Summary

This document contains several math questions on the topic of multivariable calculus. The questions are related to vectors, their applications, limits, and continuity. It also includes several examples and solutions.

Full Transcript

FinnEm Asst 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟔: 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑢𝑟𝑣𝑒𝑠: A) 𝑥 = 3𝑡 2 + 2 𝑎𝑛𝑑 𝑦 = 2𝑡 − 1 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑡 ≤ 4. 0 B) 𝑥 = 𝑡 2 − 2𝑡 𝑎𝑛𝑑 𝑦 = 3𝑡 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑡 ≤ 4. 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟕: 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝐶 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜...

FinnEm Asst 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟔: 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑢𝑟𝑣𝑒𝑠: A) 𝑥 = 3𝑡 2 + 2 𝑎𝑛𝑑 𝑦 = 2𝑡 − 1 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑡 ≤ 4. 0 B) 𝑥 = 𝑡 2 − 2𝑡 𝑎𝑛𝑑 𝑦 = 3𝑡 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑡 ≤ 4. 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟕: 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝐶 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑥 = 𝑐𝑜𝑠3𝜃 𝑎𝑛𝑑 𝑦 = 𝑠𝑖𝑛3𝜃 , 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝜃 ≤ 𝜋. exam 𝑐𝑜𝑠 2 𝑎𝑡 + 𝑠𝑖𝑛2 𝑎𝑡 = 1 6 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟖: 𝑨) 𝐼𝑓 𝑟 = 3 𝑠𝑖𝑛𝜃, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑎) 𝑇ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 𝑤ℎ𝑒𝑛 𝜃 = π/3 exam 𝑑𝑟 𝑏) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝑐𝑎𝑟𝑑𝑖𝑜𝑖𝑑 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 (𝐻𝑖𝑛𝑡 𝑠𝑖𝑛𝜃 + 𝑟 𝑐𝑜𝑠𝜃 = 0 ) 𝑑𝜃 𝑑𝑟 𝑐) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝑐𝑎𝑟𝑑𝑖𝑜𝑖𝑑 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 (𝐻𝑖𝑛𝑡 𝑐𝑜𝑠𝜃 − 𝑟 𝑠𝑖𝑛𝜃 = 0 ) 𝑑𝜃 𝜋 𝜋 𝑩) 𝐼𝑓 𝑥 = 𝑐𝑜𝑠3𝑡 𝑎𝑛𝑑 𝑦 = 𝑠𝑖𝑛3𝑡 , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝐶, 𝑤ℎ𝑒𝑟𝑒 ≤𝑡≤ 6 3 1 𝑠𝑖𝑛2 𝑎𝑡 = (1 − 𝑐𝑜𝑠2𝑎𝑡) 7 2 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟗: 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑒, 𝑓𝑜𝑐𝑢𝑠 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑥 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎𝑠 A) 𝑦 2 = −16𝑥 Sketch 𝐶𝑒𝑛𝑡𝑟𝑒 = 𝐹𝑜𝑐𝑢𝑠 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑥 => B) (𝑥 − 2)2 = −10𝑦 − 30 iHse Sketch x 431 4114 14 4It 𝐶𝑒𝑛𝑡𝑟𝑒 = gem.si 𝐹𝑜𝑐𝑢𝑠 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑥 => 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟏𝟎: 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟, 𝑓𝑜𝑐𝑖 𝑎𝑛𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑠 (𝑥+3)2 (𝑦−2)2 Ch 2Jgm.w A) + =1 (𝑎𝑛 𝐸𝑙𝑙𝑖𝑝𝑠𝑒) 36 20 𝑆𝑒𝑚𝑖𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 => 𝑆𝑒𝑚𝑖𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 => C𝑒𝑛𝑡𝑒𝑟 = 𝐹𝑜𝑐𝑖 = Sketch 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = 𝐶𝑜 − 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = 8 𝜋 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟏𝟏: 𝐴) 𝐼𝑓 𝑟 = 𝑐𝑜𝑠𝑎𝜃, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝑟, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝜃 ≤ 4 (𝑎 ∈ 𝑅) 𝐵) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑖𝑐 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑔𝑖𝑣𝑒𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝑖) 𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑣𝑒𝑟𝑡𝑒𝑥 (3,2) 𝑎𝑛𝑑 𝑓𝑜𝑐𝑢𝑠 (3,6) x̅ 𝑖𝑖) 𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑓𝑜𝑐𝑢𝑠 (−4,0), 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑥 𝑥 = 2 𝑖𝑖𝑖) 𝐸𝑙𝑙𝑖𝑝𝑠𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (±5,0) 𝑎𝑛𝑑 𝑓𝑜𝑐𝑖 (±4,0) 10 Ass 2 𝑪𝒐𝒍𝒍𝒆𝒈𝒆 𝒐𝒇 𝑬𝒏𝒈𝒊𝒏𝒆𝒆𝒓𝒊𝒏𝒈 (𝑪𝑬𝑰𝑻) 𝑪𝒐𝒖𝒓𝒔𝒆: 𝑪𝒂𝒍𝒄𝒖𝒍𝒖𝒔 𝑰𝑰𝑰 (𝑴𝒂𝒕𝒉 𝟐𝟎𝟑) 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒐𝒓: 𝑫𝒓. Hakim Garalleh − 𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕 𝟐 𝑽𝒆𝒄𝒕𝒐𝒓𝒔, 𝑻𝒉𝒆𝒊𝒓 𝑨𝒑𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔, 𝑳𝒊𝒎𝒊𝒕𝒔 𝒂𝒏𝒅 𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒊𝒕𝒚 𝑺𝒕𝒖𝒅𝒆𝒏𝒕 𝑵𝒂𝒎𝒆: … … ….. … … … ….. … … … … … … … …....... 𝑺𝒆𝒄: … … 𝑰𝑫: … … ….. … … … ⃗ = 〈2, −3, 1〉 𝑎𝑛𝑑 𝑣 = 〈4, −5, 2〉, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑: 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟏: 𝐴) 𝐼𝑓 𝑢 exam O 1) 3 𝑢 ⃗ −5𝑣 = O2) 3 𝑢⃗ − 5𝑘 = O3) |2 𝑢 ⃗ + 3 𝑣| = O ⃗ = 〈3, −1, 2〉 𝑎𝑛𝑑 𝑣 = 〈−2, −4, 1〉 ? (𝑈𝑠𝑒 𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡) 4) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑢 O ⃗ = 〈2, −1, 0〉 𝑎𝑛𝑑 𝑣 = 〈4, −1, −1〉 ? (𝑈𝑠𝑒 𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡) 5) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑢 1 ⃗ = 〈𝑎1 , 𝑎2 , 𝑎3 〉 𝑎𝑛𝑑 𝑣 = 〈𝑏1 , 𝑏2 , 𝑏3 〉 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 𝑡ℎ𝑒𝑛 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 ⃗⃗⃗ 𝐵) 𝐼𝑓 𝑢 𝑢.𝑣⃗⃗⃗ = 𝑣 ⃗⃗. 𝑢 ⃗⃗ 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟐: 𝐴) 𝑢 ⃗ 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑓𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑢 ⃗⃗⃗. 𝑣 ⃗⃗⃗ = 0 , 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡? ⃗ = 〈−2, 4, 5〉 𝐵) 𝑖) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑢 exam 0 𝑖𝑖) 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑐𝑜𝑠2 𝛼 + 𝑐𝑜𝑠2 𝛽 + 𝑐𝑜𝑠2 𝛾 = 1 X2N exa 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟑: 𝐴) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣 = 〈−2, 3, 0〉 𝑜𝑛𝑡𝑜 ⃗ = 〈−2, 1, −3〉 ? 𝑢 2 yexum 𝐵) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣 = 2𝑖 − 3𝑗 + 2𝑘 𝑜𝑛𝑡𝑜 𝑢 ⃗ = −𝑖 + 2𝑗 − 4𝑘? 𝐶) 𝑆ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑢 ⃗ 𝑥 𝑣 𝑖𝑠 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑡𝑜 𝑏𝑜𝑡ℎ 𝑢 ⃗ 𝑎𝑛𝑑 𝑣, 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡? 3 8 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟒: 𝐴) 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑔𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑢 ⃗ , 𝑣 𝑎𝑛𝑑 𝑧 , 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝒊) 𝑣 𝑥 𝑢 ⃗ = −(𝑢 ⃗ 𝑥 𝑣) 6 ⃗. (𝑣 𝑥 𝑧) = (𝑢 𝒊𝒊) 𝑢 ⃗ 𝑥 𝑣). 𝑧 4 Dexan 𝐵) 𝐹𝑖𝑛𝑑 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑃(1,2, −3), 𝑄(2, −1,5) 𝑎𝑛𝑑 𝑅(−1,2,2) ? - 𝐶) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑤𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑃(−1,3,5), 𝑄(2, −5,0) 𝑎𝑛𝑑 𝑅(−1,1, −1) ? nm 𝐷) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠𝑒𝑠 c 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝐴(1, −2, 3) 𝑎𝑛𝑑 𝐵(3, 2, 0). - 5 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟔: 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆 𝑥𝑦 𝑐𝑜𝑠𝑦 1) lim (𝑥,𝑦) → (0,0) 3𝑥2 + 𝑦2 I II cost sin W 𝑥2 + 𝑠𝑖𝑛2 𝑦 2) lim (𝑥,𝑦) → (0,0) 𝑥2 + 2𝑦2 7 𝑥𝑦 + 𝑦𝑧2 + 𝑥𝑧2 3) lim (𝑥,𝑦,𝑧) → (0,0,0) 𝑥2 + 𝑦2 + 𝑧4 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟕: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑒𝑎𝑐ℎ 𝑔𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢 𝑥−𝑦 1) 𝑓(𝑥, 𝑦) = 1−𝑥2 − 𝑦2 2) ℎ(𝑥, 𝑦) = ln |𝑥2 + 𝑦2 − 4| 8 Ass 3 𝑪𝒐𝒍𝒍𝒆𝒈𝒆 𝒐𝒇 𝑬𝒏𝒈𝒊𝒏𝒆𝒆𝒓𝒊𝒏𝒈 (𝑪𝑬𝑰) 𝑪𝒐𝒖𝒓𝒔𝒆: 𝑪𝒂𝒍𝒄𝒖𝒍𝒖𝒔 𝑰𝑰𝑰 (𝑴𝒂𝒕𝒉 𝟐𝟎𝟑) 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒐𝒓: 𝑫𝒓.Hakim Garalleh − 𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕 𝟑 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑺𝒆𝒗𝒆𝒓𝒂𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔, 𝒂𝒏𝒅 𝑫𝒐𝒖𝒃𝒆𝒍 𝒂𝒏𝒅 𝑻𝒓𝒊𝒑𝒍𝒆 𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒍𝒔 𝑺𝒕𝒖𝒅𝒆𝒏𝒕 𝑵𝒂𝒎𝒆: … … ….. … … … ….. … … … … … … … …....... 𝑺𝒆𝒄: … … 𝑰𝑫: … … ….. … … … o 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟏: 𝑨) 1) 𝐼𝑓 𝑓(𝑥, 𝑦) = ln|𝑥 + √𝑥2 + 𝑦2 |, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑: 𝒊) 𝑓𝑥 (𝑥, 𝑦) = 𝒊𝒊) 𝑓𝑦𝑥 (0,1) = 𝑥−𝑦 2) 𝐼𝑓 ℎ(𝑥, 𝑦) = , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑: 𝑥+𝑦 𝒊) ℎ𝑥 (𝑥, 𝑦) = 𝒊𝒗) ℎ𝑦𝑦 (−2,4) = 1 3) 𝐼𝑓 𝑔(𝑥, 𝑦, 𝑧) = 𝑥𝑦 𝑠𝑖𝑛−1 (𝑦𝑧) , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑: 𝒊) 𝑔𝑥𝑥 (𝑥, 𝑦, 𝑧) = 𝒊𝒊) 𝑔𝑥𝑧 (𝑥, 𝑦, 𝑧) = 𝑑 𝑑𝑢 𝒊𝒊𝒊) 𝑔𝑦 (𝑥, 𝑦, 𝑧) = 𝑑𝑥 (sin−1 (𝑢)) = √1 − 𝑢2 𝒊𝒗) 𝑔𝑦𝑧 (𝑥, 𝑦, 𝑧) = G 𝑑𝑓 𝑩) 𝑖) 𝐼𝑓 𝑓(𝑥, 𝑦) = 𝑥 3 + 𝑦 2 + 𝑥𝑦 , 𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑐𝑜𝑠2𝑡 𝑎𝑛𝑑 𝑦 = 𝑠𝑖𝑛2𝑡, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑑𝑡 𝑑𝑧 𝑖𝑖) 𝐼𝑓 𝑧 = 𝑡𝑎𝑛−1 (𝑥𝑦) , 𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑡 𝑒 𝑠 𝑎𝑛𝑑 𝑦 = 2𝑠 − 𝑒 −𝑡 , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 (𝑠 = 0) 𝑑𝑠 2 𝑑𝑤 𝑖𝑖𝑖) 𝐼𝑓 𝑤 = ln|√𝑥2 + 𝑦2 + 𝑧2 |, 𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑠𝑖𝑛𝜃, 𝑦 = 𝑐𝑜𝑠𝜃 𝑎𝑛𝑑 𝑧 = 𝑡𝑎𝑛𝜃 , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑑𝜃 𝑑𝑦 𝑑𝑥 𝑑𝑧 𝑑𝑥 𝑑𝑥 𝑑𝑦 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟐: 𝑨) 𝐼𝑓 𝑧 + 𝑥 3 − 6𝑥𝑦 = 4, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 , , , , 𝑎𝑛𝑑 (𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛) 𝑑𝑥 𝑑𝑦 𝑑𝑥 𝑑𝑧 𝑑𝑧 𝑑𝑧 3 s 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟑: 𝑨) 𝟏) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑝𝑙𝑎𝑛𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑜𝑖𝑑 𝑧 = 5𝑥 2 + 2𝑦 2 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 (1, −1,7). 𝟐) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑔𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝒊) 𝑇 = (𝑦 + 1)2 𝑙𝑛(2𝑥 3 ) 𝒊𝒊) 𝑊 = 𝑧 2 𝑒 5𝑦+𝑡𝑎𝑛𝑥 𝑑𝑤 𝑩) 𝐼𝑓 𝑤 = 𝑥 3 + 2𝑦 3 + 3𝑥𝑧 2 , 𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑐𝑜𝑠4𝑡 𝑎𝑛𝑑 𝑦 = 𝑠𝑖𝑛3𝑡 𝑎𝑛𝑑 𝑧 = 𝑡𝑎𝑛2𝑡, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 (𝑡 = 1) 𝑑𝑡 4 𝑑𝑦 𝑑𝑥 𝑑𝑧 𝑑𝑥 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟒: 𝑨) 𝐼𝑓 𝑥 2 + 𝑐𝑜𝑠𝑧 − 𝑥𝑦 2 = 6 , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 , , 𝑎𝑛𝑑 (𝑈𝑠𝑒 𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛) 𝑑𝑥 𝑑𝑦 𝑑𝑦 𝑑𝑧 𝑩) 𝐼𝑓 𝑓(𝑥, 𝑦) = 𝑥 2 + 𝑥𝑦 2 − 6 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 (1, −1) 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑖𝑡𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑒𝑟𝑒. 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟓: 𝑨) 𝐼𝑓 𝑓 (𝑥, 𝑦) = 𝑐𝑜𝑠4𝑦 + 𝑒 3𝑥𝑦 𝑎𝑛𝑑 𝑢 ⃗ = 〈𝜋/2,0〉 , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝒊) ∇𝑓(𝑥, 𝑦) = 𝒊𝒊) 𝐷𝑢 𝑓(0, 𝜋) = 5 𝑩) 𝐼𝑓 𝑓(𝑥, 𝑦, 𝑧) = 𝑐𝑜𝑠 −1 𝑥 + 𝑒 𝑥𝑦 + 3𝑧 2 𝑎𝑛𝑑 𝑢 ⃗ = 〈𝜋/2,0,3〉 , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝒊) ∇𝑓(𝑥, 𝑦, 𝑧) = 𝒊𝒊) ∇𝑓(1/2,0,2) = 𝒊𝒊𝒊) 𝐷𝑢 𝑓(1/2,0,2) = −1 −𝑓 ′ (𝑥) 𝑐𝑜𝑠 (𝑓(𝑥)) = √1 − (𝑓(𝑥))2 𝑪) 𝐼𝑓 𝑐𝑜𝑠𝜋𝑥 + 𝑒 𝑧𝑦 − 𝜋𝑦 2 = 1 − 𝜋 , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑝𝑙𝑎𝑛𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑒𝑣𝑒𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑡 𝑡ℎ 𝑝𝑜𝑖𝑛𝑡 (1, −1,0) √𝜋 2 𝑧 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝟔: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑨) ∫ ∫ ∫ 𝑥 2 𝑠𝑖𝑛𝑦 𝑑𝑦 𝑑𝑧 𝑑𝑥 0 0 0 6 3 √9−𝑥2 3 𝑩 ) 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 ∫−3 ∫−√9−𝑥2 ∫√9−𝑥2 √𝑥2 + 𝑦2 𝑑𝑧 𝑑𝑦 𝑑𝑥 (𝐻𝑖𝑛𝑡: 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡𝑜 𝑝𝑜𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒) 𝜋/6 𝜋/2 2 𝑪) 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 ∫0 ∫0 ∫1 𝜌2 𝑠𝑖𝑛𝜙 𝑑𝜌 𝑑𝜃 𝑑𝜙 = 7 5 and 3 ch Partz final Clairaut’s Theorem 𝑪𝒍𝒂𝒊𝒓𝒂𝒖𝒕′ 𝒔 𝑻𝒉𝒆𝒓𝒐𝒆𝒎: 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑓 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑛 𝑎 𝑑𝑖𝑠𝑘 𝐷 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎, 𝑏. 𝐼𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑥𝑦 𝑎𝑛𝑑 𝑓𝑦𝑥 𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 𝐷, 𝑡ℎ𝑒𝑛 𝑓𝑥𝑦 𝑎, 𝑏 = 𝑓𝑦𝑥 𝑎, 𝑏. 𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟏: 𝑨) 𝐼𝑓 𝑓 𝑥, 𝑦 = 𝑥 2 𝑦 2 , 𝑡ℎ𝑒𝑛 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑙𝑎𝑖𝑟𝑎𝑢𝑡 ′ 𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 1,2. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑓𝑥 𝑥, 𝑦 = 2𝑥𝑦 2 ➔ 𝑓𝑥𝑦 𝑥, 𝑦 = 4𝑥𝑦 ➔ 𝑓𝑥𝑦 1,2 = 4 (1) (2) = 8 𝑓𝑦 𝑥, 𝑦 = 2𝑥 2 𝑦 ➔ 𝑓𝑦𝑥 𝑥, 𝑦 = 4𝑥𝑦 ➔ 𝑓𝑦𝑥 1,2 = 4 (1) (2) = 8 𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟗 find 𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟗 find

Use Quizgecko on...
Browser
Browser