩(π’™πŸ, π’šπŸ) 13 π’Šπ’ 𝒕𝒉𝒆 π’“π’‚π’•π’Šπ’ π’Ž ∢ 𝒏 π’Šπ’π’•π’†π’“π’π’‚π’π’π’š. π‘šπ‘₯2 +𝑛π‘₯1 π‘šπ‘¦2 +π‘šπ‘¦1 P(x,y) = , π‘š+𝑛 π‘š+𝑛 EXTERNAL DIVISION : 𝑷(𝒙, π’š) π’…π’Šπ’—π’Šπ’…π’†π’” 𝒕𝒉𝒆 π’π’Šπ’π’† π’‹π’π’Šπ’π’Šπ’π’ˆ 𝑨(π’™πŸ, π’šπŸ) 𝒂𝒏𝒅 𝑩(π’™πŸ, π’šπŸ) π’Šπ’ 𝒕𝒉𝒆 π’“π’‚π’•π’Šπ’ π’Ž ∢ 𝒏 π’†π’™π’•π’†π’“π’π’‚π’π’π’š. π‘šπ‘₯2 βˆ’π‘›π‘₯1 π‘šπ‘¦2 βˆ’π‘šπ‘¦1 P(x,y) = , π‘šβˆ’π‘› π‘šβˆ’π‘› 11. MID – POINT FORMULA : B 𝑰𝒇 𝑷 ( 𝒙, π’š ) π’Šπ’” 𝒕𝒉𝒆 π’Žπ’Šπ’…π’‘π’π’Šπ’π’• 𝒐𝒇 𝒕𝒉𝒆 π’π’Šπ’π’† π’‹π’π’Šπ’π’Šπ’π’ˆ 𝑨(π’™πŸ, π’šπŸ) 𝒂𝒏𝒅 𝑩(π’™πŸ, π’šπŸ) π‘₯2 +π‘₯1 𝑦2 +𝑦1 U 𝑷 ( 𝒙, π’š ) = , 2 2 H 12. Points of Trisection : The points which divide the line joining A and B in the ratio 2 : 1 and 1 : 2 are called the points of Trisection. P 13.To prove that a quadrilateral is a parallelogram, ( given the vertices EX ) prove that the midpoints of both the diagonals are the same. Use the same concept to find the fourth vertex of the parallelogram if three vertices in order are given. 14.To prove that the quadrilateral is a rectangle, ( given the vertices ) prove that the opposite sides are equal and the two diagonals are equal. 15.To prove that the quadrilateral is a rhombus, ( given the vertices ) prove that all the four sides are equal. [ Diagonals are not equal. The diagonals of a rhombus bisect each other at right angles. Important property of a Rhombus ] 16.To prove that the quadrilateral is a square, ( given the vertices ) prove that the four sides are equal and the two diagonals are equal. 14 CHAPTER 8 and 9 INTRODUCTION TO TRIGONOMETRY AND APPLICATION OF TRIGONOMETRY TRIGONOMETRIC RATIOS: In Right triangle ABC, ∠B = 90 Β° Side AC opposite to that is the hypotenuse. B U P H EX Let ∠A =πœƒ AB is the adjacent side and BC is the opposite side. The six trigonometric ratios are explained in the figure 1 1 1 π‘π‘œπ‘  πœƒ cosec ΞΈ = ; sec ΞΈ = ; cot ΞΈ = ; cot ΞΈ = 𝑠𝑖𝑛 πœƒ π‘π‘œπ‘  πœƒ π‘‘π‘Žπ‘› πœƒ 𝑠𝑖𝑛 πœƒ 15 VALUES OF TRIGONOMETRIC RATIOS OF STANDARD ANGLES: Values of Trigonometric ratios of an angle do not vary with the lengths of the sides of the triangle. PYTHOGORUS THEOREM : The square on the hypotenuse is equal to the sum of the squares on the other two sides containing the right angle. Examples of some Pythagorian Triplets : 3, 4, 5 ; 5, 12, 13 ; 8, 15, 17 ; 7, 24, 25 and any multiples of these numbers. B U P H TRIGONOMETRIC IDENTITIES: EX ANGLE OF ELEVATION AND DEPRESSION: 16 CHAPTER 11 CIRCLES RECAPITULATION OF CONCEPTS LEARNT IN IX STANDARD : 1. Equal Chords subtend equal angles at the centre of the circle. 2. Equal chords of congruent circles subtend equal angles at the centre of the circle. 3. Equal chords of a circle are equidistant from the centre of the circle. 4. Equal chords of congruent circles are equidistant from their corresponding centres. B 5. If you consider two chords of a circle, the one which is nearer to the centre is larger than the other. U 6. The perpendicular drawn from the centre of a circle bisects the chord. H 7. Angles in the same segment of a circle are equal. 8. Angle subtended by an arc at the centre of the circle is double the angle P subtended at any other point in the remaining part of a circle. 9. Angle in a semi-circle is a right angle. EX 10. If the four vertices of a quadrilateral lie on a circle, it is a cyclic quadrilateral. 11. The opposite angles of a cyclic quadrilateral are supplementary (Their sum is πŸπŸ–πŸŽΒ°). 12. If one side of a cyclic quadrilateral is produced, then the exterior angle is equal to the interior opposite angle. CONCEPTS IN X STANDARD 1. Tangent is a line which intersects a circle at only one point. 2. Secant is a line which intersects a circle in two points. 3. From a point inside the circle, no tangent can be drawn to that circle. 4. From a point on the circle, only one tangent can be drawn to the circle. 5. From a point outside the circle two tangents can be drawn to the circle. 17 CHAPTER 12 AREAS RELATED TO CIRCLES 1. Perimeter ( Circumference ) of a circle 𝑷 = 𝟐 𝝅 𝒓 𝒐𝒓 𝝅 𝒅 𝒓 = π’“π’‚π’…π’Šπ’–π’”; 𝒅 = π’…π’Šπ’‚π’Žπ’†π’•π’†π’“ 2. Area of a Circle 𝑨 = 𝝅 π‘Ÿ 2 3. Distance travelled by a wheel in one revolution is equal to its circumference. πœƒ 4. Length of an arc of a sector of angle πœƒ 𝑖𝑠 𝑙 = Γ— 2πœ‹π‘Ÿ B 360 5. Perimeter of a sector P = 𝒍 + 𝟐 𝒓 U πœƒ 6. Area of a sector of angle πœƒ 𝑖𝑠 𝑨 = Γ— 𝝅 π‘Ÿ2 360 H π‘™π‘Ÿ 7. Area of a sector is 𝑨 = 2 P 8. Area of the major sector = 𝝅 π‘Ÿ 2 βˆ’ 𝑨𝒓𝒆𝒂 𝒐𝒇 π’Žπ’Šπ’π’π’“ 𝒔𝒆𝒄𝒕𝒐𝒓 EX 9. Area of the minor segment ACB = Area of the minor sector OACBO – Area of the triangle AOB. πœƒ πœƒ 10. Area of triangle AOB if angle AOB is πœƒ 𝑖𝑠 𝝅 π‘Ÿ 2 𝐬𝐒𝐧 π‘π‘œπ‘  𝜽 2 2 ( Can be used if the angle is 60Β° , 90Β°, 120Β° ) 11. Area of Major segment = 𝝅 π‘Ÿ 2 βˆ’ 𝑨𝒓𝒆𝒂 𝒐𝒇 π’Žπ’Šπ’π’π’“ π’”π’†π’ˆπ’Žπ’†π’π’• 18 CHAPTER 13 SURFACE AREA AND VOLUMES CUBOID : 𝑙 = π‘™π‘’π‘›π‘”π‘‘β„Ž 𝑏 = π‘π‘Ÿπ‘’π‘Žπ‘‘π‘‘β„Ž β„Ž = β„Žπ‘’π‘–π‘”β„Žπ‘‘ 1. TSA of the Cuboid = 𝟐 ( 𝒍𝒃 + 𝒃𝒉 + 𝒉𝒍 ) 𝒔𝒒 π’–π’π’Šπ’•π’” 2. CSA of the Cuboid = 𝟐 𝒉 ( 𝒍 + 𝒃 ) 𝒔𝒒. π’–π’π’Šπ’•π’” 3. Volume of the Cuboid = 𝒍 𝒃 𝒉 π’„π’–π’ƒπ’Šπ’„ π’–π’π’Šπ’•π’” 4. Diagonal of the Cuboid = βˆšπ‘™ 2 + 𝑏 2 + β„Ž2 B CUBE : 𝒂 = π’”π’Šπ’…π’† 𝒐𝒇 𝒕𝒉𝒆 π‘ͺ𝒖𝒃𝒆 U 1. TSA of the Cube = πŸ” π‘Ž2 𝒔𝒒. π’–π’π’Šπ’•π’” H 2. CSA of the Cube = πŸ’ π‘Ž2 𝒔𝒒. π’–π’π’Šπ’•π’” 3. Volume of the Cube = π‘Ž3 𝒄𝒖. π’–π’π’Šπ’•π’” P 4. Diagonal of the Cube =√3 a units EX CYLINDER : r = radius h = height 1. CSA of the Cylinder = 𝟐 𝝅 𝒓 𝒉 𝒔𝒒. π’–π’π’Šπ’•π’” 2. TSA of the cylinder = 𝟐 𝝅 𝒓 (𝒉+r) sq units 3. Volume of the cylinder = πœ‹π‘Ÿ 2 β„Ž cu units CONE : 𝒓 = π’“π’‚π’…π’Šπ’–π’” 𝒐𝒇 𝒕𝒉𝒆 𝒃𝒂𝒔𝒆 𝒉 = π’—π’†π’“π’•π’Šπ’„π’‚π’ π’‰π’†π’Šπ’ˆπ’‰π’• 𝒍 = 𝒔𝒍𝒂𝒏𝒕 π’‰π’†π’Šπ’ˆπ’‰π’• 1. CSA of the Cone= 𝝅𝒓𝒍 𝒔𝒒. π’–π’π’Šπ’•π’” 2. TSA of the Cone = 𝝅r(𝒍+r) 𝒔𝒒. π’–π’π’Šπ’•π’” 19 1 3. Volume of the cone = πœ‹π‘Ÿ 2 β„Ž cu units 3 4. Relation between r,h,l is 𝑙 2 = π‘Ÿ 2 + β„Ž2 SPHERE : 𝒓 = π’“π’‚π’…π’Šπ’–π’” 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒑𝒉𝒆𝒓𝒆 1. Surface Area ( TSA = CSA ) of the Sphere = πŸ’ π…π‘Ÿ 2 𝒔𝒒. π’–π’π’Šπ’•π’” 4 2. Volume of the Sphere = πœ‹π‘Ÿ 3 cu units 3 HEMISPHERE : B 𝒓 = π’“π’‚π’…π’Šπ’–π’” 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒑𝒉𝒆𝒓𝒆 1. CSA of the Hemisphere = 𝟐 𝝅 π’“πŸ 𝒔𝒒. π’–π’π’Šπ’•π’” U 2. TSA of the Hemisphere = πŸ‘ 𝝅 π’“πŸ 𝒔𝒒. π’–π’π’Šπ’•π’” H 𝟐 3. Volume of the Hemisphere = π…π’“πŸ‘ c𝒖. π’–π’π’Šπ’•π’” πŸ‘ P HOLLOW CYLINDER : EX 𝑅 𝑖𝑠 π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘œπ‘’π‘‘π‘’π‘Ÿ π‘π‘–π‘Ÿπ‘π‘™π‘’ ; π‘Ÿ 𝑖𝑠 π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘–π‘›π‘›π‘’π‘Ÿ π‘π‘–π‘Ÿπ‘π‘™π‘’ ; β„Ž = β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿ 1. CSA of the Hollow Cylinder = πŸπ…π‘Ήπ’‰ + πŸπ…π’“π’‰ = πŸπ…π’‰ ( 𝑹 + 𝒓 ) 𝒔𝒒. π’–π’π’Šπ’•π’” 2. Area of the top and bottom of the Hollow Cylinder = 𝟐 ( 𝝅 π‘ΉπŸ βˆ’ 𝝅 π’“πŸ ) = 𝟐 𝝅 ( π‘ΉπŸ βˆ’ π’“πŸ ) 𝒔𝒒. π’–π’π’Šπ’•π’” 3. TSA of the Hollow Cylinder = 𝟐 𝝅 𝒉 ( 𝑹 + 𝒓 ) + 𝟐 𝝅 ( π‘ΉπŸ βˆ’ π’“πŸ ) 𝒔𝒒. π’–π’π’Šπ’•π’” 4. Volume of the material of the Hollow Cylinder = π…π‘ΉπŸ π’‰βˆ’ 𝝅 π’“πŸ 𝒉 =𝝅𝒉(π‘ΉπŸ βˆ’π’“πŸ ) 𝒄𝒖. π’–π’π’Šπ’•π’” 20 SPHERICAL SHELL : 𝑅 𝑖𝑠 π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘œπ‘’π‘‘π‘’π‘Ÿ π‘π‘–π‘Ÿπ‘π‘™π‘’ ; π‘Ÿ 𝑖𝑠 π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘–π‘›π‘›π‘’π‘Ÿ π‘π‘–π‘Ÿπ‘π‘™π‘’ 1. Surface area = outer surface area = πŸ’π…π‘ΉπŸ 𝒔𝒒. π’–π’π’Šπ’•π’” 4 2. Volume of the material of the Spherical shell = πœ‹(𝑅3 βˆ’ π‘Ÿ 3 ) cu units 3 COMBINED SOLIDS : 1. WHEN THREE EQUAL CUBES OF SIDE β€˜a ’ ARE JOINED END TO END A CUBOID IS FORMED. Length of the Cuboid = 3 a Breadth of the Cuboid = a B Height of the Cuboid = a U (Only the length will vary depending on the number of cubes joined) P H EX 2. A CONE SURMOUNTED BY A HEMISPHERE : Surface area of the solid = CSA of the Cone + CSA of the Hemisphere = 𝝅 𝒓 𝒍 + 𝟐 𝝅 π’“πŸ 𝒔𝒒. π’–π’π’Šπ’•π’” 3. A CUBE SURMOUNTED BY A HEMISPHERE : 21 Surface Area of the solid = TSA of the Cube – Area of the base circle of the Hemisphere + CSA of the Hemisphere. 4. CYLINDER SURMOUNTED BY A CONE : (CIRCUS TENT SUMS ) B Area of the canvas required for the Circus Tent = CSA of the Cylinder + CSA of the Cone U P H EX 5. A CONE OF MAXIMUM SIZE CARVED OUT FROM A CUBE OF SIDE β€˜a’ The diameter of the base of the cone = 𝟐 𝒓 = 𝒂 = π’”π’Šπ’…π’† 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒖𝒃𝒆. The height ′𝒉′ 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒏𝒆 = 𝒂 = π’”π’Šπ’…π’† 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒖𝒃𝒆. Volume of the remaining solid = Volume of the Cube – Volume of the Cone. TSA of the remaining solid = TSA of the Cube – Area of the base circle of the Cone + CSA of the Cone 22 6. A cylinder of diameter 7 cm is drilled out from a cubical block of dimensions 15 cm X 10 cm X 5 cm. Surface Area of the Remaining Solid = TSA of the Cuboid - Area of the top and bottom Circles of the Cylinder + CSA of the Cylinder. B U H 7. A Cone of same height and same base radius as a cylinder is hollowed out P from the Cylinder : T S A of the remaining solid = CSA of the cylinder + Area of the top Circle of the EX cylinder + CSA of the Cone 8. When lead shots or marbles are dropped in a cylindrical or conical vessel ( vessel of any shape ), the volume of the water raised or the volume of the water overflown = Volume of the lead shots or marbles dropped. ( Principle of Archimedes ) 23 CHAPTER 14 STATISTICS 1. Mean or average π‘₯Μ… of β€˜n’ number of observations = sum of all observations / Total no of observations. βˆ‘ π‘₯𝑖 𝒙̅ = ( i = 1,2,----n) 𝑛 βˆ‘ 𝑓𝑖 π‘₯𝑖 2. Mean for ungrouped data = 𝒙̅ = βˆ‘ 𝑓𝑖 ( i = 1,2,----n) 3. Median of β€˜n’ observations : a. Arrange the given observations in ascending or descending order. B b. If β€˜n’ is odd, median is the [(𝒏+𝟏)/𝟐] 𝒕𝒉 observation. U c. If β€˜n’ is even, median=[𝒏/𝟐 𝒕𝒉 π’π’ƒπ’”π’†π’“π’—π’‚π’•π’Šπ’π’+(𝒏/𝟐+ 𝟏) 𝒕𝒉 π’π’ƒπ’”π’†π’“π’—π’‚π’•π’Šπ’π’Γ· 𝟐 4. Mode : The most frequently repeated observation. H 5. Mean, Median and Mode are called the Measures of Central Tendency. P CONCEPTS IN X STANDARD : EX 1. Class Mark is the Mid-Point of the Class Interval. (Upper Class Limit + Lower Class Limit) /2 2. Mean of Grouped Data : Mean by Assumed Mean Method : βˆ‘ 𝑓𝑖 𝑑𝑖 π‘₯Μ…= π‘Ž + βˆ‘ 𝑓𝑖 ; a = Assumed Mean ; 𝑑𝑖 = π‘₯𝑖 βˆ’ π‘Ž βˆ‘ 𝑓 𝑖 𝑒𝑖 3. Mean by Step Deviation Method : π‘₯Μ…= π‘Ž + [ βˆ‘ 𝑓𝑖 (h)] 𝑒𝑖 = π‘₯π‘–βˆ’π‘Ž/β„Ž 𝑓1 βˆ’π‘“0 4. Mode of Grouped Data : Mode = 𝑙 + [([( ) Γ— β„Ž] 2𝑓1 βˆ’π‘“0 βˆ’π‘“2 𝑙 = π‘™π‘œπ‘€π‘’π‘Ÿ π‘™π‘–π‘šπ‘–π‘‘ π‘œπ‘“ π‘šπ‘œπ‘‘π‘Žπ‘™ π‘π‘™π‘Žπ‘ π‘ . ( 𝑴𝒐𝒅𝒂𝒍 𝒄𝒍𝒂𝒔𝒔 π’Šπ’” 𝒕𝒉𝒆 𝒐𝒏𝒆 π’˜π’Šπ’•π’‰ π’‰π’Šπ’ˆπ’‰π’†π’”π’• π’‡π’“π’†π’’π’–π’†π’π’„π’š ) 𝑓1 = π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘œπ‘‘π‘Žπ‘™ π‘π‘™π‘Žπ‘ π‘  24 𝑓0 = π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘Ÿπ‘’π‘π‘’π‘’π‘‘π‘–π‘›π‘” π‘π‘™π‘Žπ‘ π‘  𝑓2 = π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘œπ‘“ π‘‘β„Žπ‘’ 𝑠𝑒𝑐𝑐𝑒𝑑𝑖𝑛𝑔 π‘π‘™π‘Žπ‘ π‘  β„Ž = 𝑠𝑖𝑧𝑒 π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘œπ‘‘π‘Žπ‘™ π‘π‘™π‘Žπ‘ π‘  𝑁 ( βˆ’πΉ) 2 5. Median for grouped Data : Median = 𝑙 + [ Γ— β„Ž] 𝑓 𝑙 = π‘™π‘œπ‘€π‘’π‘Ÿ π‘™π‘–π‘šπ‘–π‘‘ π‘œπ‘“ π‘šπ‘’π‘‘π‘–π‘Žπ‘› π‘π‘™π‘Žπ‘ π‘  Median class is the corresponding class in which the cumulative frequency is just greater than N/2 𝑓 = π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘’π‘‘π‘–π‘Žπ‘› π‘π‘™π‘Žπ‘ π‘  𝐹 = π‘π‘’π‘šπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘Ÿπ‘’π‘π‘’π‘’π‘‘π‘–π‘›π‘” π‘π‘™π‘Žπ‘ π‘  B 𝑁 = βˆ‘ 𝑓𝑖 β„Ž = 𝑠𝑖𝑧𝑒 π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘’π‘‘π‘–π‘Žπ‘› π‘π‘™π‘Žπ‘ π‘ . U 6. For finding median, the class interval should be continuous. If not, make it continuous. H Ex : Consider 3 Class intervals which are not continuous. 110 – 119 , 120 – 129, 130 – 139. P The difference between the upper limit of one class interval and the lower limit EX of the consecutive class interval is 1. ( 120 – 119 = 1 ) Divide the difference 1 by 2. You get 0.5. Subtract 0.5 from lower limits, add 0.5 to upper limits. The new continuous Class Intervals are 109.5 – 119.5 , 119.5 – 129.5 , 129.5 – 139.5. Now h = 10. 7. If instead of Class intervals, given less than 20, less than 25 -----, then cumulative frequency is given. A proper tabular column with Class interval and frequency to be prepared. 8. Empirical Relationship between Mean, Median and Mode : 3 Median = Mode + 2 Mean 25 CHAPTER 15 PROBABILITY 1. Probability is the likelihood of occurrence of an event. 2. Probability of an event A is denoted by P ( A ). π‘π‘œ.π‘œπ‘“ π‘“π‘Žπ‘£π‘œπ‘’π‘Ÿπ‘Žπ‘π‘™π‘’ π‘œπ‘’π‘‘π‘π‘œπ‘šπ‘’π‘  𝑛(𝐴) 𝑃(𝐴) = = S is called the sample space. π‘π‘œ.π‘œπ‘“ π‘Žπ‘™π‘™ π‘π‘œπ‘ π‘ π‘–π‘π‘™π‘’ π‘œπ‘’π‘‘π‘π‘œπ‘šπ‘’π‘  𝑛(𝑆) 3. TOSSING A COIN : A ) When a coin is tossed once, 𝑆 = {𝐻 , 𝑇} 𝑛( 𝑆 ) = 2 B ) When one coin is tossed twice or 2 coins are tossed once, B 𝑆 = {( 𝐻, 𝐻 ), ( 𝐻, 𝑇 ), ( 𝑇, 𝐻 ), (𝑇, 𝑇)} 𝑛 ( 𝑆 ) = 22 = 4 U C ) When one coin is tossed thrice or 3 coins are tossed once, 𝑆 = {( 𝐻,𝐻,𝐻 ), (𝐻,𝐻,𝑇), (𝐻,T,𝐻 ), (𝐻,𝑇,𝑇), ( 𝑇,𝐻,𝐻), (𝑇,𝐻,𝑇), (𝑇,𝑇,𝐻), 𝑇, 𝑇, 𝑇)} H 𝑛(𝑆) = 23 = 8. In general if one coin is tossed β€˜n’ times or β€˜n’ coins are tossed once , 𝑛(𝑆) = 2𝑛 P 4. THROWING A DIE : EX A ) When a die is thrown once, 𝑆 = {1, 2, 3, 4, 5, 6 } 𝑛 (𝑆) = 6 B ) When a pair of dice are thrown once or a die is thrown twice (1,1), (1,2), βˆ’ βˆ’ βˆ’(1,6) (2,1), (2,2), βˆ’ βˆ’ βˆ’(2,6) (3,1), (3,2), βˆ’ βˆ’ βˆ’(3,6) 𝑆= (4,1), (4,2) βˆ’ βˆ’ βˆ’ (4,6) (5,1), (5,2), βˆ’ βˆ’ βˆ’(5,6) { (6,1), (6,2), βˆ’ βˆ’ βˆ’(6,6) 𝑛(𝑆) = 62 = 36 C ) When three dice are thrown once or one die is thrown thrice 𝑛(𝑆) = 63 =216. 5. Playing Cards : 26 Total number of cards in a deck = 52. No. of red cards = No. of black cards = 26 No. of cards in each suit = 13 No. of face cards = 12 6. 𝑃 ( 𝐴̅) is the probability of event A not happening. 7. 𝑃 ( 𝐴 ) + 𝑃 ( 𝐴̅) = 1 ; 𝑃 ( 𝐴̅) = 1 βˆ’ 𝑃 ( 𝐴 ) 𝐴 π‘Žπ‘›π‘‘ π΄Μ…π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘šπ‘π‘™π‘’π‘šπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦ 𝑒𝑣𝑒𝑛𝑑𝑠. 8. π‘ƒπ‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘œπ‘“ π‘Ž π‘ π‘’π‘Ÿπ‘’ 𝑒𝑣𝑒𝑛𝑑 𝑖𝑠 1. 9. π‘ƒπ‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘œπ‘“ π‘Žπ‘› π‘–π‘šπ‘π‘œπ‘ π‘ π‘–π‘π‘™π‘’ 𝑒𝑣𝑒𝑛𝑑 𝑖𝑠 0. 10. 𝟎 ≀ 𝑷 ≀ 𝟏 11. The sum of the probabilities of all the outcomes ( elementary events ) of an B experiment is 1. 12. 𝑨𝒕 𝒍𝒆𝒂𝒔𝒕 π’Žπ’†π’‚π’π’” β‰₯ ( π’ˆπ’“π’†π’‚π’•π’†π’“ 𝒕𝒉𝒂𝒏 𝒐𝒓 𝒆𝒒𝒖𝒂𝒍 𝒕𝒐 ) U 13. 𝑨𝒕 π’Žπ’π’”π’• π’Žπ’†π’‚π’π’” ≀ ( 𝒍𝒆𝒔𝒔𝒆𝒓 𝒕𝒉𝒂𝒏 𝒐𝒓 𝒆𝒒𝒖𝒂𝒍 𝒕𝒐 ) H 14. Difference between β€˜or’ and β€˜and β€˜ in probability sums. Ex : Consider numbers from 1 to 20. Find the probability of numbers divisible by P (i)2 or 3(ii) 2 and 3. EX For the ( i ) subdivision, consider numbers divisible by 2 and numbers divisible by 3 for favourable outcomes subtracting numbers divisible by both 2 and 3. ( since repeated in both ). For the ( ii ) subdivision, consider numbers divisible by both 2 and 3 ( numbers divisible by 6 ) as favourable outcome

Use Quizgecko on...
Browser
Browser