Document Details

SteadyNephrite2709

Uploaded by SteadyNephrite2709

Virginia Tech

Tags

continuous-time signals discrete-time signals signal processing engineering

Summary

This document is a review of concepts in continuous-time and discrete-time signals and systems relevant to an ECE 2714 exam. It covers important signal properties, system properties (such as stability and invertibility), convolution, and linear constant coefficient difference equations.

Full Transcript

Exam 1 Policy Grading Rubric 5 - Fully correct 4.5 - Single math error 4 - Most of the algebra is correct with only one algebra mistake 3.5 - Some manipulation of the equations is done with some substitutions but not all substitutions are done correctly 3 - Basic engineerin...

Exam 1 Policy Grading Rubric 5 - Fully correct 4.5 - Single math error 4 - Most of the algebra is correct with only one algebra mistake 3.5 - Some manipulation of the equations is done with some substitutions but not all substitutions are done correctly 3 - Basic engineering concepts are there (e.g., the starting equations) but no manipulation of the equations is done in any way beyond the basic equations 2 - At least one equation relevant to the problem is present 1 - Work is present but no applicable equations 0 - No attempt CT / DT Signals and Properties Important CT/DT functions: unit impulse, unit step, exponential (complex or real), sin / cos, Euler’s formula. Properties: even / odd / neither, periodic / aperiodic, power / energy / neither. If a signal is periodic, what is its fundamental period / fundamental frequency? Fundamental Period: the smallest positive real number T (CT) or positive integer N (DT) such that π‘₯π‘₯ 𝑑𝑑 = π‘₯π‘₯ 𝑑𝑑 + 𝑇𝑇 (CT signals) or π‘₯π‘₯[𝑛𝑛] = π‘₯π‘₯[𝑛𝑛 + 𝑁𝑁] (DT signals). Notice the similarities as well as important difference between CT and DT signals when it comes to periodicity. If two signals (CT / DT) are periodic (i.e., π‘₯π‘₯1 and π‘₯π‘₯2 ), how about their sum / product (i.e., π‘₯π‘₯1 + π‘₯π‘₯2 , π‘₯π‘₯1 π‘₯π‘₯2 )? How to calculate the energy / power of CT / DT signals? CT / DT System Properties Stability How to determine whether a CT/ DT Invertibility system possess these properties: Memory Definition. Properties of impulse response Causality function. Time Invariance Construction of examples (i.e., an inverse system) or counter-examples. Linearity Convolution ∞ 𝑦𝑦 𝑑𝑑 = π‘₯π‘₯ 𝜏𝜏 β„Ž 𝑑𝑑 βˆ’ 𝜏𝜏 π‘‘π‘‘πœπœ How to evaluate any given βˆ’βˆž convolution (𝑦𝑦 = π‘₯π‘₯ βˆ— β„Ž) ∞ based on their definition: 𝑦𝑦 𝑛𝑛 = π‘₯π‘₯ π‘˜π‘˜ β„Ž 𝑛𝑛 βˆ’ π‘˜π‘˜ π‘˜π‘˜=βˆ’βˆž Properties of (DT / CT) convolution: commutative, distributive, associative, time shift, as well as their combinations How to use convolution tables (if the problem allows you to do so). CT Convolution Table in Exam DT Convolution Table in Exam Impulse Response Function (CT) 𝑑𝑑 𝑁𝑁 𝑦𝑦 𝑑𝑑 𝑑𝑑 π‘π‘βˆ’1 𝑦𝑦 𝑑𝑑 𝑑𝑑𝑦𝑦 𝑑𝑑 π‘Žπ‘Žπ‘π‘ + π‘Žπ‘Žπ‘π‘βˆ’1 + β‹― + π‘Žπ‘Ž1 + π‘Žπ‘Ž0 𝑦𝑦 𝑑𝑑 Always set π‘Žπ‘Žπ‘π‘ = 1 𝑑𝑑𝑑𝑑 𝑁𝑁 𝑑𝑑𝑑𝑑 π‘π‘βˆ’1 𝑑𝑑𝑑𝑑 𝑀𝑀 π‘€π‘€βˆ’1 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 𝑑𝑑π‘₯π‘₯ 𝑑𝑑 = 𝑏𝑏𝑀𝑀 𝑀𝑀 + π‘π‘π‘€π‘€βˆ’1 π‘€π‘€βˆ’1 + β‹― + 𝑏𝑏1 + 𝑏𝑏0 π‘₯π‘₯ 𝑑𝑑 𝑄𝑄 𝐷𝐷 𝑦𝑦 = 𝑃𝑃 𝐷𝐷 π‘₯π‘₯ 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 Only include this term if 𝑁𝑁 = 𝑀𝑀 Homogenous solution β„Ž 𝑑𝑑 = 𝑏𝑏𝑁𝑁 𝛿𝛿 𝑑𝑑 + 𝑃𝑃 𝐷𝐷 π‘¦π‘¦β„Ž 𝑑𝑑 𝑒𝑒(𝑑𝑑) π‘¦π‘¦β„Ž 𝑑𝑑 = 𝐢𝐢1 π‘¦π‘¦β„Ž1 𝑑𝑑 + β‹― + 𝐢𝐢𝑖𝑖 π‘¦π‘¦β„Žπ‘–π‘– 𝑑𝑑 + β‹― + 𝐢𝐢𝑁𝑁 π‘¦π‘¦β„Žπ‘π‘ 𝑑𝑑 Real roots / complex roots / repeated roots. The constants 𝐢𝐢𝑖𝑖 are determined by using auxiliary conditions: π‘¦π‘¦β„Ž 0+ = 0 β‹― 𝐷𝐷 𝑖𝑖 π‘¦π‘¦β„Ž 0+ = 0 β‹― 𝐷𝐷 π‘π‘βˆ’1 π‘¦π‘¦β„Ž 0+ = 1 Linear Constant Coefficient Difference Equation 𝑁𝑁 𝑀𝑀 Advance Form: π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] π‘˜π‘˜=0 π‘˜π‘˜=0 𝑁𝑁 𝑀𝑀 Delay Form: π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 βˆ’ π‘˜π‘˜] π‘˜π‘˜=0 π‘˜π‘˜=0 𝑄𝑄 𝐸𝐸 𝑦𝑦 𝑛𝑛 = 𝑃𝑃 𝐸𝐸 π‘₯π‘₯ 𝑛𝑛 𝑄𝑄 𝐸𝐸 = π‘Žπ‘Ž0 𝐸𝐸 𝑁𝑁 + π‘Žπ‘Ž1 𝐸𝐸 π‘π‘βˆ’1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 𝐸𝐸 + π‘Žπ‘Žπ‘π‘ 𝑃𝑃 𝐸𝐸 = 𝑏𝑏0 𝐸𝐸 𝑁𝑁 + 𝑏𝑏1 𝐸𝐸 π‘π‘βˆ’1 + β‹― + π‘π‘π‘π‘βˆ’1 𝐸𝐸 + 𝑏𝑏𝑁𝑁 Impulse Response Function (DT) 𝑄𝑄 𝐸𝐸 β„Ž 𝑛𝑛 = 𝑃𝑃 𝐸𝐸 𝛿𝛿 𝑛𝑛 𝑏𝑏𝑁𝑁 β„Ž 𝑛𝑛 = 𝛿𝛿 𝑛𝑛 + π‘¦π‘¦β„Ž 𝑛𝑛 𝑒𝑒[𝑛𝑛] π‘Žπ‘Žπ‘π‘ Distinct roots: π‘¦π‘¦β„Ž 𝑛𝑛 = 𝑐𝑐1 πœ†πœ†1𝑛𝑛 + β‹― + 𝑐𝑐𝑖𝑖 πœ†πœ†π‘›π‘›π‘–π‘– + β‹― + 𝑐𝑐𝑁𝑁 πœ†πœ†π‘›π‘›π‘π‘ Determine the values of 𝑐𝑐𝑖𝑖 by iteratively calculating the values of: β„Ž0 β„Ž1 β‹― β„Ž 𝑁𝑁 βˆ’ 1 Under the conditions of: π‘₯π‘₯ 𝑛𝑛 = 𝛿𝛿[𝑛𝑛] β„Ž 𝑛𝑛 = 0 For all n 8 𝑦𝑦 𝑑𝑑 = 3 6=9 𝜏𝜏 = 𝑑𝑑 βˆ’ 3 2 𝜏𝜏 = 𝑑𝑑 𝜏𝜏 = 2 𝜏𝜏 𝜏𝜏 = 𝑑𝑑 βˆ’ 6 Convolution: Graphic Understanding Signal π‘₯π‘₯ 𝑑𝑑 : Unit impulse response function β„Ž 𝑑𝑑 : π‘₯π‘₯ 𝑑𝑑 = 𝑒𝑒 𝑑𝑑 βˆ’ 2 β„Ž 𝑑𝑑 = 12 βˆ’ 2𝑑𝑑 𝑒𝑒 𝑑𝑑 βˆ’ 3 βˆ’ 𝑒𝑒 𝑑𝑑 βˆ’ 6 6 𝑑𝑑 = 2 𝑑𝑑 𝑑𝑑 ∞ 𝑑𝑑 = 3 𝑑𝑑 = 6 𝑦𝑦 𝑑𝑑 = π‘₯π‘₯ 𝜏𝜏 β„Ž 𝑑𝑑 βˆ’ 𝜏𝜏 π‘‘π‘‘πœπœ = π‘₯π‘₯ 𝑑𝑑 βˆ— β„Ž 𝑑𝑑 βˆ’βˆž For 5 < 𝑑𝑑 < 8 π‘‘π‘‘βˆ’3 𝜏𝜏 = 𝑑𝑑 βˆ’ 3 𝑦𝑦 𝑑𝑑 = 2 𝜏𝜏 βˆ’ 𝑑𝑑 βˆ’ 6 π‘‘π‘‘πœπœ 𝜏𝜏 = 𝑑𝑑 2 𝑦𝑦 𝑑𝑑 = 16𝑑𝑑 βˆ’ 𝑑𝑑 2 βˆ’ 55 𝜏𝜏 𝜏𝜏 = 𝑑𝑑 βˆ’ 6 𝜏𝜏 = 2 Using Convolution Table π‘₯π‘₯ 𝑑𝑑 = 𝑒𝑒 𝑑𝑑 βˆ’ 2 β„Ž 𝑑𝑑 = 12 βˆ’ 2𝑑𝑑 𝑒𝑒 𝑑𝑑 βˆ’ 3 βˆ’ 𝑒𝑒 𝑑𝑑 βˆ’ 6 ∞ 𝑦𝑦 𝑑𝑑 = π‘₯π‘₯ 𝜏𝜏 β„Ž 𝑑𝑑 βˆ’ 𝜏𝜏 π‘‘π‘‘πœπœ = π‘₯π‘₯ 𝑑𝑑 βˆ— β„Ž 𝑑𝑑 βˆ’βˆž 𝑦𝑦 𝑑𝑑 = 2𝑒𝑒 𝑑𝑑 βˆ’ 2 βˆ— 6 βˆ’ 𝑑𝑑 𝑒𝑒 𝑑𝑑 βˆ’ 3 βˆ’ 2𝑒𝑒 𝑑𝑑 βˆ’ 2 βˆ— 6 βˆ’ 𝑑𝑑 𝑒𝑒 𝑑𝑑 βˆ’ 6 π‘₯π‘₯1 𝑑𝑑 βˆ’ 𝑇𝑇1 βˆ— π‘₯π‘₯2 𝑑𝑑 βˆ’ 𝑇𝑇2 = 𝑐𝑐 𝑑𝑑 βˆ’ 𝑇𝑇1 βˆ’ 𝑇𝑇2 1 2 𝑒𝑒 𝑑𝑑 βˆ— 𝑑𝑑𝑒𝑒 𝑑𝑑 = 𝑑𝑑 𝑒𝑒 𝑑𝑑 2 2𝑒𝑒 𝑑𝑑 βˆ’ 2 βˆ— 6 βˆ’ 𝑑𝑑 𝑒𝑒 𝑑𝑑 βˆ’ 6 = βˆ’ 𝑑𝑑 βˆ’ 8 2 𝑒𝑒 𝑑𝑑 βˆ’ 8 2𝑒𝑒 𝑑𝑑 βˆ’ 2 βˆ— 6 βˆ’ 𝑑𝑑 𝑒𝑒 𝑑𝑑 βˆ’ 3 = 6 𝑑𝑑 βˆ’ 5 𝑒𝑒 𝑑𝑑 βˆ’ 5 βˆ’ 𝑑𝑑 βˆ’ 5 2 𝑒𝑒 𝑑𝑑 βˆ’ 5 𝑦𝑦 𝑑𝑑 = 16𝑑𝑑 βˆ’ 𝑑𝑑 2 βˆ’ 55 𝑒𝑒 𝑑𝑑 βˆ’ 5 + βˆ’16𝑑𝑑 + 𝑑𝑑 2 + 64 𝑒𝑒 𝑑𝑑 βˆ’ 8 Reading Textbook (O&W): Chapter 2.4. Notes (Prof. Wyatt): Chapter 5 (TLO 5) After reading, solve on your own, examples given in the textbook, during lectures, and in Prof. Wyatt’s note. (CT) Differential and (DT) Difference Equations βˆ†π‘‘π‘‘ 𝑑𝑑𝑑𝑑 π‘₯π‘₯ 𝑛𝑛 βˆ’ π‘₯π‘₯ 𝑛𝑛 βˆ’ 1 π‘₯π‘₯ 𝑑𝑑 𝑑𝑑𝑑𝑑 βˆ†π‘‘π‘‘ First-order differential equation: 𝑑𝑑𝑑𝑑 𝑑𝑑 = βˆ’2π‘₯π‘₯ 𝑑𝑑𝑑𝑑 𝑛𝑛 βˆ’ 1 βˆ†π‘‘π‘‘ π‘›π‘›βˆ†π‘‘π‘‘ Replace differentiation First-order difference equation: with finite-difference π‘₯π‘₯ 𝑛𝑛 βˆ’ π‘₯π‘₯ 𝑛𝑛 βˆ’ 1 π‘₯π‘₯ 𝑛𝑛 + π‘₯π‘₯ 𝑛𝑛 βˆ’ 1 1 + βˆ†π‘‘π‘‘ π‘₯π‘₯ 𝑛𝑛 + βˆ’1 + βˆ†π‘‘π‘‘ π‘₯π‘₯ 𝑛𝑛 βˆ’ 1 = 0 = βˆ’2 βˆ†π‘‘π‘‘ 2 Linear Constant-Coefficient Difference Equation 𝑁𝑁 𝑀𝑀 𝑄𝑄[𝐷𝐷]𝑦𝑦 = 𝑃𝑃[𝐷𝐷]π‘₯π‘₯ Delay Form: π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 βˆ’ π‘˜π‘˜] N: order of the system π‘˜π‘˜=0 π‘˜π‘˜=0 Example: 2𝑦𝑦 𝑛𝑛 βˆ’ 3𝑦𝑦 𝑛𝑛 βˆ’ 1 + 7𝑦𝑦 𝑛𝑛 βˆ’ 2 = 1.5π‘₯π‘₯ 𝑛𝑛 βˆ’ 2.5π‘₯π‘₯[𝑛𝑛 βˆ’ 1] π‘Žπ‘Ž2 = 7 π‘Žπ‘Ž1 = βˆ’3 π‘Žπ‘Ž0 = 2 𝑁𝑁 = 2 𝑦𝑦 𝑛𝑛 βˆ’ 2 𝑦𝑦 𝑛𝑛 βˆ’ 1 𝑦𝑦 𝑛𝑛 𝑛𝑛 βˆ’ 3 𝑛𝑛 βˆ’ 2 𝑛𝑛 βˆ’ 1 𝑛𝑛 π‘₯π‘₯ 𝑛𝑛 βˆ’ 1 π‘₯π‘₯ 𝑛𝑛 𝑏𝑏1 = βˆ’2.5 𝑏𝑏0 = 1.5 𝑁𝑁 𝑀𝑀 Advance Form (Replace n with π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] n+N): π‘˜π‘˜=0 π‘˜π‘˜=0 𝑄𝑄[𝐸𝐸]𝑦𝑦 = 𝑃𝑃[𝐸𝐸]π‘₯π‘₯ 2𝑦𝑦 𝑛𝑛 + 2 βˆ’ 3𝑦𝑦 𝑛𝑛 + 1 + 7𝑦𝑦 𝑛𝑛 = 1.5π‘₯π‘₯ 𝑛𝑛 + 2 βˆ’ 2.5π‘₯π‘₯[𝑛𝑛 + 1] Linear Constant-Coefficient Difference Equation (LCCDE) 𝑁𝑁 𝑀𝑀 Delay Form: π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 βˆ’ π‘˜π‘˜] π‘˜π‘˜=0 π‘˜π‘˜=0 𝑁𝑁 𝑀𝑀 Advance Form: π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] π‘˜π‘˜=0 π‘˜π‘˜=0 Advance operator 𝐸𝐸: 𝐸𝐸𝐸𝐸 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 + 1 𝐸𝐸 π‘šπ‘š π‘₯π‘₯ 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 + π‘šπ‘š Delay operator D: 𝐷𝐷π‘₯π‘₯ 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 βˆ’ 1 𝐷𝐷 π‘šπ‘š π‘₯π‘₯ 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 βˆ’ π‘šπ‘š Advance by 1 Delay by 1 1 1 1 0 𝑛𝑛 0 𝑛𝑛 0 𝑛𝑛 𝛿𝛿[𝑛𝑛] 𝐸𝐸𝐸𝐸 𝑛𝑛 = 𝛿𝛿 𝑛𝑛 + 1 𝐷𝐷𝐷𝐷 𝑛𝑛 = 𝛿𝛿 𝑛𝑛 βˆ’ 1 Linear Constant-Coefficient Difference Equation (LCCDE) Delay Form: 2𝑦𝑦 𝑛𝑛 βˆ’ 3𝑦𝑦 𝑛𝑛 βˆ’ 1 + 7𝑦𝑦 𝑛𝑛 βˆ’ 2 = 1.5π‘₯π‘₯ 𝑛𝑛 βˆ’ 2.5π‘₯π‘₯[𝑛𝑛 βˆ’ 1] 2 βˆ’ 3𝐷𝐷 + 7𝐷𝐷 2 𝑦𝑦 𝑛𝑛 = 1.5 βˆ’ 2.5𝐷𝐷 π‘₯π‘₯ 𝑛𝑛 𝑄𝑄[𝐷𝐷]𝑦𝑦 = 𝑃𝑃[𝐷𝐷]π‘₯π‘₯ 𝑄𝑄[𝐷𝐷] = 2 βˆ’ 3𝐷𝐷 + 7𝐷𝐷 2 𝑃𝑃[𝐷𝐷] = 1.5 βˆ’ 2.5𝐷𝐷 Advance Form: 2𝑦𝑦 𝑛𝑛 + 2 βˆ’ 3𝑦𝑦 𝑛𝑛 + 1 + 7𝑦𝑦 𝑛𝑛 = 1.5π‘₯π‘₯ 𝑛𝑛 + 2 βˆ’ 2.5π‘₯π‘₯[𝑛𝑛 + 1] 2𝐸𝐸 2 βˆ’ 3𝐸𝐸 + 7 𝑦𝑦 𝑛𝑛 = 1.5𝐸𝐸 2 βˆ’ 2.5𝐸𝐸 π‘₯π‘₯ 𝑛𝑛 𝑄𝑄[𝐸𝐸]𝑦𝑦 = 𝑃𝑃[𝐸𝐸]π‘₯π‘₯ 𝑄𝑄[𝐸𝐸] = 2𝐸𝐸 2 βˆ’ 3𝐸𝐸 + 7 𝑃𝑃[𝐸𝐸] = 1.5𝐸𝐸 2 βˆ’ 2.5E Notice that 𝑄𝑄[𝐷𝐷] and 𝑄𝑄[𝐸𝐸] (also 𝑃𝑃[𝐷𝐷] and 𝑃𝑃[𝐸𝐸]) are NOT the same polynomials. Linear Constant-Coefficient Difference Equation 𝑁𝑁 𝑀𝑀 π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] 𝑄𝑄[𝐸𝐸]𝑦𝑦 = 𝑃𝑃[𝐸𝐸]π‘₯π‘₯ π‘˜π‘˜=0 π‘˜π‘˜=0 I will often use advance form in mathematical calculations, even though advance operator (E) is not causal, and can be difficult to implement in practice. π‘₯π‘₯ 𝑛𝑛 𝑦𝑦 𝑛𝑛 𝑦𝑦 𝑛𝑛 = 𝐸𝐸𝐸𝐸 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 + 1 E Thus the present output (@ n) depends on the future input (@ n+1) π‘Žπ‘Ž0 𝑦𝑦 𝑛𝑛 + 𝑁𝑁 + π‘Žπ‘Ž1 𝑦𝑦 𝑛𝑛 + 𝑁𝑁 βˆ’ 1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 𝑦𝑦 𝑛𝑛 + 1 + π‘Žπ‘Žπ‘π‘ 𝑦𝑦 𝑛𝑛 = π‘π‘π‘π‘βˆ’π‘€π‘€ π‘₯π‘₯ 𝑛𝑛 + 𝑀𝑀 + π‘π‘π‘π‘βˆ’π‘€π‘€+1 π‘₯π‘₯ 𝑛𝑛 + 𝑀𝑀 βˆ’ 1 + β‹― + π‘π‘π‘π‘βˆ’1 𝑦𝑦 𝑛𝑛 + 1 + 𝑏𝑏𝑁𝑁 π‘₯π‘₯ 𝑛𝑛 Typically, we assume: 1) 𝑀𝑀 ≀ 𝑁𝑁 (otherwise non-causal), and 2) π‘Žπ‘Ž0 = 1 (for convenience). If 𝑀𝑀 < 𝑁𝑁, we can still β€œincrease” M to N, while selecting the corresponding coefficients for b to be zero. For example, π‘π‘π‘π‘βˆ’π‘€π‘€ = 𝑏𝑏0 = 0. Thus in general, we choose M=N. Linear Constant-Coefficient Difference Equation The general Nth order advance-form difference equation becomes: π‘Žπ‘Ž0 𝑦𝑦 𝑛𝑛 + 𝑁𝑁 + π‘Žπ‘Ž1 𝑦𝑦 𝑛𝑛 + 𝑁𝑁 βˆ’ 1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 𝑦𝑦 𝑛𝑛 + 1 + π‘Žπ‘Žπ‘π‘ 𝑦𝑦 𝑛𝑛 = 𝑏𝑏0 π‘₯π‘₯ 𝑛𝑛 + 𝑁𝑁 + 𝑏𝑏1 π‘₯π‘₯ 𝑛𝑛 + 𝑁𝑁 βˆ’ 1 + β‹― + π‘π‘π‘π‘βˆ’1 𝑦𝑦 𝑛𝑛 + 1 + 𝑏𝑏𝑁𝑁 π‘₯π‘₯ 𝑛𝑛 𝑄𝑄 𝐸𝐸 𝑦𝑦 𝑛𝑛 = 𝑃𝑃 𝐸𝐸 π‘₯π‘₯ 𝑛𝑛 𝑄𝑄 𝐸𝐸 = π‘Žπ‘Ž0 𝐸𝐸 𝑁𝑁 + π‘Žπ‘Ž1 𝐸𝐸 π‘π‘βˆ’1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 𝐸𝐸 + π‘Žπ‘Žπ‘π‘ 𝑃𝑃 𝐸𝐸 = 𝑏𝑏0 𝐸𝐸 𝑁𝑁 + 𝑏𝑏1 𝐸𝐸 π‘π‘βˆ’1 + β‹― + π‘π‘π‘π‘βˆ’1 𝐸𝐸 + 𝑏𝑏𝑁𝑁 Iterative Solution Example: 𝑦𝑦 𝑛𝑛 + 1 + 𝑦𝑦 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 + 1 𝑦𝑦 βˆ’1 = 1 π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 𝑛𝑛 𝑦𝑦 𝑛𝑛 = βˆ’π‘¦π‘¦ 𝑛𝑛 βˆ’ 1 + π‘₯π‘₯ 𝑛𝑛 Step 1 Step 2 Step 3 𝑦𝑦 βˆ’1 = 1 𝑦𝑦 0 = 0 𝑦𝑦 1 = 1 𝑦𝑦 2 = 0 βˆ’ βˆ’ βˆ’ 𝑦𝑦 𝑛𝑛 βˆ’1 0 1 2 + + + π‘₯π‘₯ 𝑛𝑛 βˆ’1 0 1 2 π‘₯π‘₯ βˆ’1 = 0 π‘₯π‘₯ 0 = 1 π‘₯π‘₯ 1 = 1 π‘₯π‘₯ 2 = 1 DT Impulse Response Function Input x Output y β„Ž[𝑛𝑛] 1 𝛿𝛿[𝑛𝑛] 0 𝑛𝑛 0 𝑛𝑛 𝑁𝑁 𝑀𝑀 π‘Žπ‘Žπ‘˜π‘˜ 𝑦𝑦[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] = π‘π‘π‘˜π‘˜ π‘₯π‘₯[𝑛𝑛 + 𝑁𝑁 βˆ’ π‘˜π‘˜] 𝑄𝑄 𝐸𝐸 β„Ž 𝑛𝑛 = 𝑃𝑃 𝐸𝐸 𝛿𝛿 𝑛𝑛 π‘˜π‘˜=0 π‘˜π‘˜=0 How to determine the unit impulse response of a DT system? For n>0, π‘₯π‘₯ 𝑛𝑛. Thus we have a homogenous equation: 𝑄𝑄 𝐸𝐸 𝑦𝑦 𝑛𝑛 = 0 We can assume a trial solution to the homogenous equation of the form: π‘¦π‘¦β„Ž 𝑛𝑛 = πœ†πœ†π‘›π‘› πœ†πœ† is a complex constant Characteristics Equation of the DT System 𝑄𝑄 𝐸𝐸 π‘¦π‘¦β„Ž 𝑛𝑛 = 0 𝑄𝑄 𝐸𝐸 = π‘Žπ‘Ž0 𝐸𝐸 𝑁𝑁 + π‘Žπ‘Ž1 𝐸𝐸 π‘π‘βˆ’1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 𝐸𝐸 + π‘Žπ‘Žπ‘π‘ Assume: 𝑦𝑦 𝑛𝑛 = πœ†πœ†π‘›π‘› 𝐸𝐸𝐸𝐸 𝑛𝑛 = πœ†πœ†π‘¦π‘¦ 𝑛𝑛 𝐸𝐸𝐸𝐸 𝑛𝑛 = 𝑦𝑦 𝑛𝑛 + 1 π‘Žπ‘Ž0 𝐸𝐸 𝑁𝑁 + π‘Žπ‘Ž1 𝐸𝐸 π‘π‘βˆ’1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 𝐸𝐸 + π‘Žπ‘Žπ‘π‘ π‘¦π‘¦β„Ž 𝑛𝑛 = 0 π‘Žπ‘Ž0 πœ†πœ†π‘π‘ + π‘Žπ‘Ž1 πœ†πœ†π‘π‘βˆ’1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 πœ†πœ† + π‘Žπ‘Žπ‘π‘ π‘¦π‘¦β„Ž 𝑛𝑛 = 0 π‘Žπ‘Ž0 πœ†πœ†π‘π‘ + π‘Žπ‘Ž1 πœ†πœ†π‘π‘βˆ’1 + β‹― + π‘Žπ‘Žπ‘π‘βˆ’1 πœ†πœ† + π‘Žπ‘Žπ‘π‘ = 0 Such an Nth order polynomial equation has N roots. The N roots may be distinct, or some may repeat. The roots can be real of complex. Characteristics Equation of the DT System 𝑄𝑄 𝐸𝐸 π‘¦π‘¦β„Ž 𝑛𝑛 = 0 Assume: π‘¦π‘¦β„Ž 𝑛𝑛 = πœ†πœ†π‘›π‘› 𝑄𝑄 πœ†πœ† = 0 πœ†πœ†1 β‰  β‹― β‰  πœ†πœ†π‘–π‘– β‰  β‹― β‰  πœ†πœ†π‘π‘ All roots are distinct: 𝑄𝑄 πœ†πœ† = πœ†πœ† βˆ’ πœ†πœ†1 β‹― πœ†πœ† βˆ’ πœ†πœ†π‘–π‘– β‹― πœ†πœ† βˆ’ πœ†πœ†π‘π‘ = 0 For n>0: π‘¦π‘¦β„Ž 𝑛𝑛 = 𝑐𝑐1 πœ†πœ†1𝑛𝑛 + β‹― + 𝑐𝑐𝑖𝑖 πœ†πœ†π‘›π‘›π‘–π‘– + β‹― + 𝑐𝑐𝑁𝑁 πœ†πœ†π‘›π‘›π‘π‘ 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,2, β‹― , 𝑁𝑁 are N independent (real or complex) constants. Suppose the 1st root repeat r times. Some roots repeat: π‘Ÿπ‘Ÿ 𝑄𝑄 πœ†πœ† = πœ†πœ† βˆ’ πœ†πœ†1 πœ†πœ† βˆ’ πœ†πœ†π‘Ÿπ‘Ÿ+1 β‹― πœ†πœ† βˆ’ πœ†πœ†π‘π‘ = 0 For n>0: π‘¦π‘¦β„Ž 𝑛𝑛 = 𝑐𝑐1 + 𝑐𝑐2 𝑛𝑛 + β‹― + π‘π‘π‘Ÿπ‘Ÿ π‘›π‘›π‘Ÿπ‘Ÿβˆ’1 πœ†πœ†1𝑛𝑛 + π‘π‘π‘Ÿπ‘Ÿ+1 πœ†πœ†π‘›π‘›π‘Ÿπ‘Ÿ+1 + β‹― + 𝑐𝑐𝑁𝑁 πœ†πœ†π‘›π‘›π‘π‘ 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,2, β‹― , 𝑁𝑁 are N independent (real or complex) constants. DT Impulse Response Function For n>0, we have: β„Ž[𝑛𝑛] = π‘¦π‘¦β„Ž 𝑛𝑛 𝑄𝑄 𝐸𝐸 π‘¦π‘¦β„Ž 𝑛𝑛 = 0 For causal system and n 1 0 1 𝑑𝑑 Impulse Response β„Ž(𝑑𝑑) 1 0 < 𝑑𝑑 < 2 β„Ž 𝑑𝑑 = 0 𝑑𝑑 < 0; 𝑑𝑑 > 2 1 ∞ 𝑑𝑑 𝑦𝑦 𝑑𝑑 = π‘₯π‘₯ 𝜏𝜏 β„Ž 𝑑𝑑 βˆ’ 𝜏𝜏 π‘‘π‘‘πœπœ 0 2 βˆ’βˆž Example Input π‘₯π‘₯ 𝑑𝑑 ∞ 1 𝑦𝑦 𝑑𝑑 = π‘₯π‘₯ 𝜏𝜏 β„Ž 𝑑𝑑 βˆ’ 𝜏𝜏 π‘‘π‘‘πœπœ βˆ’βˆž 𝑑𝑑 0 1 𝑑𝑑 0 < 𝑑𝑑 < 1 𝑦𝑦 𝑑𝑑 = π‘‘π‘‘πœπœ = 𝑑𝑑 0 1 1 < 𝑑𝑑 < 2 𝑦𝑦 𝑑𝑑 = π‘‘π‘‘πœπœ = 1 Impulse Response β„Ž(𝑑𝑑) 0 1 2 < 𝑑𝑑 < 3 𝑦𝑦 𝑑𝑑 = π‘‘π‘‘πœπœ = 3 βˆ’ 𝑑𝑑 π‘‘π‘‘βˆ’2 1 𝑑𝑑 𝑑𝑑 1 0 2 0 1 2 3 Reading Textbook (O&W): Chapter 1.1, 1.2, 1.3, and 1.4 Notes (Prof. Wyatt): Chapter 2 (TLO 2), Chapter 3 (TLO 3). Notes (Prof. Wyatt): Work on Chapter 2.7 (solved problems), problem 1, 2, and 3 Step Function (CT) In circuits, we use unit step-function to describe the action of opening or closing a switch. 1, 𝑑𝑑 β‰₯ 0 𝑒𝑒 𝑑𝑑 = 0, 𝑑𝑑 < 0 Unit Impulse Function (CT) Intuitively, it is often helpful to think 𝛿𝛿 𝑑𝑑 as: 𝛿𝛿 𝑑𝑑 = 0, if 𝑑𝑑 β‰  0 0, 𝑑𝑑 β‰  0 +∞ 𝛿𝛿 𝑑𝑑 = 𝛿𝛿 𝑑𝑑 𝑑𝑑𝑑𝑑 = 1 +∞, 𝑑𝑑 = 0 βˆ’βˆž 𝛿𝛿 𝑑𝑑 1 πœ€πœ€ 𝑑𝑑 When πœ€πœ€ β†’ 0, the β€œshort” πœ€πœ€ πœ€πœ€ 𝑑𝑑 pulse becomes the unit βˆ’ 2 2 impulse function Unit impulse function A short pulse with time duration πœ€πœ€ Unit Impulse Function Properties F(t) is an arbitrary function of t. 𝐹𝐹 𝑑𝑑 𝛿𝛿 𝑑𝑑 βˆ’ 𝑇𝑇 = 𝐹𝐹 𝑇𝑇 𝛿𝛿 𝑑𝑑 βˆ’ 𝑇𝑇 𝐹𝐹 𝑑𝑑 𝛿𝛿 𝑑𝑑 = 𝐹𝐹 0 𝛿𝛿 𝑑𝑑 T is any real constant. ∞ ∞ 𝐹𝐹 𝑑𝑑 𝛿𝛿 𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝐹𝐹 0 𝐹𝐹 𝑑𝑑 𝛿𝛿 𝑑𝑑 βˆ’ 𝑇𝑇 𝑑𝑑𝑑𝑑 = 𝐹𝐹 𝑇𝑇 βˆ’βˆž βˆ’βˆž 𝑏𝑏 If we have π‘Žπ‘Ž < 0 & 𝑏𝑏 > 0 𝐹𝐹 𝑑𝑑 𝛿𝛿 𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝐹𝐹 0 π‘Žπ‘Ž 𝑏𝑏 If we don’t have a < 0 < 𝑏𝑏 𝐹𝐹 𝑑𝑑 𝛿𝛿 𝑑𝑑 𝑑𝑑𝑑𝑑 = 0 π‘Žπ‘Ž Unit Impulse Function and Unit Step Function 𝑒𝑒 𝑑𝑑 𝛿𝛿 𝑑𝑑 1 𝑑𝑑 𝑑𝑑 𝑑𝑑 We can show that the left-hand side 𝑒𝑒 𝑑𝑑 = 𝛿𝛿 𝜏𝜏 𝑑𝑑𝑑𝑑 and the right-hand side take the same βˆ’βˆž value for any t. 𝑑𝑑𝑑𝑑 𝑑𝑑 𝛿𝛿 𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑 βˆ’ 𝑇𝑇 𝛿𝛿 𝑑𝑑 βˆ’ 𝑇𝑇 = 𝑑𝑑𝑑𝑑 Exponential Functions (CT) π‘Žπ‘Žπ‘Žπ‘Ž In the most general case, both coefficients C π‘₯π‘₯ 𝑑𝑑 = 𝐢𝐢𝑒𝑒 and can be complex numbers. Special case 1: a is a real number. Examples: π‘₯π‘₯ 𝑑𝑑 = 3𝑒𝑒 2𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 = 4𝑒𝑒 βˆ’3𝑑𝑑 Special case 2: a is purely imaginary: π‘Žπ‘Ž = π‘—π‘—πœ”πœ” Examples: π‘₯π‘₯ 𝑑𝑑 = 3𝑒𝑒 π‘—π‘—πœ”πœ”π‘‘π‘‘ 1 π‘—π‘—πœ”πœ”π‘‘π‘‘ cos πœ”πœ”π‘‘π‘‘ = 𝑒𝑒 + 𝑒𝑒 βˆ’π‘—π‘—πœ”πœ”π‘‘π‘‘ 2 Useful relations: 1 π‘—π‘—πœ”πœ”π‘‘π‘‘ sin πœ”πœ”π‘‘π‘‘ = 𝑒𝑒 βˆ’ 𝑒𝑒 βˆ’π‘—π‘—πœ”πœ”π‘‘π‘‘ 2𝑗𝑗 Magnitude Scaling In the most general case, a can be π‘₯π‘₯ 𝑑𝑑 π‘Žπ‘Žπ‘Žπ‘Ž 𝑑𝑑 any complex constant. 𝑒𝑒 𝑑𝑑 1 𝑒𝑒 𝑑𝑑 𝑑𝑑 Example: 3 3𝑒𝑒 𝑑𝑑 3𝑒𝑒 𝑑𝑑 𝑑𝑑 Time Shifting 𝜏𝜏 > 0 delay π‘₯π‘₯ 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 + 𝜏𝜏 𝜏𝜏 < 0 advance 𝑒𝑒 𝑑𝑑 𝑒𝑒 𝑑𝑑 1 Example: 𝑑𝑑 1 𝑒𝑒 𝑑𝑑 βˆ’ 2 𝑒𝑒 𝑑𝑑 βˆ’ 2 2 𝑑𝑑 Time Scaling 𝑑𝑑 𝜏𝜏 is typically a real number and π‘₯π‘₯ 𝑑𝑑 π‘₯π‘₯ 𝜏𝜏 can be either positive or negative Example: 𝜏𝜏 = 2 π‘₯π‘₯ 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 2 1 1 𝑑𝑑 𝑑𝑑 βˆ’2 βˆ’1 π‘₯π‘₯ βˆ’π‘‘π‘‘ 𝑑𝑑 1 Examples of CT Signals We can form more complex CT signals based on linear superpositions and transformations (e.g., scaling, multiplication) of basic CT signals such as unit step function, polynomials, exponential functions, etc. 6 π‘₯π‘₯ 𝑑𝑑 βˆ’1 2 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 = 6 𝑒𝑒 𝑑𝑑 + 1 βˆ’ 𝑒𝑒 𝑑𝑑 βˆ’ 2 Examples of CT Signals 6 π‘₯π‘₯ 𝑑𝑑 βˆ’1 2 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 = 𝑓𝑓 𝑑𝑑 𝑒𝑒 𝑑𝑑 + 1 βˆ’ 𝑒𝑒 𝑑𝑑 βˆ’ 2 (-1,6) 𝑓𝑓 𝑑𝑑 = βˆ’2𝑑𝑑 + 4 (2,0) π‘₯π‘₯ 𝑑𝑑 = βˆ’2𝑑𝑑 + 4 𝑒𝑒 𝑑𝑑 + 1 βˆ’ 𝑒𝑒 𝑑𝑑 βˆ’ 2 Signal Classifications Even signals: π‘₯π‘₯ 𝑑𝑑 = π‘₯π‘₯ βˆ’π‘‘π‘‘ Odd signal: π‘₯π‘₯ 𝑑𝑑 = βˆ’π‘₯π‘₯ βˆ’π‘‘π‘‘ Note: unit impulse function 𝛿𝛿 𝑑𝑑 is an even function: 𝛿𝛿 𝑑𝑑 = 𝛿𝛿 βˆ’π‘‘π‘‘ Periodic signals: π‘₯π‘₯ 𝑑𝑑 = π‘₯π‘₯ 𝑑𝑑 + 𝑇𝑇 Period: T Aperiodic signals: a signal that is not periodic Periodic Signals (CT) Fundamental Period 𝑇𝑇0 : the smallest positive value of T such that π‘₯π‘₯ 𝑑𝑑 = π‘₯π‘₯ 𝑑𝑑 + 𝑇𝑇 2πœ‹πœ‹ Fundamental (angular) frequency πœ”πœ”0 = 𝑇𝑇 Example π‘₯π‘₯ 𝑑𝑑 = cos 2πœ‹πœ‹πœ‹πœ‹ + 3 π‘₯π‘₯ 𝑑𝑑 = 𝑅𝑅𝑅𝑅 𝑒𝑒 𝑗𝑗 2πœ‹πœ‹πœ‹πœ‹+3 𝑒𝑒 𝑗𝑗 2πœ‹πœ‹πœ‹πœ‹+3 = 𝑒𝑒 𝑗𝑗 2πœ‹πœ‹πœ‹πœ‹+2πœ‹πœ‹πœ‹πœ‹+3 1 = 𝑒𝑒 𝑗𝑗2πœ‹πœ‹πœ‹πœ‹ 2πœ‹πœ‹πœ‹πœ‹ = 0, 2πœ‹πœ‹, 4πœ‹πœ‹, β‹― Period T: 𝑇𝑇 = 1, 2, 3, β‹― Fundamental Period: 𝑇𝑇0 = 1 Fundamental frequency: πœ”πœ”0 = 2πœ‹πœ‹ Periodic Signals (CT) What if two signals have different periods, and we add / multiply them together? If π‘₯π‘₯1 𝑑𝑑 is periodic with period 𝑇𝑇1 and π‘₯π‘₯2 𝑑𝑑 is periodic with period 𝑇𝑇2 , and if there exists positive integers m and n such that: π‘šπ‘šπ‘‡π‘‡1 = 𝑛𝑛𝑇𝑇2 = 𝑃𝑃 Then π‘₯π‘₯1 𝑑𝑑 + π‘₯π‘₯2 𝑑𝑑 and π‘₯π‘₯1 𝑑𝑑 π‘₯π‘₯2 𝑑𝑑 are periodic signals with period P. Periodic Signals (CT) Exist positive integers m and n such that: π‘šπ‘šπ‘‡π‘‡1 = 𝑛𝑛𝑇𝑇2 = 𝑃𝑃 𝑇𝑇1 = 2 𝑑𝑑 𝑇𝑇2 = 3 We can choose m=3 and n=2, such that: P=6 𝑑𝑑 π‘₯π‘₯1 𝑑𝑑 = cos 2πœ‹πœ‹ The period of signals such as 2 π‘₯π‘₯1 𝑑𝑑 + π‘₯π‘₯2 𝑑𝑑 and π‘₯π‘₯1 𝑑𝑑 π‘₯π‘₯2 𝑑𝑑 𝑑𝑑 should be P=6 π‘₯π‘₯2 𝑑𝑑 = sin 2πœ‹πœ‹ 3 However, cos 2πœ‹πœ‹πœ‹πœ‹ + sin 5𝑑𝑑 is NOT periodic. Signal Energy and Power The energy of a CT signal π‘₯π‘₯ 𝑑𝑑 is: Alternative notations: 𝑇𝑇 𝐸𝐸∞ and π‘ƒπ‘ƒβˆž 𝐸𝐸π‘₯π‘₯ = lim π‘₯π‘₯ 𝑑𝑑 2 𝑑𝑑𝑑𝑑 π‘‡π‘‡β†’βˆž βˆ’π‘‡π‘‡ Example: proportional to the total energy delivered to a load resistor whose voltage signal (with limited duration) is π‘₯π‘₯ 𝑑𝑑. The power of a CT signal π‘₯π‘₯ 𝑑𝑑 is: 1 𝑇𝑇 2 𝑑𝑑𝑑𝑑 𝑃𝑃π‘₯π‘₯ = lim π‘₯π‘₯ 𝑑𝑑 π‘‡π‘‡β†’βˆž 2𝑇𝑇 βˆ’π‘‡π‘‡ Example: the time-averaged power consumed by a load resistor with AC voltage signal of the form π‘₯π‘₯ 𝑑𝑑 = 2 cos πœ”πœ”πœ”πœ”. Read textbook section 1.1.2. Signal Energy and Power 𝑇𝑇 2 𝑑𝑑𝑑𝑑 1 𝑇𝑇 2 𝑑𝑑𝑑𝑑 𝐸𝐸π‘₯π‘₯ = lim π‘₯π‘₯ 𝑑𝑑 𝑃𝑃π‘₯π‘₯ = lim π‘₯π‘₯ 𝑑𝑑 π‘‡π‘‡β†’βˆž βˆ’π‘‡π‘‡ π‘‡π‘‡β†’βˆž 2𝑇𝑇 βˆ’π‘‡π‘‡ Energy signal: A signal with finite 𝐸𝐸π‘₯π‘₯. As a result, 𝑃𝑃π‘₯π‘₯ β†’ 0. Power signal: A signal with finite 𝑃𝑃π‘₯π‘₯. As a result, 𝐸𝐸π‘₯π‘₯ β†’ ∞. Neither: Both 𝐸𝐸π‘₯π‘₯ and 𝑃𝑃π‘₯π‘₯ are infinite. Example π‘₯π‘₯ 𝑑𝑑 = 𝑑𝑑. Discrete-Time (DT) Unit Step Signal We can generate DT signals by β€œsampling” continuous-time (CT) signals at regular time steps 𝑛𝑛Δ𝑑𝑑 𝑒𝑒 𝑑𝑑 1 𝑑𝑑 𝑒𝑒[𝑛𝑛] 1 1, 𝑛𝑛 β‰₯ 0 𝑒𝑒 𝑛𝑛 = 0, 𝑛𝑛 < 0 1 𝑛𝑛 0 DT Unit Impulse Signal 𝛿𝛿 𝑑𝑑 0, 𝑑𝑑 β‰  0 𝛿𝛿 𝑑𝑑 = +∞, 𝑑𝑑 = 0 0+ 𝑑𝑑 𝛿𝛿 𝑑𝑑 𝑑𝑑𝑑𝑑 = 1 0βˆ’ 𝛿𝛿[𝑛𝑛] 1 1, 𝑛𝑛 = 0 𝛿𝛿 𝑛𝑛 = 0, 𝑛𝑛 β‰  0 1 𝑛𝑛 0 We can also refer to 𝛿𝛿 𝑛𝑛 as unit sample. DT Unit Step vs Unit Impulse 𝑒𝑒[𝑛𝑛] 𝑒𝑒[𝑛𝑛 βˆ’ 1] 1 minus 1 1 𝑛𝑛 1 𝑛𝑛 0 0 First-order difference 𝛿𝛿 𝑛𝑛 = 𝑒𝑒 𝑛𝑛 βˆ’ 𝑒𝑒[𝑛𝑛 βˆ’ 1] 𝑛𝑛 Running sum: 𝑒𝑒 𝑛𝑛 = 𝛿𝛿[π‘šπ‘š] 𝛿𝛿[𝑛𝑛] π‘šπ‘š=βˆ’βˆž 1 𝑒𝑒 𝑛𝑛 = β‹― + 𝛿𝛿 βˆ’3 + 𝛿𝛿 βˆ’2 = 0 𝑛𝑛=βˆ’2 1 𝑛𝑛 𝑒𝑒 𝑛𝑛 = β‹― + 𝛿𝛿 βˆ’1 + 𝛿𝛿 0 + 𝛿𝛿 1 = 1 𝑛𝑛=1 0 Differentiation (CT) vs Difference (DT) βˆ†π‘‘π‘‘ 𝑑𝑑𝑑𝑑 The value of first- order derivative in the time-interval π‘₯π‘₯ 𝑑𝑑 𝑑𝑑𝑑𝑑 𝑛𝑛 βˆ’ 1 βˆ†π‘‘π‘‘ ≀ 𝑑𝑑 ≀ π‘›π‘›βˆ†π‘‘π‘‘ 𝑑𝑑 π‘₯π‘₯ 𝑛𝑛 βˆ’ π‘₯π‘₯ 𝑛𝑛 βˆ’ 1 𝑛𝑛 βˆ’ 1 βˆ†π‘‘π‘‘ π‘›π‘›βˆ†π‘‘π‘‘ βˆ†π‘‘π‘‘ In many situations, first-order differentiation of CT signals corresponds to first-order finite-difference of DT signals Integration vs Running Sum Integration of CT signals βˆ†π‘‘π‘‘ π‘›π‘›βˆ†π‘‘π‘‘ π‘₯π‘₯ 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 𝑑𝑑𝑑𝑑 βˆ’βˆž 𝑑𝑑 𝑛𝑛 π‘›π‘›βˆ†π‘‘π‘‘ π‘₯π‘₯[π‘šπ‘š]βˆ†π‘‘π‘‘ π‘šπ‘š βˆ’ 1 βˆ†π‘‘π‘‘ 𝑛𝑛 βˆ’ 1 βˆ†π‘‘π‘‘ π‘šπ‘š=βˆ’βˆž π‘šπ‘šβˆ†π‘‘π‘‘ Running sum of DT signals 𝑛𝑛 π‘₯π‘₯[π‘šπ‘š]βˆ†π‘‘π‘‘ = β‹― + π‘₯π‘₯ π‘šπ‘šβˆ†π‘‘π‘‘ βˆ†π‘‘π‘‘ + β‹― + π‘₯π‘₯ π‘›π‘›βˆ†π‘‘π‘‘ βˆ†π‘‘π‘‘ π‘šπ‘š=βˆ’βˆž DT Signal Energy and Power 𝑇𝑇 𝐸𝐸π‘₯π‘₯ = lim π‘₯π‘₯ 𝑑𝑑 2 𝑑𝑑𝑑𝑑 π‘‡π‘‡β†’βˆž βˆ’π‘‡π‘‡ 1 𝑇𝑇 CT Signals 𝑃𝑃π‘₯π‘₯ = lim π‘₯π‘₯ 𝑑𝑑 2 𝑑𝑑𝑑𝑑 π‘‡π‘‡β†’βˆž 2𝑇𝑇 βˆ’π‘‡π‘‡ For DT Signals, we have: 𝑁𝑁 𝐸𝐸π‘₯π‘₯ = lim π‘₯π‘₯ 𝑛𝑛 2 Sum n from 𝑛𝑛 = βˆ’π‘π‘, to 𝑛𝑛 = 𝑁𝑁. π‘π‘β†’βˆž βˆ’π‘π‘ 𝑁𝑁 1 2 𝑃𝑃π‘₯π‘₯ = lim π‘₯π‘₯ 𝑛𝑛 π‘π‘β†’βˆž 2𝑁𝑁 + 1 βˆ’π‘π‘ Exponential Functions (DT) 𝛽𝛽𝛽𝛽 In the most general case, both coefficients C π‘₯π‘₯ 𝑛𝑛 = 𝐢𝐢𝑒𝑒 and 𝛽𝛽 can be complex numbers. Sometimes, we can express it alternatively as: 𝛽𝛽 𝑁𝑁 with 𝛼𝛼 = 𝑒𝑒 𝛽𝛽 π‘₯π‘₯ 𝑛𝑛 = 𝐢𝐢 𝑒𝑒 = 𝐢𝐢𝛼𝛼 𝑁𝑁 An important example: π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 π‘—π‘—πœ”πœ”0 𝑛𝑛 𝐢𝐢 = 1 𝛽𝛽 = π‘—π‘—πœ”πœ”0 We notice that π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 π‘—π‘—πœ”πœ”0 𝑛𝑛 and π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 𝑗𝑗 πœ”πœ”0 +2πœ‹πœ‹ 𝑛𝑛 are identical DT signals. Periodic Signals (DT) A DT signal π‘₯π‘₯ 𝑛𝑛 is periodic with period N, where N is a positive integer, if: π‘₯π‘₯ 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 + 𝑁𝑁 for any n values. Fundamental period 𝑁𝑁0 : the smallest period. Fundamental frequency: 2πœ‹πœ‹β„π‘π‘0. Example: π‘₯π‘₯ 𝑛𝑛 = 3𝑒𝑒 𝑗𝑗3πœ‹πœ‹ 𝑛𝑛+0.5 ⁄5 3πœ‹πœ‹ 𝑗𝑗 𝑁𝑁 3𝑒𝑒 𝑗𝑗3πœ‹πœ‹ 𝑛𝑛+0.5 ⁄5 = 3𝑒𝑒 𝑗𝑗3πœ‹πœ‹ 𝑛𝑛+𝑁𝑁+0.5 ⁄5 1 = 𝑒𝑒 5 3πœ‹πœ‹ 10 N = 0, 2πœ‹πœ‹, 4πœ‹πœ‹, β‹― , 2𝑀𝑀𝑀𝑀, β‹― N= 𝑀𝑀 5 3 N = 10, 20, 30, β‹― 𝑁𝑁0 = 10 Periodic Signals (DT) Let us consider a DT exponential signal x 𝑛𝑛 = 𝑒𝑒 π‘—π‘—πœ”πœ”0𝑛𝑛. We want to answer the following questions: under what conditions is x 𝑛𝑛 periodic / aperiodic? π‘₯π‘₯ 𝑛𝑛 = π‘₯π‘₯ 𝑛𝑛 + 𝑁𝑁 𝑒𝑒 π‘—π‘—πœ”πœ”0𝑛𝑛 = 𝑒𝑒 π‘—π‘—πœ”πœ”0 𝑛𝑛+𝑁𝑁 1 = 𝑒𝑒 π‘—π‘—πœ”πœ”0𝑁𝑁 2πœ‹πœ‹ 𝑁𝑁 = π‘šπ‘š πœ”πœ”0 𝑁𝑁 = 2πœ‹πœ‹πœ‹πœ‹ π‘šπ‘š = 1,2,3, β‹― πœ”πœ”0 Once we have determined the value of πœ”πœ”0 : If there is a pair of integers If πœ”πœ”0 is an irrational number πœ”πœ” π‘šπ‘š 2πœ‹πœ‹ such that 0 = (i.e., rational) 2πœ‹πœ‹ 𝑁𝑁 x 𝑛𝑛 is periodic x 𝑛𝑛 is aperiodic Examples 2πœ‹πœ‹ 𝑗𝑗 𝑛𝑛 π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 3 Periodic signal with fundamental period 𝑁𝑁0 = 3 3πœ‹πœ‹ π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 𝑗𝑗 4 𝑛𝑛 Periodic signal with fundamental period 𝑁𝑁0 = 8 π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 𝑗𝑗3𝑛𝑛 Aperiodic signal 2πœ‹πœ‹ 3πœ‹πœ‹ π‘₯π‘₯ 𝑛𝑛 = 𝑒𝑒 𝑗𝑗 3 𝑛𝑛 + 𝑒𝑒 𝑗𝑗 4 𝑛𝑛 Periodic signal with fundamental period 𝑁𝑁0 = 24 Review of Complex Algebra a = ar + jai b = br + jbi Suppose we have two arbitrary complex a + b = [ar + br ] + j[ai + bi ] numbers a and b. a βˆ’ b = [ar βˆ’ br ] + j[ai βˆ’ bi ] π‘Žπ‘Žβˆ— = π‘Žπ‘Žπ‘Ÿπ‘Ÿ βˆ’ π‘—π‘—π‘Žπ‘Žπ‘–π‘– a β‹… b = [ar br βˆ’ ai bi ] + j[ai br + ar bi ] Complex conjugate a a β‹… b* (ar + jai ) β‹… (br βˆ’ jbi ) [ar br + ai bi ] + j[ai br βˆ’ ar bi ] = = = b bβ‹…b * (br + jbi ) β‹… (br βˆ’ jbi ) br2 + bi2 Please review and refresh your knowledge of complex algebra! Two complex numbers equal to π‘Žπ‘Žπ‘Ÿπ‘Ÿ = π‘π‘π‘Ÿπ‘Ÿ 𝑅𝑅𝑅𝑅(π‘Žπ‘Ž) = 𝑅𝑅𝑅𝑅(𝑏𝑏) each other means that real part π‘Žπ‘Ž = 𝑏𝑏 π‘Žπ‘Žπ‘–π‘– = 𝑏𝑏𝑖𝑖 equals to real part, imaginary 𝐼𝐼𝐼𝐼(π‘Žπ‘Ž) = 𝐼𝐼𝐼𝐼(𝑏𝑏) part equals to imaginary part. Euler’s Formula For any real number πœ‘πœ‘ (angle e jΟ• = cos Ο• + j sin Ο• Im in radians) a = ar + jai = a e jΟ• a ai = a sin Ο• Amplitude / a = ar2 + ai2 magnitude: Ο• ar = a cos Ο• Re βˆ’1  ai ο£Ά Phase: Ο• = tan  ο£·ο£· ο£­ ar ο£Έ How to represent a complex number on a complex plane. You must have an intuitive understanding of this one-to-one correspondence. Also, notice that for real number c and d, we have 𝑒𝑒 𝑐𝑐+𝑑𝑑𝑑𝑑 = 𝑒𝑒 𝑐𝑐 𝑒𝑒 𝑑𝑑𝑑𝑑 = 𝑒𝑒 𝑐𝑐 (cos 𝑑𝑑 + 𝑗𝑗 sin 𝑑𝑑) Complex Numbers and Phasors In circuit theory, we use phasor to represent complex numbers that denote the amplitude and phase of an AC voltage / current signal. Mathematically, you can simply treat any phasor as a complex number in polar form. Rectangular form: 𝑧𝑧 = π‘₯π‘₯ + 𝑗𝑗𝑗𝑗 Polar form: 𝑧𝑧 = π‘Ÿπ‘Ÿβˆ πœ™πœ™ Exponential form: 𝑧𝑧 = π‘Ÿπ‘Ÿπ‘’π‘’ π‘—π‘—πœ™πœ™ All three forms are equivalent. Phasors and AC Signals Let us consider an AC voltage signal of the form: 𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”πœ”πœ” + πœ™πœ™ 𝑉𝑉 = π‘‰π‘‰π‘šπ‘š βˆ πœ™πœ™ Time domain signal Phasor domain signal You should be used to the equivalence between the time-domain signal and the phasor domain signal. It happens in many sub-disciplines of ECE Generally speaking, all time-varying EM fields can be denoted in phasor form. Addition of AC Signals Let us consider what will happen if we want to add two AC signals of the same frequency together. 𝑣𝑣1 𝑑𝑑 = 𝑉𝑉1 cos πœ”πœ”πœ”πœ” + πœ™πœ™1 𝑉𝑉 1 = 𝑉𝑉1 βˆ πœ™πœ™1 = 𝑉𝑉1 𝑒𝑒 π‘—π‘—πœ™πœ™1 𝑒𝑒 π‘—π‘—πœ”πœ”π‘‘π‘‘ 𝑣𝑣2 𝑑𝑑 = 𝑉𝑉2 cos πœ”πœ”πœ”πœ” + πœ™πœ™2 𝑉𝑉 2 = 𝑉𝑉2 βˆ πœ™πœ™2 = 𝑉𝑉1 𝑒𝑒 π‘—π‘—πœ™πœ™2 𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 𝑣𝑣1 𝑑𝑑 + 𝑣𝑣2 𝑑𝑑 = 𝑅𝑅𝑅𝑅 𝑉𝑉1 𝑒𝑒 π‘—π‘—πœ™πœ™1 𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑉𝑉2 𝑒𝑒 π‘—π‘—πœ™πœ™2 𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 𝑣𝑣1 𝑑𝑑 + 𝑣𝑣2 𝑑𝑑 = 𝑅𝑅𝑅𝑅 𝑉𝑉1 𝑒𝑒 π‘—π‘—πœ™πœ™1 + 𝑉𝑉2 𝑒𝑒 π‘—π‘—πœ™πœ™2 𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑅𝑅𝑅𝑅 𝑉𝑉𝑠𝑠 𝑒𝑒 π‘—π‘—πœ™πœ™π‘ π‘  𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 𝑉𝑉1 βˆ πœ™πœ™1 + 𝑉𝑉2 βˆ πœ™πœ™2 = 𝑉𝑉𝑠𝑠 βˆ πœ™πœ™π‘ π‘  𝑉𝑉𝑠𝑠 βˆ πœ™πœ™π‘ π‘  = 𝑉𝑉𝑆𝑆 cos πœ”πœ”πœ”πœ” + πœ™πœ™π‘ π‘  Phasor Operations 𝑧𝑧1 = π‘Ÿπ‘Ÿ1 βˆ πœ™πœ™1 = π‘Ÿπ‘Ÿ1 𝑒𝑒 π‘—π‘—πœ™πœ™1 Multiplication: 𝑧𝑧2 = π‘Ÿπ‘Ÿ2 βˆ πœ™πœ™2 = π‘Ÿπ‘Ÿ2 𝑒𝑒 π‘—π‘—πœ™πœ™2 𝑧𝑧1 𝑧𝑧2 = π‘Ÿπ‘Ÿ1 π‘Ÿπ‘Ÿ2 ∠ πœ™πœ™1 + πœ™πœ™2 𝑧𝑧1 𝑧𝑧2 = π‘Ÿπ‘Ÿ1 π‘Ÿπ‘Ÿ2 𝑒𝑒 𝑗𝑗 πœ™πœ™1 +πœ™πœ™2 Division: 𝑧𝑧1 π‘Ÿπ‘Ÿ1 𝑗𝑗 πœ™πœ™ βˆ’πœ™πœ™ Reciprocal: = 𝑒𝑒 1 2 1 1 βˆ’π‘—π‘—πœ™πœ™ 𝑧𝑧2 π‘Ÿπ‘Ÿ2 = 𝑒𝑒 1 𝑧𝑧1 π‘Ÿπ‘Ÿ1 𝑧𝑧1 π‘Ÿπ‘Ÿ1 = ∠ πœ™πœ™1 βˆ’ πœ™πœ™2 1 1 𝑧𝑧2 π‘Ÿπ‘Ÿ2 = ∠ βˆ’πœ™πœ™1 𝑧𝑧1 π‘Ÿπ‘Ÿ1 Phasor Operations 𝑧𝑧1 = π‘Ÿπ‘Ÿ1 βˆ πœ™πœ™1 = π‘Ÿπ‘Ÿ1 𝑒𝑒 π‘—π‘—πœ™πœ™1 = π‘₯π‘₯1 + 𝑗𝑗𝑦𝑦1 Complex Conjugation: 𝑧𝑧2 = π‘Ÿπ‘Ÿ2 βˆ πœ™πœ™2 = π‘Ÿπ‘Ÿ2 𝑒𝑒 π‘—π‘—πœ™πœ™2 = π‘₯π‘₯2 + 𝑗𝑗𝑦𝑦2 𝑧𝑧1 = π‘₯π‘₯1 + 𝑗𝑗𝑦𝑦1 𝑧𝑧1 βˆ— = π‘₯π‘₯1 βˆ’ 𝑗𝑗𝑦𝑦1 Square Root: 𝑧𝑧1 βˆ— = π‘Ÿπ‘Ÿ1 βˆ βˆ’πœ™πœ™1 = π‘Ÿπ‘Ÿ1 𝑒𝑒 βˆ’π‘—π‘—πœ™πœ™1 𝑗𝑗 πœ™πœ™1 ⁄2 𝑧𝑧1 = π‘Ÿπ‘Ÿ1 𝑒𝑒 Addition and Subtraction: 𝑧𝑧1 + 𝑧𝑧2 = π‘₯π‘₯1 + π‘₯π‘₯2 + 𝑗𝑗 𝑦𝑦1 + 𝑦𝑦2 𝑧𝑧1 = π‘Ÿπ‘Ÿ1 ∠ πœ™πœ™1 ⁄2 𝑧𝑧1 βˆ’ 𝑧𝑧2 = π‘₯π‘₯1 βˆ’ π‘₯π‘₯2 + 𝑗𝑗 𝑦𝑦1 βˆ’ 𝑦𝑦2 From Rectangular to Polar or Exponential Form Imaginary 𝑧𝑧 = π‘Ÿπ‘Ÿβˆ πœ™πœ™ 𝑧𝑧 = π‘₯π‘₯ + 𝑗𝑗𝑗𝑗 π‘—π‘—πœ™πœ™ II Quadrant I Quadrant 𝑧𝑧 = π‘Ÿπ‘Ÿπ‘’π‘’ How to convert a phasor from the rectangular π‘Ÿπ‘Ÿ form to the polar or exponential form? πœ™πœ™ π‘Ÿπ‘Ÿ = π‘₯π‘₯ 2 + 𝑦𝑦 2 Real If the phasor is in the first or the fourth quadrant (use your judgement based on the rectangular form): III Quadrant IV Quadrant βˆ’1 ⁄ πœ™πœ™ = tan 𝑦𝑦 π‘₯π‘₯ If the phasor is in the second or the third quadrant (use your judgement based on the rectangular form): πœ™πœ™ = πœ‹πœ‹ + tanβˆ’1 𝑦𝑦⁄π‘₯π‘₯ Notice that the tanβˆ’1 𝑒𝑒 function can only generate a phase angle from βˆ’πœ‹πœ‹ to πœ‹πœ‹, which does not cover the full range of possible phase angles. Examples 𝑧𝑧 = 1 + 𝑗𝑗 3 2 2 π‘Ÿπ‘Ÿ = 12 + 3 = 2 3 60Β° πœ™πœ™ = tanβˆ’1 3⁄1 = 1.047 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = 60Β° 1 𝑧𝑧 = 2 ∠1.047 = 2∠60Β° 𝑧𝑧 = 2 𝑒𝑒 𝑗𝑗1.047 = 2𝑒𝑒 𝑗𝑗𝑗𝑗𝑗 Examples 𝑧𝑧 = βˆ’1 + 𝑗𝑗 3 2 3 2 120Β° π‘Ÿπ‘Ÿ = 12 + 3 = 2 βˆ’1 tanβˆ’1 βˆ’ 3⁄1 = βˆ’1.047 In this class, I will generally limit πœ™πœ™ = βˆ’1.047 + Ο€ = 2.094 = 120Β° phase angle within the range of βˆ’ 180Β° to 180Β°. Depending on how you calculate 𝑧𝑧 = 2 ∠2.094 = 2∠120Β° your phase angles, you may need to add or subtract πœ‹πœ‹. Additional Reading and Exercises Textbook (O & W): page 71 Textbook basic problems: page 57, P1.1 and 1.2. Reading Textbook (O&W): Chapter 1 Notes (Prof. Wyatt): Chapter 2 and 3 (TLO2 and 3) Input-Output Description of System Models π‘₯π‘₯ 𝑑𝑑 𝑦𝑦 𝑑𝑑 Input Output System The input and output signals can be a variety of parameters such as voltage, current, mechanical force / torque, optical intensity, electric field intensity, etc. The system can contain a variety of components such as capacitors, inductors, diodes, transistors, mechanical beams, DC / AC motors, optical devices, cells (biological). Circuits π‘₯π‘₯ 𝑑𝑑 System 𝑦𝑦 𝑑𝑑 Input Output Input 𝑖𝑖 Output + π‘₯π‘₯ 𝑑𝑑 + 𝑑𝑑𝑑𝑑 𝑣𝑣 𝑦𝑦 𝑑𝑑 βˆ’ 𝑖𝑖 = 𝐢𝐢 𝑑𝑑𝑑𝑑 βˆ’ Communication Network π‘₯π‘₯ 𝑑𝑑 𝑦𝑦 𝑑𝑑 Input Output Communication System Alice Bob A communication system where Alice send Bob data (electrical, optical, etc) through a variety of communications networks (fiber optical network, wireless, etc). Optical Systems π‘₯π‘₯ 𝑑𝑑 Optical systems 𝑦𝑦 𝑑𝑑 Input Output Optical and electrical Incident Light components Transmitted Light An optical fiber that allows optical signals in specific spectral range (e.g., near infra-red light) to pass through Electromechanical Systems π‘₯π‘₯ 𝑑𝑑 𝑦𝑦 𝑑𝑑 Input Output Electromechanical Systems DC / AC Voltage Mechanical Torque The electromechanical system can contain components such as circuit components and AC / DC motors. Linear vs Nonlinear Systems π‘₯π‘₯ 𝑑𝑑 𝑦𝑦 𝑑𝑑 Input Output System In linear system, its output 𝑦𝑦 𝑑𝑑 is proportional to its input x 𝑑𝑑. The linear system response is additive: π‘₯π‘₯1 𝑑𝑑 𝑦𝑦1 𝑑𝑑 π‘₯π‘₯1 𝑑𝑑 + π‘₯π‘₯2 𝑑𝑑 𝑦𝑦1 𝑑𝑑 + 𝑦𝑦2 𝑑𝑑 π‘₯π‘₯2 𝑑𝑑 𝑦𝑦2 𝑑𝑑 Linear scaling: π‘₯π‘₯1 𝑑𝑑 𝑦𝑦1 𝑑𝑑 𝑐𝑐𝑐𝑐1 𝑑𝑑 𝑐𝑐𝑐𝑐1 𝑑𝑑 𝑐𝑐: any real or complex number (constant) A Nonlinear System 𝑖𝑖𝐷𝐷 + βˆ’ 𝑅𝑅 + 𝑣𝑣𝐷𝐷 𝑦𝑦 𝑑𝑑 π‘₯π‘₯ 𝑑𝑑 βˆ’ Any circuit containing diode(s) is in general nonlinear. Time-Invariant vs Time-Varying Systems A system whose parameters (e.g., capacitor’s capacitance) remain constant is time-invariant. In time-invariant system, if input is π‘₯π‘₯ 𝑑𝑑 β†’ 𝑦𝑦 𝑑𝑑 delayed by T, then system response is also delayed by T. π‘₯π‘₯ 𝑑𝑑 βˆ’ 𝑇𝑇 β†’ 𝑦𝑦 𝑑𝑑 βˆ’ 𝑇𝑇 Input 𝑖𝑖 Output Linear time- + invariant system π‘₯π‘₯ 𝑑𝑑 + 𝑑𝑑𝑑𝑑 𝑣𝑣 𝑦𝑦 𝑑𝑑 is often denoted βˆ’ 𝑖𝑖 = 𝐢𝐢 as LTI system. 𝑑𝑑𝑑𝑑 βˆ’ Instantaneous vs Dynamic Systems A system whose output at time t only depends on input at time t is called instantaneous or memoryless. Any circuits containing only resistors are instantaneous. A system is dynamic if its output response at time t depends on its past is called dynamic (or system with memory). Any circuits that contain components such as capacitors or inductors are dynamic. Continuous Time (CT) Signals Mathematically speaking, we can simply define signals as a function y that maps elements from set A (domain) to elements in set B (co-domain). 𝑦𝑦: 𝐴𝐴 β†’ 𝐡𝐡 Example 1 A is the set of real number that represent t (βˆ’βˆž < 𝑑𝑑 < ∞) in unit of seconds. B is the set of real numbers that represent 𝑣𝑣 (βˆ’βˆž < 𝑑𝑑 < ∞), in unit of volts. 𝑦𝑦 𝑑𝑑 = 3 cos 10𝑑𝑑 𝑉𝑉 Example 2 A represent time and B is the set of complex 20𝑑𝑑+πœ‹πœ‹β„3 𝑦𝑦 𝑑𝑑 = 5𝑒𝑒 𝑗𝑗 𝐴𝐴 numbers representing phasor currents: Example 3 A corresponds spatial position z (unit m), and B corresponds to voltage / electric potential (unit V) at any given position. 𝑦𝑦 𝑧𝑧 = 2𝑧𝑧 Discrete Time (DT) Signals For discrete-time signals, you can think of them as 𝑦𝑦: 𝐴𝐴 β†’ 𝐡𝐡 produced by β€œsampling” continuous time signals at specific time points. In this case, A is typically a set of integers, and B is the set of real or complex numbers. From Previous Example 1 𝑦𝑦 𝑑𝑑 = 3 cos 10𝑑𝑑 𝑉𝑉 Now imagine that we sample the voltage signal every 0.5 second (i.e., time interval is Δ𝑑𝑑 = 0.5 𝑠𝑠. We can then produce the following DT signal 𝑦𝑦[𝑛𝑛]: 𝑦𝑦 𝑛𝑛 = 3 cos 10𝑛𝑛Δ𝑑𝑑 𝑉𝑉 n β‹― βˆ’πŸπŸ 𝟎𝟎 𝟏𝟏 𝟐𝟐 πŸ‘πŸ‘ πŸ’πŸ’ β‹― y[n] (V) β‹― 0.85 3 0.85 -2.52 -2.28 1.22 β‹― CT Signal Example 𝑦𝑦 𝑑𝑑 = 3 cos 10𝑑𝑑 𝑉𝑉 Matlab Script % an example of CT signal clear; N_array = 1000; t1 = -1.5; t2 = 2.5; t_array = linspace(t1,t2,N_array); y_array = 3*cos(10*t_array); plot(t_array,y_array,'LineWidth',2); grid on; xlabel('t (s)','FontSize',14); ylabel('y(t) (V)','FontSize',14); print('CT_signal_1','-dpng'); DT Signal Example 𝑦𝑦 𝑛𝑛 = 3 cos 10𝑛𝑛Δ𝑑𝑑 𝑉𝑉 Δ𝑑𝑑 = 0.5 𝑠𝑠 n β‹― βˆ’πŸπŸ 𝟎𝟎 𝟏𝟏 𝟐𝟐 πŸ‘πŸ‘ πŸ’πŸ’ β‹― y[n] (V) β‹― 0.85 3 0.85 -2.52 -2.28 1.22 β‹― Matlab Script % an example of DT signal clear; delta_t = 0.5; n_array = -1:4; y_array = 3*cos(10*n_array*delta_t); stem(n_array,y_array,'LineWidth',2); grid on; xlabel('n','FontSize',14); ylabel('y(n) (V)','FontSize',14); print('DT_signal_1','-dpng'); Neural Network as a Nonlinear System This example illustrates how to use a neural network to correctly recognize an digital image that contains β€œ3”. β€œHow Deep Learning Works” IEEE Spectrum, page 32, Oct. 2021. A Single Neuron 𝑦𝑦 𝑀𝑀0 𝑀𝑀1 𝑀𝑀𝐼𝐼 π‘₯π‘₯0 = 1 β‹― π‘₯π‘₯𝑖𝑖 IEEE Spectrum: How Deep Learning Works, page 32, π‘₯π‘₯1 π‘₯π‘₯𝐼𝐼 Oct. 2021 Architecture of a single neuron: A number (𝐼𝐼) of inputs (π‘₯π‘₯𝑖𝑖 ) and one output (y). Each input (π‘₯π‘₯𝑖𝑖 ) is associated with a weight (𝑀𝑀𝑖𝑖 ). There may also be a bias (𝑀𝑀0 ) whose input (π‘₯π‘₯0 ) is always 1. The signal neuron is a feedforward device (input -> output). Neural Network and Attention Mechanisms B. Ghojogh and A. Ghodsi GPT (Generative Pre- trained Transformer)

Use Quizgecko on...
Browser
Browser