Diseño de Explotaciones e Infraestructuras Mineras Subterráneas PDF

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Document Details

BrighterJadeite3904

Uploaded by BrighterJadeite3904

Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Minas y Energía

2018

Tags

mining engineering underground mining mine design mining operations

Summary

This document is a chapter from a higher education engineering textbook on mining. It covers topics such as the design of vertical shafts for underground mines and the importance of selecting appropriate locations. It was published by Universidad Politecnica de Madrid in November 2018.

Full Transcript

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS Diseño de Explotaciones e Infraestructuras Mineras Subterráneas Noviembre – 2018 Capítulo 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN OBJETIVOS DEL TEMA 1. Conocer la importancia del pozo minero y la necesidad de...

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS Diseño de Explotaciones e Infraestructuras Mineras Subterráneas Noviembre – 2018 Capítulo 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN OBJETIVOS DEL TEMA 1. Conocer la importancia del pozo minero y la necesidad de acertar en su correcto dimensionamiento y construcción. 2. Conocer los criterios que gobiernan la selección del emplazamiento de un pozo. 3. Conocer los criterios para definir el diámetro en el dimensionamiento de un pozo. 4. Conocer los criterios para decidir las características del revestimiento de un pozo. 5. Conocer el criterio para el diseño de los enganches a los distintos pisos. 6. Conocer los aspectos a tener en cuenta en el diseño de las entradas a un pozo. 7. Conocer los métodos y profundización existentes. técnicas de 1. IMPORTANCIA DEL POZO MINERO El pozo de extracción es la apertura más importante en minas subterráneas y por él pasan todos los suministros para la explotación tales como ventilación, transporte de mineral, suministros y personas, electricidad, aire comprimido, agua, bombeo. Una vez perforado admite escasas posibilidades de modificación, por lo que su adecuado diseño inicial contemplando su eficiencia durante toda la vida operativa del pozo, que no de la mina, es uno de los parámetros más críticos. Dada su importancia, debe escogerse adecuadamente su ubicación, su diámetro, el método de profundización, el recubrimiento de las paredes del pozo, el brocal, los enganches en los niveles y la maquinaria de extracción. La capacidad del pozo se diseñará pensando en posibles ampliaciones de producción posteriores. DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM 2. ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 18 SELECCIÓN DE LA UBICACIÓN DEL POZO Los pozos de extracción no deben ser afectados por las inundaciones, y para ello se analizará la máxima venida de los cien años. Tampoco deben situarse demasiado próximos a carreteras de gran circulación, ni en entornos industriales que puedan ser objeto de a), b), c), minas con tres pozos. d) mina con cuatro pozos incendios con gran producción de humos. En los parajes boscosos con árboles incendiables, se talará previamente un radio de unos 100 m y se eliminará la vegetación que pueda incendiarse, todo ello con el fin de evitar que entren humos en la ventilación. Se analizarán todas aquellas cuestiones externas que pudieran poner en peligro la vida de los trabajadores y la integridad de la mina y que pueden influir en la decisión sobre el emplazamiento del pozo. Localización de los dos pozos de una mina: A) En el centro de gravedad, B) En el muro con el eje de unión en dirección de la corrida. El número mínimo de pozos que deben excavarse para la explotación de la mina es dos, siendo dedicado uno de ellos para producción, personal, entrada de materiales, equipos y aire. El otro pozo es para el retorno del aire y como vía adicional de escape. A veces es necesario la excavación de tres pozos cuando la extensión de la mina no permite una adecuada ventilación con dos pozos. Cuatro pozos serán necesarios cuando las necesidades de producción doblen aproximadamente la capacidad de DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN colocarán en posición central y los dos de ventilación en posición extrema en la dirección de la corrida. Si el yacimiento es alargado en la dirección del buzamiento tres pozos se colocarán en le centro y el cuarto en la zona en la que el yacimiento está más próximo a la superficie. una eventual mina de dos pozos con la mitad de producción. Dos pozos: La posición central (a) de los pozos tiene las ventajas de menores costos de transporte y recorridos menores del aire de ventilación. Los pozos deben estar separados al menos 100m. Sin embargo, la necesidad de dejar unos macizos de protección importantes reduce la reserva explotable. En yacimientos tabulares monocapa a profundidad moderada es la ubicación más eficaz. Una localización lateral (b) a muro del yacimiento, incrementa los costes de transporte y las distancias de ventilación, pero no se hace imposible la explotación de parte de las reservas mineras por la existencia de los macizos de protección de los pozos. El eje de unión de los pozos será paralelo a la dimensión máxima del yacimiento, y si los pozos son rectangulares el eje mayor se pondrá perpendicular a la corrida de la capa o filón, a la esquistosidad, a los planos de sedimentación, y a los esfuerzos tectónicos regionales y planos de exfoliación de las rocas en presencia. Tres pozos: El pozo principal suele tener un diámetro(7 a 8 m) mayor que los auxiliares de ventilación (5 a 6 m). Si el pozo principal se coloca en el centro de gravedad del yacimiento, los pozos auxiliares se colocarán en los extremos opuestos de la dirección de la corrida siempre que la longitud de la concesión minera en esta dirección sea 2 a 3 veces mayor que en la dirección del buzamiento. En el caso de un yacimiento masivo, estrecho, alargado en el sentido de la corrida el pozo principal se sitúa en el centro y a muro; los pozos auxiliares se ubican en los extremos y fuera del yacimiento. Si el área a minar se alarga en el sentido del buzamiento el pozo principal y uno de los auxiliares se colocan en el centro del yacimiento, mientras que el segundo pozo auxiliar se colocará en la zona del yacimiento más próxima a la superficie Cuatro pozos: En este caso el pozo principal se usará para extraer la producción y como entrada, el segundo pozo para personal y entrada de materiales y los otros dos para ventilación. Los cuatro pozos serán de diámetro similar. Los dos primeros se Pág.: 19 3. DIÁMETRO DEL POZO En el pozo principal o de producción, el diámetro se evalúa de modo que sea el mínimo requerido para la circulación de las jaulas ó skips y para dar espacio a los conductos eléctricos, de aire comprimido, de agua fresca, de ventilación, bombeo y relleno en su caso y para la escala del escape de emergencia. Se realiza un plano de la sección del pozo y se dibujan la sección y disposición de cada uno de los elementos anteriores, adaptando en lo necesario el contorno del pozo. Se tendrá en cuenta las distancias mínimas a considerar entre los elementos móviles y las paramentos del pozo. Se comprueba que la cantidad y la velocidad del aire de ventilación son las especificadas. El volumen de los skips se estima de la forma siguiente: Sea Q la carga máxima de mineral del skip que se quiere utilizar para una producción diaria de W toneladas, siendo T las horas de extracción diarias. Se tiene: Q= ktW 3600T Dónde: k es un factor de irregularidad = 1,5 para dos skips y = 1,25 para solo un skip o jaula; t = t1 + t2 es el tiempo total de en ciclo en s, (t1 es tiempo de funcionamiento, t2 es el tiempo de parada). El volumen del skip es: P= Q γ dónde ? es la densidad aparente de la carga de 3 mineral en t/m . Para carbón se toma un valor entre 0,8 - 0,85 y para minerales, de 1,4 a 1,5. Basándose en estas estimaciones y cálculos y teniendo en cuenta las consideraciones previas KF, Unrug propone el ábaco de la página siguiente siguiente para la evaluación de los principales parámetros del pozo: DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 20 Ábaco para la determinación de diferentes parámetros y la capacidad de extracción con 1 y 2 skips. 4. REVESTIMIENTO DEL POZO El revestimiento del pozo cumple las misiones de servir de soporte a los equipos y sostener las paredes. En los pozos modernos de sección circular o elíptica el revestimiento se hace de hormigón armado con un espesor mínimo de 20 cm., aunque en pozos de sección rectangular perforados en rocas competentes puede usarse revestimiento de madera. Antiguamente se ha usado revestimiento de ladrillo o de bloque. Las ventajas del hormigón son las posibilidades de conseguirse resistencias altas de hasta 50 Mpa y que puede impermeabilizarse para presiones hidrostáticas no demasiado elevadas de los niveles freáticos. Normalmente el revestimiento no se calcula en pozos realizados en rocas duras ya que la resistencia del hormigón es inferior a las tensiones de la roca, por lo que el hormigón no debería estar sometido a presiones del terreno. Sin embargo el brocal y la parte de pozo excavado en el terreno de recubrimiento sí pueden estar sometidos a tales esfuerzos del terreno DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN o de la presión del freático. La presión del agua se calcula fácilmente como la altura máxima de la columna de agua, y la presión debida a terrenos no cohesionados (arenas) como el producto altura x densidad. Si los terrenos están cohesionados conviene recurrir a un especialista en geotecnia o mecánica de suelos. Pág.: 21 Para el cálculo del revestimiento del brocal y del recubrimiento es prudente suponer que la columna de agua llega hasta la superficie y que al menos el 70% de la presión máxima teórica del terreno activo se aplica a lo largo de toda la embocadura del pozo. Para calcular el espesor de hormigón del brocal y del     Rc d = r ⋅ − 1  1   R − Fp 2 c   revestimiento en el recubrimiento se utilizan las siguientes expresiones:   Rc d = r ⋅ − 1  Rc − 2pF    en el caso de que se considere que la presión se aplica de golpe provocando una reacción elástica del hormigón ( fórmula de Lamé), o bien en el caso en que la presión sea alta y se aplica gradualmente, provocando una reacción plástica del hormigón (fórmula de Huber). d = espesor del revestimiento en m r = radio interior del pozo en m Rc = resistencia del hormigón en Mpa p = presión externa que actúa sobre el hormigón en Mpa F = 2, coeficiente de seguridad respecto de la tensión de compresión EJEMPLO Hallar el espesor d de hormigón necesario para un pozo circular sometido a presión externa mediante la fórmula de Lamé. Datos: Diámetro interior del pozo D = 6,1 m Presión externa p = 1,4 MPa Resistencia del hormigón a los 28 días R = 25 Mpa Solución:   25 d = 3,05 ⋅  − 1 = 0,412 m  25 − 2 ⋅ 2 ⋅ 1,4    Diferentes formas de brocal de pozos (Urug, 1985) La forma del brocal depende de las condiciones del terreno. El primer tramo se reviste con un espesor de 1 a 2 m; el siguiente tramo es de 0.6 a 1 m de espesor o aproximadamente dos veces el espesor del revestimiento normal del pozo. El espesor en el tercer tramo estará entre el del primero y el del revestimiento normal. La base de la embocadura se asentará en roca firme, a 2 ó 3 m por debajo del terreno de recubrimiento. La forma es a menudo de doble tronco de cono para mejor transmitir los esfuerzos. Además de los esfuerzos descritos, pueden inducirse otros por la presencia de fundaciones ó cimentaciones próximas. Se define una zona de influencia por el cono de eje vertical con 35º de semiángulo en el vértice con éste en la base de la cimentación. El efecto de cargas adicionales será despreciable cuando la distancia horizontal del borde del pozo a la cimentación sea mayor que (ho-hf)• tg 55º, donde ho es la profundidad de la embocadura del pozo y hf es la profundidad de la cimentación. DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 22 5. ENTRADAS HORIZONTALES AL POZO Las entradas en los pozos de ventilación, sin maquinaria de extracción, deben calcularse en función de la mínima resistencia a la circulación del aire. Zona de influencia de otras cimentaciones próximas. Se dibuja el semicono cuyo eje vertical forma 35º con la generatriz y cuyo vértice se encuentra en el vértice de base de la cimentación. El efecto de las cargas adicionales será despreciable cuando LO es mayor que (hO-hF) tg 55º, siendo hO la profundidad del brocal del pozo, y hF la profundidad de la cimentación de la construcción aneja. (Urug,1985) Las dimensiones de las entradas en los niveles de un pozo de extracción se calcularán de acuerdo con el ancho y el número de skips y jaulas que se elevan a ese nivel, número de pisos por jaula y la longitud máxima de los equipos y suministros que deban descargarse en el nivel. Además se comprueba que la sección eficaz es suficiente para la ventilación requerida: las velocidades de aire recomendadas son de 4 m/s para los pozos de producción y de 8 m/s para los pozos de ventilación. En la entrada del nivel se debe además prever Cálculo de la altura de la entrada: H = (L-D) tg 45º. D = diámetro del pozo, a = 45º. espacio para los empujadores, giro y volteo de plataformas y vagonetas, galerías para entrada y salida simultánea de personal de las jaulas multipiso, nichos para equipos de control, bypass alrededor del pozo, etc. La altura de la entrada en el nivel se determina por la máxima longitud de los objetos transportados como, por ejemplo, los carriles de las vías. DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 23 es hoy lo comúnmente empleado, y recurriéndose a contratistas externos para ello. 6. PROFUNDIZACIÓN DE POZOS De todas las aperturas realizadas en las minas los pozos son la obras más costosas en tiempo y dinero. Además la profundización de pozos es un Excepto a grandes profundidades, los pozos perforados en roca dura no requieren consideraciones especiales para el mantenimiento de la estabilidad del paramento. Los pozos se perforan de arriba abajo, aunque en Operación de profundización procedimiento complicado. Aunque algunos pozos se perforan mediante sondeos de gran diámetro, en la mayoría se emplea el método tradicional de perforación y voladura bien de sección rectangular con sostenimiento de madera bien de sección circular con sostenimiento de hormigón, que Esquema de perforación para un pozo de 9 m de diámetro DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN minas ya existentes a veces se realizan de abajo a arriba. A título de ejemplo se muestra en las figuras adjuntas un esquema de perforación y disparo de la pega y algunos casos de perforación de pozos. 7. PROFUNDIZACIÓN DE SISTEMA TRADICIONAL POZOS POR EL Cuando se trata de minas ya establecidas con pozos gemelos la operación de profundización se facilita ya que se reprofundiza el pozo auxiliar y con una galería se llega a la proyección del pozo principal y se sube en realce con sección estrecha que se ensancha bajando. Para proteger el personal se deja un macizo de 5 a 10 m en el fondo del pozo que se destruye en el último momento. Con un solo pozo es más frecuente trabajar en caldera descendente o en calderilla, para lo cual se construye un techo de madera bajo el cual se trabaja. Cuando el terreno es suelto y descompuesto y la venida de agua importante se emplean métodos especiales que se encargan a empresas especializadas. Cabezal de profundización Pág.: 24 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Skip de seguridad Pág.: 25 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 26 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 27 Dos tipos de máquina de desescombro de la pega del fondo del pozo durante la profundización Este método permite explotar yacimientos en el permafrost que de otro modo sería imposible. 8. OTROS MÉTODOS DE PROFUNDIZACIÓN 8.1. MÉTODO DE CONGELACIÓN Consiste en congelar el terreno suelto y muy acuífero y perforar el pozo en la zona congelada. Para ello se hacen una serie de sondeos en círculo a 2 ó 3 m del contorno del futuro pozo y separados 1 m entre sí hasta llegar a una base firme impermeable. Estos sondeos se entuban con tubos cerrados por el fondo y se introduce en ellos, mediante otros tubos de menor diámetro, una lejía o salmuera de cloruro magnésico o cálcico, refrigerada de –19 a –25ºC. El terreno se congela y el pozo puede perforarse. La verticalidad de los sondeos es extremadamente importante porque en caso contrario pueden quedar zonas sin congelar. DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM 8.2. ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN MÉTODO DE HONIGMANN Deriva del antiguo King Chaudron, en desuso y que utilizaba grandes trépanos de percusión. En el Honigmann el trépano es rotativo y los residuos se extraen por circulación de lodos, bajando por el pozo y saliendo por el varillaje, inyectando aire comprimido. El pozo se mantiene siempre lleno de agua y lodo, y se parece un rotary grande. Terminada la profundización se introduce un revestimiento cilíndrico de chapa que se empalma por secciones y se hunde poco a poco. Cuando llega al fondo se cementa el hueco entre el revestimiento y el terreno eliminando el lodo con agua limpia lo que a veces da lugar a presiones y hundimientos. El método es bueno para terrenos blandos y profundidades medias. 8.3. Pág.: 28 MÉTODO DE CEMENTACIÓN Consiste en inyectar una lechada de cemento a presión a través de una corona de sondeos. La cementación cierra las grietas y poros impermeabilizando el terreno. Las grietas deben tener más de 0,1 mm de ancho para admitir la lechada. En las arenas solo puede aplicarse cuando son lo suficientemente permeables para no comportarse como un filtro y detener el cemento rápidamente. Este método sirve también para galerías cimentaciones etc. Al secar el macizo se profundiza por el método ordinario y es de excelente aplicación en rocas firmes con grietas no demasiado grandes y sin arcilla ya que esta es un veneno que impide el fraguado del cemento. La cementación se hace desde el fondo y solo en los tramos con grietas. Perforación de pozos por el método ascendente a pleno diámetro 1. 2. 3. 4. 5. 6. 7. Compartimento de evacuación del escombro Escala de paso de personal compartimento del recipiente de evacuación almacenamiento del escombro nivel inferior del pozo macizo de protección sondeo de ventilación desde la caldera del pozo superior DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN 8.6. 8.4. MÉTODO DE HINCA En este método el revestimiento se clava en el terreno a medida que se completa su construcción por la parte superior y se extraen las tierras interiores. Para ello el revestimiento apoya sobre un anillo o rodete cortante de acero pudiendo ser el resto de hormigón o de anillos de fundición. Cuando su propio peso no basta se ayuda a hincar el revestimiento con gatos hidráulicos, inyectando aire comprimido, lubricante con tubos por detrás del revestimiento, etc. Este método solo se aplica en terrenos blandos o sueltos con agua y hasta 30 m de profundidad. Se trabaja a nivel lleno por lo que para sacar las tierras se emplean cucharas y buzos si es preciso. 8.5. MÉTODO DE TABLESTACAS Se trabaja como en el avance de galerías en terrenos inconsistentes y acuíferos en los que la fortificación se clava avanzada sobre el arranque, para evitar que las tierras fluyan inundando el hueco abierto. Se llega hasta 25 m de profundidad. Las tablestacas se solapan entre sí impidiendo el paso de las tierras y se clavan a maza o con peso suspendido o martinete. Son de madera o metálicas y se apoyan en cuadros de madera o en anillos metálicos como en el avance de galerías Pág.: 29 MÉTODO DE DESECACIÓN Consiste en bajar el nivel del acuífero mediante bombas introducidas en sondeos de diámetro elevado, alrededor del futuro pozo, para a continuación proceder como habitualmente. 8.7. MÉTODOS TURBO-ROTARY Y CON CORONA El turbo-rotary utiliza turbinas en el fondo junto a triconos transmitiéndose una gran potencia con motores. El de corona utiliza una corona de 3 a 4 m de diámetro con 12 triconos en su borde y saca un testigo central cada 5 m de profundización DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Perforación ascendente del pozo con el escariador ascendente de gran diámetro (a) Perforación del sondeo piloto (b) Ensanchamiento ascendente por escariado de gran diámetro Pág.: 30 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM 8.8. ETSIMM MÉTODOS ALIMAK CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 31 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM 9. ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Pág.: 32 DIVISIÓN DEL POZO EN COMPARTIMENTOS Una vez perforado y revestido, se instalarán en el pozo los diferentes elementos necesarios para la operación. En primer lugar se instalan las traviesas y los guionajes. El pozo se divide en compartimentos y se instalan las jaulas y skips definitivos. Se dotará al pozo de la escala de escape y de la plataforma de salida. La tubería de ventilación estará en su compartimento así como la tubería de agua, aire comprimido, de evacuación del bombeo, de energía, de introducción de rellenos, y alguna conducción de respeto. En la siguiente figura se ve un esquema de la distribución de la sección de un pozo: Pozo vertical de sección rectangular. El skip se guía con cables y la jaula con guionaje de madera. 10. ENGANCHES Se llaman así a las galerías que, en los niveles, enlazan el pozo con los transversales y sirven para las maniobras de carga y descarga. En los enganches de interior cuando se utilizan vagonetas, se realiza la recepción de los vagones cargados, desenganchado de los mismos, carga y descarga de las jaulas, reunión de vagones vacíos y formación de trenes, tanto vacíos como con material y para circulación de material. En el de superficie hay que cargar y descargar las jaulas, pero los vagones circulan sueltos en dirección a los basculadores o al almacén y vuelven vacíos o con material. Sección de un pozo circular forrado de hormigón. Posición de los diferentes compartimentos entradas En cualquier caso se utiliza la gravedad para ayudar al movimiento de los vagones y además cables, cadenas rastreras, empujadores, o bien, frenos y topes. Los enganches para skips tienen ventajas sobre los de vagones. La capacidad de extracción es mayor, el coste de la instalación es menor, menos pérdidas de tiempo, automatismo más fácil y menos personal de operación. Sin embargo, desmenuzan más el mineral, las excavaciones son mayores para alojar tolvas, producen más polvo y vertidos a la caldera del pozo durante la carga de los skips. DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Enganche de un solo nivel con maniobra en jaula de varios pisos. Pág.: 33 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 2 DISEÑO DE POZOS VERTICALES DE EXTRACCIÓN Enganche para skips Pág.: 34 Capítulo 3 DISEÑO Y CONSTRUCCIÓN DE PLANOS INCLINADOS OBJETIVOS DEL TEMA 1. 1. Conocer la función e importancia de los planos inclinados. 2. Conocer los criterios para definir la ingeniería asociada a un plano inclinado. 3. Entender las dificultades inherentes al diseño y construcción de un plano inclinado. Para yacimientos de poca profundidad que hayan de explotarse por minería subterránea, y para yacimientos de profundidad media (500 m), se prefiere realizar planos inclinados en vez de pozos para el acceso principal al yacimiento debido a su menor coste de inversión, menor tiempo de construcción y menores costes de mantenimiento y de seguridad. Una cinta transportadora admite un ángulo máximo de 15º de pendiente con la horizontal. Como se necesita un mínimo de dos accesos a las labores, el plano inclinado se utiliza como entrada de ventilación y se perfora un pozo de ventilación para el retorno del aire. PLANTEAMIENTO GENERAL El plano inclinado servirá de entrada a todos los servicios de mina, por lo que su sección se diseñará de acuerdo con la sección de cada uno de los que se instalen, de forma similar a como se hizo para la DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 3 DISEÑO Y CONSTRUCCIÓN DE PLANOS INCLINADOS Pág.: 36 Excavación de un plano inclinado mediante perforación y voladura sección de los pozos de extracción, procurando que las tuberías y mangueras se pongan del lado de la cuneta para dar espacio a la cinta transportadora y a la circulación de las máquinas de mayor dimensión de la mina. En las curvas o en los cambios de dirección bruscos, se excavarán calderas para recoger las aguas que bajan por la cuneta y se instalará el sistema de bombeo correspondiente. El piso o muro del plano inclinado se realizará lo más plano posible y se hormigonará en caso necesario. Los tramos que atraviesen niveles de agua se impermeabilizarán y se fortificará con los medios adecuados los tramos sujetos a debilidad del techo o a deformación del perfil del plano inclinado. La ejecución del plano inclinado es más rápida que la del pozo vertical y puede realizarse con el personal de la propia mina ya que se diferencia poco de la perforación de galerías. En rocas competentes se necesita poco sostenimiento y basta con un simple gunitado de hormigón. Aunque para llegar a la misma cota la longitud del plano es mayor que la de un pozo vertical, en grandes producciones los costes de operación del plano inclinado son sensiblemente menores que los del pozo por lo que el plano es a menudo la opción escogida. La entrada al plano desde el exterior se eleva con respecto a la cota del terreno con el fin de evitar entradas de agua, y es ejecuta en hormigón con el fin de sujetar bien las tierras de ladera, si es el caso. La ejecución de los planos inclinados puede hacerse con métodos mineros similares a los utilizados para la perforación de galerías, aunque ofrece alguna dificultad suplementaria debido a la pendiente del piso. En rocas cuya resistencia a compresión no excede de 110 MPa se pueden emplear minadores continuos para el arranque y carga de la roca debido a la alta velocidad de avance que dan a la obra. En rocas de mayor dureza se empleará el sistema tradicional de perforación y voladura. En planos de sección circular de gran diámetro llegan a utilizarse tuneladoras siempre que las distancias a perforar compensen el coste de instalación de tales ingenios. En el caso del minador continuo se da al techo forma abovedada y se mantiene la dirección de arranque mediante un láser. El polvo se controla con ventilación y con aspersión de agua. El techo se sostiene con cuadro metálico o con bulones. El escombro se evacua mediante cinta transportadora que habitualmente se cuelga del techo para dejar espacio suficiente para los vehículos. Si el avance se hace por perforación y voladura se empleará un jumbo apropiado, una cargadora de roca dura, un transportador blindado con un molino rompedor incorporado para poder verter en cinta transportadora, una máquina elevadora de una celda de hombre para el saneo del techo y una máquina de gunitar para sostener los paramentos y evitar desprendimientos de piedras. DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 3 DISEÑO Y CONSTRUCCIÓN DE PLANOS INCLINADOS Pág.: 37 Capítulo 5 DISEÑO DE LABORES HORIZONTALES Y VERTICALES OBJETIVOS DEL TEMA • Comprender los pasos básicos a seguir en el diseño de la infraestructura. • Comprender la influencia en el diseño de la garantía de seguridad. • Entender como se distribuyen en el diseño los elementos de infraestructura. • Comprender como se enfoca el criterio general de avance en la construcción de infraestructura. • Conocer los métodos convencionales de perforación de labores verticales. • Conocer el sistema Alimak. • Conocer el sistema Raise Boring. • Conocer los criterios de cálculo. 1. LABORES HORIZONTALES (GALERÍAS, TRANSVERSALES, GUÍAS Y OTRAS LABORES HORIZONTALES) El diseño de la infraestructura se inicia determinando la sección de la galería, transversal, rampa o plano inclinado. Los hastiales estarán distanciados lo mínimo necesario para el paso seguro de los equipos de mayor tamaño, previendo espacio suficiente o adicional para las vías y el balasto, la cuneta, las conducciones eléctricas, de agua, de aire comprimido y la tubería de ventilación. Además debe haber espacio suficiente para el paso de los trabajadores. Muchas de estas dimensiones se especifican en la Reglamentación vigente del lugar. Recientemente la sección de estas labores de infraestructura se ha ido incrementando debido al cada vez mayor tamaño de los equipos utilizados. En grandes minas se nota una tendencia a sustituir los camiones de interior articulados de descarga horizontal (tipo Wagner) y de velocidad lenta por camiones volquete de tipo estándar de exterior para carretera reforzados y de alta velocidad, así como las LHD por palas cargadoras frontales con gran éxito. Al cabo de 2 ó 3 años estos equipos se venden en el mercado segundario y se renuevan para la mina. El coste de inversión resulta DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 5 DISEÑO DE LABORES HORIZONTALES Y VERTICALES muy inferior. La tubería de ventilación y los conductos de insumos se llevan por el lado de la cuneta, para ahorrar espacio y librarlos de golpes y choques. Pág.: 55 de interior se realiza por ferrocarril de ancho de vía de superficie o con grandes camiones de neumáticos. Se utilizan dos sistemas para la realización de estas labores: 1) perforación y voladura, y 2) sistemas mecánicos mediante minadores continuos y tuneladoras (Tunel Boring Machine, TBM). El método de perforación y voladura es el más común, se puede realizar con personal propio, es mucho flexible y es poco sensible a los cambios de litología. La sección de una labor se puede cambiar en la siguiente perforación o gradualmente de acuerdo con las necesidades de intersecciones y cruces de galerías y el explosivo sigue siendo el instrumento de excavación más eficiente desde el punto de vista del coste y de la utilización eficiente de la energía. La ventaja de las tuneladoras y de los minadores continuos es que dejan los paramentos de las galerías y en particular el techo en mucho mejores condiciones que el explosivo. Sin embargo en cuencas carboníferas las tuneladoras pueden propiciar incendios en las capas de carbón que atraviesan debido al intenso calor que generan en el frente de corte. El método de perforación y voladura se realiza con los equipos habituales de la mina y en cambio la instalación de una tuneladora es muy costosa y difícil de operar. Ahora bien, cuando se trata de hacer la preparación de una mina nueva que exige la realización de muchas labores en estéril y al mismo tiempo labores preparatorias en mineral, es habitual contratar las labores en estéril con contratistas especializados, y realizar las labores en mineral con personal propio ya que se trata de labores productivas, que además coge la experiencia adecuada al tipo específico de yacimiento en cuestión. Esquema de perforación para galerías de pequeña sección: 8,40 m2 Las galerías pueden dividirse en tres tipos de acuerdo con J.D. Jacobs según su tamaño: 2 1. Pequeñas: menores de 9 m de sección. Las menores no pueden ser inferiores a 2 m de ancho y 2,5 m de alto; si fuesen menores la circulación de personas y equipos se hace difícil, y no se pueden usar equipos mecánicos. 2 2. Medias: entre 9 y 24 m de sección. Este rango de tamaño cubre las necesidades de la mayor parte de las minas de interior. 3. Grandes: entre 24 y 40 m2 de sección. Estas secciones se requieren cuando el transporte Esquema de perforación para galerías de sección media: 16,06 m2 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 5 DISEÑO DE LABORES HORIZONTALES Y VERTICALES 2. 2.1. Esquema de perforación para galerías de sección grande: 33,25 m2 La perforación y voladura se hacen con los medios habituales que se explican en otra parte del laboreo de minas. A título de ejemplo se muestra a continuación tres esquemas de perforación para cada una de las categorías definidas: El desescombro (mucking) después de la voladura se realiza con medios mecánicos. La pala de mano solo se emplea en pequeñas operaciones tales como desescombro de cunetas o en situaciones en las que no es posible el acceso de medios mecánicos. En el diseño y planificación de una excavación subterránea es importante escoger la pala adecuada, siempre la mayor posible, que pueda trabajar en un área determinada con el espacio suficiente. El camión de transporte debe ser el adecuado a la cargadora en dimensiones y en capacidad de carga. Si la cargadora usada fuese una LHD cumplirá también la función de transporte. Para evitar el polvo se riega con agua y se lleva la tubería de ventilación al frente. A medida que la galería va desarrollándose se fortifica en los tramos en que sea necesario mediante los sistemas habituales: bulonado, cuadros metálicos, gunitado, cementado, etc. Asímismo se estimarán los costes de ejecución. Pág.: 56 LABORES VERTICALES (CHIMENEAS, PIQUERAS Y DEMÁS LABORES VERTICALES) MÉTODOS CONVENCIONALES El uso de métodos convencionales para la realización de labores verticales ha descendido en los últimos años pero todavía se usan profusamente en minería subterránea, sobre todo en chimeneas cortas, menores de 25 a 30 m. Para alturas superiores la tendencia es a utilizar sondeos de gran diámetro. Las labores verticales se emplean para el paso de hombres, de equipos y suministros, para la bajada de mineral o de estériles y rellenos y para ventilación. En el método convencional, el tipo de andamiaje o sostenimiento utilizado depende de la sección y pendiente de la chimenea. Si la pendiente es menor de 40º se necesita poca madera para la protección de las personas aunque el uso de mampostas horizontales ayuda a desplazarse y a apoyar las columnas de los martillos perforadores. En chimeneas verticales o muy pendientes se requiere un andamiaje adecuado incluso cuando la roca se sostiene muy bien. Las mampostas se cortan a la distancia entre hastiales y se calzan con cuñas, mediante el hacho o maza. La forma más simple de poner la madera es en una fila en cada extremo de los hastiales. El forro de tabla horizontal sirve de plataforma para apoyar la columna del martillo perforador y se mueve después de cada disparo. Un método similar consiste, en vez de utilizar mampostas, en perforar sendos barrenos cortos en los extremos opuestos de los dos hastiales, introduciendo en los cuatro barrenos un trozo de barrena gastada previamente cortada y se ponen dos tubos de tubería metálica encajados en los trozos de barrena; las tablas de la plataforma se colocan sobre ellos. La chimenea de dos compartimentos se sube con andamiaje de mampostas o fortificación del compartimento de la escala. Las mampostas se colocan a pares a intervalos de 1m o más, una en un hastial de la chimenea y la otra hacia el medio. El hueco entre mampostas se forra con tabla para separar el paso de hombre del hueco de paso de escombro. Se dejan plataformas y la escala se pone alternada par mayor seguridad. Se hacen recortes o nichos en el paso de hombre para almacenar suministros. El hueco de paso de escombro está lleno y solo se extrae por la parte inferior lo necesario para dejar espacio arriba suficiente para trabajar. En este DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 5 DISEÑO DE LABORES HORIZONTALES Y VERTICALES sentido funciona como el método de cámaras almacén. La figura siguiente muestra una chimenea con el compartimento de personal fortificado, en el que se coloca un techo de tabla en el paso de hombre para el disparo de la pega. Este tipo de chimenea se realiza cuando el terreno necesita sostenimiento y hay que mantener expedita la comunicación entre labores. Después de ventilar los humos del disparo, los mineros suben y van quitando tabla por tabla del techo del compartimento de subida echando el escombro volado de cada tabla al compartimento del escombro y a continuación se prepara la siguiente perforación. Pág.: 57 Este tipo de labor vertical puede extenderse a tres compartimentos de modo que el central es para paso de hombre y los laterales para desescombro. 2.2. SISTEMA ALIMAK El sistema Alimak es un método semi-mecanizado de ascensión de chimeneas que ha tenido éxito para roca dura y chimeneas largas. La inversión en equipos es elevada aunque pueden ser reutilizados numerosas veces. La figura siguiente muestra un sistema Alimak. Alimak en operación 2.3. MÉTODO MECANIZADO POR “RAISE BORING” Los sistemas más modernos para desarrollar labores verticales utilizan técnicas de sondeo. La sonda deja secciones circulares con buenos paramentos muy aptas para la eficiencia del paso del escombro y para ala ventilación por su baja resistencia. Las labores realizadas por es método pueden tener pendientes de hasta 30º con la vertical, diámetros de hasta 2m y longitudes de casi 300m. La máquina realiza en primer lugar un sondeo de 225 a 250 mm de diámetro y a continuación se realiza la sección definitiva en ascendente. Con grandes máquinas de este tipo se realizan pozos de extracción. Chimenea de dos compartimentos en ejecución DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 5 DISEÑO DE LABORES HORIZONTALES Y VERTICALES Pág.: 58 DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM ETSIMM CAPÍTULO 5 DISEÑO DE LABORES HORIZONTALES Y VERTICALES Pág.: 59 Realización de chimeneas por sondeos Las labores para paso de mineral pueden ser verticales, aunque muchos operadores mineros las prefieren de 70º o más aunque no del todo verticales. Las chimeneas verticales trabajan llenas de escombro a modo de cámara almacén y las inclinadas a 55º trabajan vacías. Por debajo de 50º el mineral no correrá adecuadamente. La razón de la disparidad de criterio radica en el tipo de cuelgues que se producen en los conductos verticales. Los minerales con pocos finos y trozos gruesos tienden a producir cuelgues porque los bloques encajan entre ellos produciendo un efecto arco mientras que minerales con muchos finos forman cuelgues por cohesión de los finos. Los cuelgues de gruesos se producen en pendientes mayores de 60º, mientras que los de finos se evitan en pendientes casi verticales. Un buen compromiso es acudir a pendientes de unos 70º para evitar ambos tipos de cuelgues. La sección de los conductos verticales de mineral se suele definir basándose en la experiencia de la mina. En un nuevo proyecto se acude a lo que hacen otras DISEÑO DE EXPLOTACIONES E INFRAESTRUCTURAS MINERAS SUBTERRÁNEAS UPM CAPÍTULO 5 DISEÑO DE LABORES HORIZONTALES Y VERTICALES ETSIMM minas similares si existen o a métodos empíricos. Un método empírico es el checoslovaco: La dimensión de la chimenea de paso de mineral se obtiene con las siguientes fórmulas Sección cuadrada de lado L: L = 4,6 d 2 k Sección rectangular de lado mayor W: W = 4,6 d 2 k Sección circular de diámetro D: D = 5,2 d 2 k dónde d = mayor dimensión del tamaño máximo en el conducto k = una constante de un ábaco que para voladuras típicas de rocas en minas toma los siguientes valores: k = 0.6 para un contenido de finos igual a 0% k = 1,0 para un contenido de finos igual a 5% k = 1,4 para un contenido de finos igual a 10% Se consideran finos todos aquellos materiales menores de 200 mallas. Ejemplo: Hallar la sección de una chimenea para el mineral que pasa por una rejilla con paso de 400 x 450 mm y con un contenido en finos del 2,5%. Solución: L = 4,6 0,450 2 ·0,8 = 1,85 m En este caso valdrá una chimenea de 1,80 x 1,80 m. Pág.: 60

Use Quizgecko on...
Browser
Browser