ECE 2714 Exam 1 Review PDF
Document Details

Uploaded by SteadyNephrite2709
Virginia Tech
Tags
Summary
This document is a review of concepts in continuous-time and discrete-time signals and systems relevant to an ECE 2714 exam. It covers important signal properties, system properties (such as stability and invertibility), convolution, and linear constant coefficient difference equations.
Full Transcript
Exam 1 Policy Grading Rubric 5 - Fully correct 4.5 - Single math error 4 - Most of the algebra is correct with only one algebra mistake 3.5 - Some manipulation of the equations is done with some substitutions but not all substitutions are done correctly 3 - Basic engineerin...
Exam 1 Policy Grading Rubric 5 - Fully correct 4.5 - Single math error 4 - Most of the algebra is correct with only one algebra mistake 3.5 - Some manipulation of the equations is done with some substitutions but not all substitutions are done correctly 3 - Basic engineering concepts are there (e.g., the starting equations) but no manipulation of the equations is done in any way beyond the basic equations 2 - At least one equation relevant to the problem is present 1 - Work is present but no applicable equations 0 - No attempt CT / DT Signals and Properties Important CT/DT functions: unit impulse, unit step, exponential (complex or real), sin / cos, Eulerβs formula. Properties: even / odd / neither, periodic / aperiodic, power / energy / neither. If a signal is periodic, what is its fundamental period / fundamental frequency? Fundamental Period: the smallest positive real number T (CT) or positive integer N (DT) such that π₯π₯ π‘π‘ = π₯π₯ π‘π‘ + ππ (CT signals) or π₯π₯[ππ] = π₯π₯[ππ + ππ] (DT signals). Notice the similarities as well as important difference between CT and DT signals when it comes to periodicity. If two signals (CT / DT) are periodic (i.e., π₯π₯1 and π₯π₯2 ), how about their sum / product (i.e., π₯π₯1 + π₯π₯2 , π₯π₯1 π₯π₯2 )? How to calculate the energy / power of CT / DT signals? CT / DT System Properties Stability How to determine whether a CT/ DT Invertibility system possess these properties: Memory Definition. Properties of impulse response Causality function. Time Invariance Construction of examples (i.e., an inverse system) or counter-examples. Linearity Convolution β π¦π¦ π‘π‘ = π₯π₯ ππ β π‘π‘ β ππ ππππ How to evaluate any given ββ convolution (π¦π¦ = π₯π₯ β β) β based on their definition: π¦π¦ ππ = π₯π₯ ππ β ππ β ππ ππ=ββ Properties of (DT / CT) convolution: commutative, distributive, associative, time shift, as well as their combinations How to use convolution tables (if the problem allows you to do so). CT Convolution Table in Exam DT Convolution Table in Exam Impulse Response Function (CT) ππ ππ π¦π¦ π‘π‘ ππ ππβ1 π¦π¦ π‘π‘ πππ¦π¦ π‘π‘ ππππ + ππππβ1 + β― + ππ1 + ππ0 π¦π¦ π‘π‘ Always set ππππ = 1 πππ‘π‘ ππ πππ‘π‘ ππβ1 πππ‘π‘ ππ ππβ1 ππ π₯π₯ π‘π‘ ππ π₯π₯ π‘π‘ πππ₯π₯ π‘π‘ = ππππ ππ + ππππβ1 ππβ1 + β― + ππ1 + ππ0 π₯π₯ π‘π‘ ππ π·π· π¦π¦ = ππ π·π· π₯π₯ πππ‘π‘ πππ‘π‘ ππππ Only include this term if ππ = ππ Homogenous solution β π‘π‘ = ππππ πΏπΏ π‘π‘ + ππ π·π· π¦π¦β π‘π‘ π’π’(π‘π‘) π¦π¦β π‘π‘ = πΆπΆ1 π¦π¦β1 π‘π‘ + β― + πΆπΆππ π¦π¦βππ π‘π‘ + β― + πΆπΆππ π¦π¦βππ π‘π‘ Real roots / complex roots / repeated roots. The constants πΆπΆππ are determined by using auxiliary conditions: π¦π¦β 0+ = 0 β― π·π· ππ π¦π¦β 0+ = 0 β― π·π· ππβ1 π¦π¦β 0+ = 1 Linear Constant Coefficient Difference Equation ππ ππ Advance Form: ππππ π¦π¦[ππ + ππ β ππ] = ππππ π₯π₯[ππ + ππ β ππ] ππ=0 ππ=0 ππ ππ Delay Form: ππππ π¦π¦[ππ β ππ] = ππππ π₯π₯[ππ β ππ] ππ=0 ππ=0 ππ πΈπΈ π¦π¦ ππ = ππ πΈπΈ π₯π₯ ππ ππ πΈπΈ = ππ0 πΈπΈ ππ + ππ1 πΈπΈ ππβ1 + β― + ππππβ1 πΈπΈ + ππππ ππ πΈπΈ = ππ0 πΈπΈ ππ + ππ1 πΈπΈ ππβ1 + β― + ππππβ1 πΈπΈ + ππππ Impulse Response Function (DT) ππ πΈπΈ β ππ = ππ πΈπΈ πΏπΏ ππ ππππ β ππ = πΏπΏ ππ + π¦π¦β ππ π’π’[ππ] ππππ Distinct roots: π¦π¦β ππ = ππ1 ππ1ππ + β― + ππππ ππππππ + β― + ππππ ππππππ Determine the values of ππππ by iteratively calculating the values of: β0 β1 β― β ππ β 1 Under the conditions of: π₯π₯ ππ = πΏπΏ[ππ] β ππ = 0 For all n 8 π¦π¦ π‘π‘ = 3 6=9 ππ = π‘π‘ β 3 2 ππ = π‘π‘ ππ = 2 ππ ππ = π‘π‘ β 6 Convolution: Graphic Understanding Signal π₯π₯ π‘π‘ : Unit impulse response function β π‘π‘ : π₯π₯ π‘π‘ = π’π’ π‘π‘ β 2 β π‘π‘ = 12 β 2π‘π‘ π’π’ π‘π‘ β 3 β π’π’ π‘π‘ β 6 6 π‘π‘ = 2 π‘π‘ π‘π‘ β π‘π‘ = 3 π‘π‘ = 6 π¦π¦ π‘π‘ = π₯π₯ ππ β π‘π‘ β ππ ππππ = π₯π₯ π‘π‘ β β π‘π‘ ββ For 5 < π‘π‘ < 8 π‘π‘β3 ππ = π‘π‘ β 3 π¦π¦ π‘π‘ = 2 ππ β π‘π‘ β 6 ππππ ππ = π‘π‘ 2 π¦π¦ π‘π‘ = 16π‘π‘ β π‘π‘ 2 β 55 ππ ππ = π‘π‘ β 6 ππ = 2 Using Convolution Table π₯π₯ π‘π‘ = π’π’ π‘π‘ β 2 β π‘π‘ = 12 β 2π‘π‘ π’π’ π‘π‘ β 3 β π’π’ π‘π‘ β 6 β π¦π¦ π‘π‘ = π₯π₯ ππ β π‘π‘ β ππ ππππ = π₯π₯ π‘π‘ β β π‘π‘ ββ π¦π¦ π‘π‘ = 2π’π’ π‘π‘ β 2 β 6 β π‘π‘ π’π’ π‘π‘ β 3 β 2π’π’ π‘π‘ β 2 β 6 β π‘π‘ π’π’ π‘π‘ β 6 π₯π₯1 π‘π‘ β ππ1 β π₯π₯2 π‘π‘ β ππ2 = ππ π‘π‘ β ππ1 β ππ2 1 2 π’π’ π‘π‘ β π‘π‘π’π’ π‘π‘ = π‘π‘ π’π’ π‘π‘ 2 2π’π’ π‘π‘ β 2 β 6 β π‘π‘ π’π’ π‘π‘ β 6 = β π‘π‘ β 8 2 π’π’ π‘π‘ β 8 2π’π’ π‘π‘ β 2 β 6 β π‘π‘ π’π’ π‘π‘ β 3 = 6 π‘π‘ β 5 π’π’ π‘π‘ β 5 β π‘π‘ β 5 2 π’π’ π‘π‘ β 5 π¦π¦ π‘π‘ = 16π‘π‘ β π‘π‘ 2 β 55 π’π’ π‘π‘ β 5 + β16π‘π‘ + π‘π‘ 2 + 64 π’π’ π‘π‘ β 8 Reading Textbook (O&W): Chapter 2.4. Notes (Prof. Wyatt): Chapter 5 (TLO 5) After reading, solve on your own, examples given in the textbook, during lectures, and in Prof. Wyattβs note. (CT) Differential and (DT) Difference Equations βπ‘π‘ ππππ π₯π₯ ππ β π₯π₯ ππ β 1 π₯π₯ π‘π‘ ππππ βπ‘π‘ First-order differential equation: ππππ π‘π‘ = β2π₯π₯ ππππ ππ β 1 βπ‘π‘ ππβπ‘π‘ Replace differentiation First-order difference equation: with finite-difference π₯π₯ ππ β π₯π₯ ππ β 1 π₯π₯ ππ + π₯π₯ ππ β 1 1 + βπ‘π‘ π₯π₯ ππ + β1 + βπ‘π‘ π₯π₯ ππ β 1 = 0 = β2 βπ‘π‘ 2 Linear Constant-Coefficient Difference Equation ππ ππ ππ[π·π·]π¦π¦ = ππ[π·π·]π₯π₯ Delay Form: ππππ π¦π¦[ππ β ππ] = ππππ π₯π₯[ππ β ππ] N: order of the system ππ=0 ππ=0 Example: 2π¦π¦ ππ β 3π¦π¦ ππ β 1 + 7π¦π¦ ππ β 2 = 1.5π₯π₯ ππ β 2.5π₯π₯[ππ β 1] ππ2 = 7 ππ1 = β3 ππ0 = 2 ππ = 2 π¦π¦ ππ β 2 π¦π¦ ππ β 1 π¦π¦ ππ ππ β 3 ππ β 2 ππ β 1 ππ π₯π₯ ππ β 1 π₯π₯ ππ ππ1 = β2.5 ππ0 = 1.5 ππ ππ Advance Form (Replace n with ππππ π¦π¦[ππ + ππ β ππ] = ππππ π₯π₯[ππ + ππ β ππ] n+N): ππ=0 ππ=0 ππ[πΈπΈ]π¦π¦ = ππ[πΈπΈ]π₯π₯ 2π¦π¦ ππ + 2 β 3π¦π¦ ππ + 1 + 7π¦π¦ ππ = 1.5π₯π₯ ππ + 2 β 2.5π₯π₯[ππ + 1] Linear Constant-Coefficient Difference Equation (LCCDE) ππ ππ Delay Form: ππππ π¦π¦[ππ β ππ] = ππππ π₯π₯[ππ β ππ] ππ=0 ππ=0 ππ ππ Advance Form: ππππ π¦π¦[ππ + ππ β ππ] = ππππ π₯π₯[ππ + ππ β ππ] ππ=0 ππ=0 Advance operator πΈπΈ: πΈπΈπΈπΈ ππ = π₯π₯ ππ + 1 πΈπΈ ππ π₯π₯ ππ = π₯π₯ ππ + ππ Delay operator D: π·π·π₯π₯ ππ = π₯π₯ ππ β 1 π·π· ππ π₯π₯ ππ = π₯π₯ ππ β ππ Advance by 1 Delay by 1 1 1 1 0 ππ 0 ππ 0 ππ πΏπΏ[ππ] πΈπΈπΈπΈ ππ = πΏπΏ ππ + 1 π·π·π·π· ππ = πΏπΏ ππ β 1 Linear Constant-Coefficient Difference Equation (LCCDE) Delay Form: 2π¦π¦ ππ β 3π¦π¦ ππ β 1 + 7π¦π¦ ππ β 2 = 1.5π₯π₯ ππ β 2.5π₯π₯[ππ β 1] 2 β 3π·π· + 7π·π· 2 π¦π¦ ππ = 1.5 β 2.5π·π· π₯π₯ ππ ππ[π·π·]π¦π¦ = ππ[π·π·]π₯π₯ ππ[π·π·] = 2 β 3π·π· + 7π·π· 2 ππ[π·π·] = 1.5 β 2.5π·π· Advance Form: 2π¦π¦ ππ + 2 β 3π¦π¦ ππ + 1 + 7π¦π¦ ππ = 1.5π₯π₯ ππ + 2 β 2.5π₯π₯[ππ + 1] 2πΈπΈ 2 β 3πΈπΈ + 7 π¦π¦ ππ = 1.5πΈπΈ 2 β 2.5πΈπΈ π₯π₯ ππ ππ[πΈπΈ]π¦π¦ = ππ[πΈπΈ]π₯π₯ ππ[πΈπΈ] = 2πΈπΈ 2 β 3πΈπΈ + 7 ππ[πΈπΈ] = 1.5πΈπΈ 2 β 2.5E Notice that ππ[π·π·] and ππ[πΈπΈ] (also ππ[π·π·] and ππ[πΈπΈ]) are NOT the same polynomials. Linear Constant-Coefficient Difference Equation ππ ππ ππππ π¦π¦[ππ + ππ β ππ] = ππππ π₯π₯[ππ + ππ β ππ] ππ[πΈπΈ]π¦π¦ = ππ[πΈπΈ]π₯π₯ ππ=0 ππ=0 I will often use advance form in mathematical calculations, even though advance operator (E) is not causal, and can be difficult to implement in practice. π₯π₯ ππ π¦π¦ ππ π¦π¦ ππ = πΈπΈπΈπΈ ππ = π₯π₯ ππ + 1 E Thus the present output (@ n) depends on the future input (@ n+1) ππ0 π¦π¦ ππ + ππ + ππ1 π¦π¦ ππ + ππ β 1 + β― + ππππβ1 π¦π¦ ππ + 1 + ππππ π¦π¦ ππ = ππππβππ π₯π₯ ππ + ππ + ππππβππ+1 π₯π₯ ππ + ππ β 1 + β― + ππππβ1 π¦π¦ ππ + 1 + ππππ π₯π₯ ππ Typically, we assume: 1) ππ β€ ππ (otherwise non-causal), and 2) ππ0 = 1 (for convenience). If ππ < ππ, we can still βincreaseβ M to N, while selecting the corresponding coefficients for b to be zero. For example, ππππβππ = ππ0 = 0. Thus in general, we choose M=N. Linear Constant-Coefficient Difference Equation The general Nth order advance-form difference equation becomes: ππ0 π¦π¦ ππ + ππ + ππ1 π¦π¦ ππ + ππ β 1 + β― + ππππβ1 π¦π¦ ππ + 1 + ππππ π¦π¦ ππ = ππ0 π₯π₯ ππ + ππ + ππ1 π₯π₯ ππ + ππ β 1 + β― + ππππβ1 π¦π¦ ππ + 1 + ππππ π₯π₯ ππ ππ πΈπΈ π¦π¦ ππ = ππ πΈπΈ π₯π₯ ππ ππ πΈπΈ = ππ0 πΈπΈ ππ + ππ1 πΈπΈ ππβ1 + β― + ππππβ1 πΈπΈ + ππππ ππ πΈπΈ = ππ0 πΈπΈ ππ + ππ1 πΈπΈ ππβ1 + β― + ππππβ1 πΈπΈ + ππππ Iterative Solution Example: π¦π¦ ππ + 1 + π¦π¦ ππ = π₯π₯ ππ + 1 π¦π¦ β1 = 1 π₯π₯ ππ = π’π’ ππ π¦π¦ ππ = βπ¦π¦ ππ β 1 + π₯π₯ ππ Step 1 Step 2 Step 3 π¦π¦ β1 = 1 π¦π¦ 0 = 0 π¦π¦ 1 = 1 π¦π¦ 2 = 0 β β β π¦π¦ ππ β1 0 1 2 + + + π₯π₯ ππ β1 0 1 2 π₯π₯ β1 = 0 π₯π₯ 0 = 1 π₯π₯ 1 = 1 π₯π₯ 2 = 1 DT Impulse Response Function Input x Output y β[ππ] 1 πΏπΏ[ππ] 0 ππ 0 ππ ππ ππ ππππ π¦π¦[ππ + ππ β ππ] = ππππ π₯π₯[ππ + ππ β ππ] ππ πΈπΈ β ππ = ππ πΈπΈ πΏπΏ ππ ππ=0 ππ=0 How to determine the unit impulse response of a DT system? For n>0, π₯π₯ ππ. Thus we have a homogenous equation: ππ πΈπΈ π¦π¦ ππ = 0 We can assume a trial solution to the homogenous equation of the form: π¦π¦β ππ = ππππ ππ is a complex constant Characteristics Equation of the DT System ππ πΈπΈ π¦π¦β ππ = 0 ππ πΈπΈ = ππ0 πΈπΈ ππ + ππ1 πΈπΈ ππβ1 + β― + ππππβ1 πΈπΈ + ππππ Assume: π¦π¦ ππ = ππππ πΈπΈπΈπΈ ππ = πππ¦π¦ ππ πΈπΈπΈπΈ ππ = π¦π¦ ππ + 1 ππ0 πΈπΈ ππ + ππ1 πΈπΈ ππβ1 + β― + ππππβ1 πΈπΈ + ππππ π¦π¦β ππ = 0 ππ0 ππππ + ππ1 ππππβ1 + β― + ππππβ1 ππ + ππππ π¦π¦β ππ = 0 ππ0 ππππ + ππ1 ππππβ1 + β― + ππππβ1 ππ + ππππ = 0 Such an Nth order polynomial equation has N roots. The N roots may be distinct, or some may repeat. The roots can be real of complex. Characteristics Equation of the DT System ππ πΈπΈ π¦π¦β ππ = 0 Assume: π¦π¦β ππ = ππππ ππ ππ = 0 ππ1 β β― β ππππ β β― β ππππ All roots are distinct: ππ ππ = ππ β ππ1 β― ππ β ππππ β― ππ β ππππ = 0 For n>0: π¦π¦β ππ = ππ1 ππ1ππ + β― + ππππ ππππππ + β― + ππππ ππππππ ππππ , ππ = 1,2, β― , ππ are N independent (real or complex) constants. Suppose the 1st root repeat r times. Some roots repeat: ππ ππ ππ = ππ β ππ1 ππ β ππππ+1 β― ππ β ππππ = 0 For n>0: π¦π¦β ππ = ππ1 + ππ2 ππ + β― + ππππ ππππβ1 ππ1ππ + ππππ+1 ππππππ+1 + β― + ππππ ππππππ ππππ , ππ = 1,2, β― , ππ are N independent (real or complex) constants. DT Impulse Response Function For n>0, we have: β[ππ] = π¦π¦β ππ ππ πΈπΈ π¦π¦β ππ = 0 For causal system and n 1 0 1 π‘π‘ Impulse Response β(π‘π‘) 1 0 < π‘π‘ < 2 β π‘π‘ = 0 π‘π‘ < 0; π‘π‘ > 2 1 β π‘π‘ π¦π¦ π‘π‘ = π₯π₯ ππ β π‘π‘ β ππ ππππ 0 2 ββ Example Input π₯π₯ π‘π‘ β 1 π¦π¦ π‘π‘ = π₯π₯ ππ β π‘π‘ β ππ ππππ ββ π‘π‘ 0 1 π‘π‘ 0 < π‘π‘ < 1 π¦π¦ π‘π‘ = ππππ = π‘π‘ 0 1 1 < π‘π‘ < 2 π¦π¦ π‘π‘ = ππππ = 1 Impulse Response β(π‘π‘) 0 1 2 < π‘π‘ < 3 π¦π¦ π‘π‘ = ππππ = 3 β π‘π‘ π‘π‘β2 1 π‘π‘ π‘π‘ 1 0 2 0 1 2 3 Reading Textbook (O&W): Chapter 1.1, 1.2, 1.3, and 1.4 Notes (Prof. Wyatt): Chapter 2 (TLO 2), Chapter 3 (TLO 3). Notes (Prof. Wyatt): Work on Chapter 2.7 (solved problems), problem 1, 2, and 3 Step Function (CT) In circuits, we use unit step-function to describe the action of opening or closing a switch. 1, π‘π‘ β₯ 0 π’π’ π‘π‘ = 0, π‘π‘ < 0 Unit Impulse Function (CT) Intuitively, it is often helpful to think πΏπΏ π‘π‘ as: πΏπΏ π‘π‘ = 0, if π‘π‘ β 0 0, π‘π‘ β 0 +β πΏπΏ π‘π‘ = πΏπΏ π‘π‘ ππππ = 1 +β, π‘π‘ = 0 ββ πΏπΏ π‘π‘ 1 ππ π‘π‘ When ππ β 0, the βshortβ ππ ππ π‘π‘ pulse becomes the unit β 2 2 impulse function Unit impulse function A short pulse with time duration ππ Unit Impulse Function Properties F(t) is an arbitrary function of t. πΉπΉ π‘π‘ πΏπΏ π‘π‘ β ππ = πΉπΉ ππ πΏπΏ π‘π‘ β ππ πΉπΉ π‘π‘ πΏπΏ π‘π‘ = πΉπΉ 0 πΏπΏ π‘π‘ T is any real constant. β β πΉπΉ π‘π‘ πΏπΏ π‘π‘ ππππ = πΉπΉ 0 πΉπΉ π‘π‘ πΏπΏ π‘π‘ β ππ ππππ = πΉπΉ ππ ββ ββ ππ If we have ππ < 0 & ππ > 0 πΉπΉ π‘π‘ πΏπΏ π‘π‘ ππππ = πΉπΉ 0 ππ ππ If we donβt have a < 0 < ππ πΉπΉ π‘π‘ πΏπΏ π‘π‘ ππππ = 0 ππ Unit Impulse Function and Unit Step Function π’π’ π‘π‘ πΏπΏ π‘π‘ 1 π‘π‘ π‘π‘ π‘π‘ We can show that the left-hand side π’π’ π‘π‘ = πΏπΏ ππ ππππ and the right-hand side take the same ββ value for any t. ππππ π‘π‘ πΏπΏ π‘π‘ = ππππ ππππ π‘π‘ β ππ πΏπΏ π‘π‘ β ππ = ππππ Exponential Functions (CT) ππππ In the most general case, both coefficients C π₯π₯ π‘π‘ = πΆπΆππ and can be complex numbers. Special case 1: a is a real number. Examples: π₯π₯ π‘π‘ = 3ππ 2π‘π‘ π₯π₯ π‘π‘ = 4ππ β3π‘π‘ Special case 2: a is purely imaginary: ππ = ππππ Examples: π₯π₯ π‘π‘ = 3ππ πππππ‘π‘ 1 πππππ‘π‘ cos πππ‘π‘ = ππ + ππ βπππππ‘π‘ 2 Useful relations: 1 πππππ‘π‘ sin πππ‘π‘ = ππ β ππ βπππππ‘π‘ 2ππ Magnitude Scaling In the most general case, a can be π₯π₯ π‘π‘ ππππ π‘π‘ any complex constant. π’π’ π‘π‘ 1 π’π’ π‘π‘ π‘π‘ Example: 3 3π’π’ π‘π‘ 3π’π’ π‘π‘ π‘π‘ Time Shifting ππ > 0 delay π₯π₯ π‘π‘ π₯π₯ π‘π‘ + ππ ππ < 0 advance π’π’ π‘π‘ π’π’ π‘π‘ 1 Example: π‘π‘ 1 π’π’ π‘π‘ β 2 π’π’ π‘π‘ β 2 2 π‘π‘ Time Scaling π‘π‘ ππ is typically a real number and π₯π₯ π‘π‘ π₯π₯ ππ can be either positive or negative Example: ππ = 2 π₯π₯ π‘π‘ π₯π₯ π‘π‘ 2 1 1 π‘π‘ π‘π‘ β2 β1 π₯π₯ βπ‘π‘ π‘π‘ 1 Examples of CT Signals We can form more complex CT signals based on linear superpositions and transformations (e.g., scaling, multiplication) of basic CT signals such as unit step function, polynomials, exponential functions, etc. 6 π₯π₯ π‘π‘ β1 2 π‘π‘ π₯π₯ π‘π‘ = 6 π’π’ π‘π‘ + 1 β π’π’ π‘π‘ β 2 Examples of CT Signals 6 π₯π₯ π‘π‘ β1 2 π‘π‘ π₯π₯ π‘π‘ = ππ π‘π‘ π’π’ π‘π‘ + 1 β π’π’ π‘π‘ β 2 (-1,6) ππ π‘π‘ = β2π‘π‘ + 4 (2,0) π₯π₯ π‘π‘ = β2π‘π‘ + 4 π’π’ π‘π‘ + 1 β π’π’ π‘π‘ β 2 Signal Classifications Even signals: π₯π₯ π‘π‘ = π₯π₯ βπ‘π‘ Odd signal: π₯π₯ π‘π‘ = βπ₯π₯ βπ‘π‘ Note: unit impulse function πΏπΏ π‘π‘ is an even function: πΏπΏ π‘π‘ = πΏπΏ βπ‘π‘ Periodic signals: π₯π₯ π‘π‘ = π₯π₯ π‘π‘ + ππ Period: T Aperiodic signals: a signal that is not periodic Periodic Signals (CT) Fundamental Period ππ0 : the smallest positive value of T such that π₯π₯ π‘π‘ = π₯π₯ π‘π‘ + ππ 2ππ Fundamental (angular) frequency ππ0 = ππ Example π₯π₯ π‘π‘ = cos 2ππππ + 3 π₯π₯ π‘π‘ = π π π π ππ ππ 2ππππ+3 ππ ππ 2ππππ+3 = ππ ππ 2ππππ+2ππππ+3 1 = ππ ππ2ππππ 2ππππ = 0, 2ππ, 4ππ, β― Period T: ππ = 1, 2, 3, β― Fundamental Period: ππ0 = 1 Fundamental frequency: ππ0 = 2ππ Periodic Signals (CT) What if two signals have different periods, and we add / multiply them together? If π₯π₯1 π‘π‘ is periodic with period ππ1 and π₯π₯2 π‘π‘ is periodic with period ππ2 , and if there exists positive integers m and n such that: ππππ1 = ππππ2 = ππ Then π₯π₯1 π‘π‘ + π₯π₯2 π‘π‘ and π₯π₯1 π‘π‘ π₯π₯2 π‘π‘ are periodic signals with period P. Periodic Signals (CT) Exist positive integers m and n such that: ππππ1 = ππππ2 = ππ ππ1 = 2 π‘π‘ ππ2 = 3 We can choose m=3 and n=2, such that: P=6 π‘π‘ π₯π₯1 π‘π‘ = cos 2ππ The period of signals such as 2 π₯π₯1 π‘π‘ + π₯π₯2 π‘π‘ and π₯π₯1 π‘π‘ π₯π₯2 π‘π‘ π‘π‘ should be P=6 π₯π₯2 π‘π‘ = sin 2ππ 3 However, cos 2ππππ + sin 5π‘π‘ is NOT periodic. Signal Energy and Power The energy of a CT signal π₯π₯ π‘π‘ is: Alternative notations: ππ πΈπΈβ and ππβ πΈπΈπ₯π₯ = lim π₯π₯ π‘π‘ 2 ππππ ππββ βππ Example: proportional to the total energy delivered to a load resistor whose voltage signal (with limited duration) is π₯π₯ π‘π‘. The power of a CT signal π₯π₯ π‘π‘ is: 1 ππ 2 ππππ πππ₯π₯ = lim π₯π₯ π‘π‘ ππββ 2ππ βππ Example: the time-averaged power consumed by a load resistor with AC voltage signal of the form π₯π₯ π‘π‘ = 2 cos ππππ. Read textbook section 1.1.2. Signal Energy and Power ππ 2 ππππ 1 ππ 2 ππππ πΈπΈπ₯π₯ = lim π₯π₯ π‘π‘ πππ₯π₯ = lim π₯π₯ π‘π‘ ππββ βππ ππββ 2ππ βππ Energy signal: A signal with finite πΈπΈπ₯π₯. As a result, πππ₯π₯ β 0. Power signal: A signal with finite πππ₯π₯. As a result, πΈπΈπ₯π₯ β β. Neither: Both πΈπΈπ₯π₯ and πππ₯π₯ are infinite. Example π₯π₯ π‘π‘ = π‘π‘. Discrete-Time (DT) Unit Step Signal We can generate DT signals by βsamplingβ continuous-time (CT) signals at regular time steps ππΞπ‘π‘ π’π’ π‘π‘ 1 π‘π‘ π’π’[ππ] 1 1, ππ β₯ 0 π’π’ ππ = 0, ππ < 0 1 ππ 0 DT Unit Impulse Signal πΏπΏ π‘π‘ 0, π‘π‘ β 0 πΏπΏ π‘π‘ = +β, π‘π‘ = 0 0+ π‘π‘ πΏπΏ π‘π‘ ππππ = 1 0β πΏπΏ[ππ] 1 1, ππ = 0 πΏπΏ ππ = 0, ππ β 0 1 ππ 0 We can also refer to πΏπΏ ππ as unit sample. DT Unit Step vs Unit Impulse π’π’[ππ] π’π’[ππ β 1] 1 minus 1 1 ππ 1 ππ 0 0 First-order difference πΏπΏ ππ = π’π’ ππ β π’π’[ππ β 1] ππ Running sum: π’π’ ππ = πΏπΏ[ππ] πΏπΏ[ππ] ππ=ββ 1 π’π’ ππ = β― + πΏπΏ β3 + πΏπΏ β2 = 0 ππ=β2 1 ππ π’π’ ππ = β― + πΏπΏ β1 + πΏπΏ 0 + πΏπΏ 1 = 1 ππ=1 0 Differentiation (CT) vs Difference (DT) βπ‘π‘ ππππ The value of first- order derivative in the time-interval π₯π₯ π‘π‘ ππππ ππ β 1 βπ‘π‘ β€ π‘π‘ β€ ππβπ‘π‘ π‘π‘ π₯π₯ ππ β π₯π₯ ππ β 1 ππ β 1 βπ‘π‘ ππβπ‘π‘ βπ‘π‘ In many situations, first-order differentiation of CT signals corresponds to first-order finite-difference of DT signals Integration vs Running Sum Integration of CT signals βπ‘π‘ ππβπ‘π‘ π₯π₯ π‘π‘ π₯π₯ π‘π‘ ππππ ββ π‘π‘ ππ ππβπ‘π‘ π₯π₯[ππ]βπ‘π‘ ππ β 1 βπ‘π‘ ππ β 1 βπ‘π‘ ππ=ββ ππβπ‘π‘ Running sum of DT signals ππ π₯π₯[ππ]βπ‘π‘ = β― + π₯π₯ ππβπ‘π‘ βπ‘π‘ + β― + π₯π₯ ππβπ‘π‘ βπ‘π‘ ππ=ββ DT Signal Energy and Power ππ πΈπΈπ₯π₯ = lim π₯π₯ π‘π‘ 2 ππππ ππββ βππ 1 ππ CT Signals πππ₯π₯ = lim π₯π₯ π‘π‘ 2 ππππ ππββ 2ππ βππ For DT Signals, we have: ππ πΈπΈπ₯π₯ = lim π₯π₯ ππ 2 Sum n from ππ = βππ, to ππ = ππ. ππββ βππ ππ 1 2 πππ₯π₯ = lim π₯π₯ ππ ππββ 2ππ + 1 βππ Exponential Functions (DT) π½π½π½π½ In the most general case, both coefficients C π₯π₯ ππ = πΆπΆππ and π½π½ can be complex numbers. Sometimes, we can express it alternatively as: π½π½ ππ with πΌπΌ = ππ π½π½ π₯π₯ ππ = πΆπΆ ππ = πΆπΆπΌπΌ ππ An important example: π₯π₯ ππ = ππ ππππ0 ππ πΆπΆ = 1 π½π½ = ππππ0 We notice that π₯π₯ ππ = ππ ππππ0 ππ and π₯π₯ ππ = ππ ππ ππ0 +2ππ ππ are identical DT signals. Periodic Signals (DT) A DT signal π₯π₯ ππ is periodic with period N, where N is a positive integer, if: π₯π₯ ππ = π₯π₯ ππ + ππ for any n values. Fundamental period ππ0 : the smallest period. Fundamental frequency: 2ππβππ0. Example: π₯π₯ ππ = 3ππ ππ3ππ ππ+0.5 β5 3ππ ππ ππ 3ππ ππ3ππ ππ+0.5 β5 = 3ππ ππ3ππ ππ+ππ+0.5 β5 1 = ππ 5 3ππ 10 N = 0, 2ππ, 4ππ, β― , 2ππππ, β― N= ππ 5 3 N = 10, 20, 30, β― ππ0 = 10 Periodic Signals (DT) Let us consider a DT exponential signal x ππ = ππ ππππ0ππ. We want to answer the following questions: under what conditions is x ππ periodic / aperiodic? π₯π₯ ππ = π₯π₯ ππ + ππ ππ ππππ0ππ = ππ ππππ0 ππ+ππ 1 = ππ ππππ0ππ 2ππ ππ = ππ ππ0 ππ = 2ππππ ππ = 1,2,3, β― ππ0 Once we have determined the value of ππ0 : If there is a pair of integers If ππ0 is an irrational number ππ ππ 2ππ such that 0 = (i.e., rational) 2ππ ππ x ππ is periodic x ππ is aperiodic Examples 2ππ ππ ππ π₯π₯ ππ = ππ 3 Periodic signal with fundamental period ππ0 = 3 3ππ π₯π₯ ππ = ππ ππ 4 ππ Periodic signal with fundamental period ππ0 = 8 π₯π₯ ππ = ππ ππ3ππ Aperiodic signal 2ππ 3ππ π₯π₯ ππ = ππ ππ 3 ππ + ππ ππ 4 ππ Periodic signal with fundamental period ππ0 = 24 Review of Complex Algebra a = ar + jai b = br + jbi Suppose we have two arbitrary complex a + b = [ar + br ] + j[ai + bi ] numbers a and b. a β b = [ar β br ] + j[ai β bi ] ππβ = ππππ β ππππππ a β b = [ar br β ai bi ] + j[ai br + ar bi ] Complex conjugate a a β b* (ar + jai ) β (br β jbi ) [ar br + ai bi ] + j[ai br β ar bi ] = = = b bβ b * (br + jbi ) β (br β jbi ) br2 + bi2 Please review and refresh your knowledge of complex algebra! Two complex numbers equal to ππππ = ππππ π π π π (ππ) = π π π π (ππ) each other means that real part ππ = ππ ππππ = ππππ equals to real part, imaginary πΌπΌπΌπΌ(ππ) = πΌπΌπΌπΌ(ππ) part equals to imaginary part. Eulerβs Formula For any real number ππ (angle e jΟ = cos Ο + j sin Ο Im in radians) a = ar + jai = a e jΟ a ai = a sin Ο Amplitude / a = ar2 + ai2 magnitude: Ο ar = a cos Ο Re β1  ai ο£Ά Phase: Ο = tan  ο£·ο£· ο£ ar ο£Έ How to represent a complex number on a complex plane. You must have an intuitive understanding of this one-to-one correspondence. Also, notice that for real number c and d, we have ππ ππ+ππππ = ππ ππ ππ ππππ = ππ ππ (cos ππ + ππ sin ππ) Complex Numbers and Phasors In circuit theory, we use phasor to represent complex numbers that denote the amplitude and phase of an AC voltage / current signal. Mathematically, you can simply treat any phasor as a complex number in polar form. Rectangular form: π§π§ = π₯π₯ + ππππ Polar form: π§π§ = ππβ ππ Exponential form: π§π§ = ππππ ππππ All three forms are equivalent. Phasors and AC Signals Let us consider an AC voltage signal of the form: π£π£ π‘π‘ = ππππ cos ππππ + ππ ππ = ππππ β ππ Time domain signal Phasor domain signal You should be used to the equivalence between the time-domain signal and the phasor domain signal. It happens in many sub-disciplines of ECE Generally speaking, all time-varying EM fields can be denoted in phasor form. Addition of AC Signals Let us consider what will happen if we want to add two AC signals of the same frequency together. π£π£1 π‘π‘ = ππ1 cos ππππ + ππ1 ππ 1 = ππ1 β ππ1 = ππ1 ππ ππππ1 ππ πππππ‘π‘ π£π£2 π‘π‘ = ππ2 cos ππππ + ππ2 ππ 2 = ππ2 β ππ2 = ππ1 ππ ππππ2 ππ ππππππ π£π£1 π‘π‘ + π£π£2 π‘π‘ = π π π π ππ1 ππ ππππ1 ππ ππππππ + ππ2 ππ ππππ2 ππ ππππππ π£π£1 π‘π‘ + π£π£2 π‘π‘ = π π π π ππ1 ππ ππππ1 + ππ2 ππ ππππ2 ππ ππππππ = π π π π πππ π ππ πππππ π ππ ππππππ ππ1 β ππ1 + ππ2 β ππ2 = πππ π β πππ π πππ π β πππ π = ππππ cos ππππ + πππ π Phasor Operations π§π§1 = ππ1 β ππ1 = ππ1 ππ ππππ1 Multiplication: π§π§2 = ππ2 β ππ2 = ππ2 ππ ππππ2 π§π§1 π§π§2 = ππ1 ππ2 β ππ1 + ππ2 π§π§1 π§π§2 = ππ1 ππ2 ππ ππ ππ1 +ππ2 Division: π§π§1 ππ1 ππ ππ βππ Reciprocal: = ππ 1 2 1 1 βππππ π§π§2 ππ2 = ππ 1 π§π§1 ππ1 π§π§1 ππ1 = β ππ1 β ππ2 1 1 π§π§2 ππ2 = β βππ1 π§π§1 ππ1 Phasor Operations π§π§1 = ππ1 β ππ1 = ππ1 ππ ππππ1 = π₯π₯1 + πππ¦π¦1 Complex Conjugation: π§π§2 = ππ2 β ππ2 = ππ2 ππ ππππ2 = π₯π₯2 + πππ¦π¦2 π§π§1 = π₯π₯1 + πππ¦π¦1 π§π§1 β = π₯π₯1 β πππ¦π¦1 Square Root: π§π§1 β = ππ1 β βππ1 = ππ1 ππ βππππ1 ππ ππ1 β2 π§π§1 = ππ1 ππ Addition and Subtraction: π§π§1 + π§π§2 = π₯π₯1 + π₯π₯2 + ππ π¦π¦1 + π¦π¦2 π§π§1 = ππ1 β ππ1 β2 π§π§1 β π§π§2 = π₯π₯1 β π₯π₯2 + ππ π¦π¦1 β π¦π¦2 From Rectangular to Polar or Exponential Form Imaginary π§π§ = ππβ ππ π§π§ = π₯π₯ + ππππ ππππ II Quadrant I Quadrant π§π§ = ππππ How to convert a phasor from the rectangular ππ form to the polar or exponential form? ππ ππ = π₯π₯ 2 + π¦π¦ 2 Real If the phasor is in the first or the fourth quadrant (use your judgement based on the rectangular form): III Quadrant IV Quadrant β1 β ππ = tan π¦π¦ π₯π₯ If the phasor is in the second or the third quadrant (use your judgement based on the rectangular form): ππ = ππ + tanβ1 π¦π¦βπ₯π₯ Notice that the tanβ1 π’π’ function can only generate a phase angle from βππ to ππ, which does not cover the full range of possible phase angles. Examples π§π§ = 1 + ππ 3 2 2 ππ = 12 + 3 = 2 3 60Β° ππ = tanβ1 3β1 = 1.047 ππππππ = 60Β° 1 π§π§ = 2 β 1.047 = 2β 60Β° π§π§ = 2 ππ ππ1.047 = 2ππ πππππ Examples π§π§ = β1 + ππ 3 2 3 2 120Β° ππ = 12 + 3 = 2 β1 tanβ1 β 3β1 = β1.047 In this class, I will generally limit ππ = β1.047 + Ο = 2.094 = 120Β° phase angle within the range of β 180Β° to 180Β°. Depending on how you calculate π§π§ = 2 β 2.094 = 2β 120Β° your phase angles, you may need to add or subtract ππ. Additional Reading and Exercises Textbook (O & W): page 71 Textbook basic problems: page 57, P1.1 and 1.2. Reading Textbook (O&W): Chapter 1 Notes (Prof. Wyatt): Chapter 2 and 3 (TLO2 and 3) Input-Output Description of System Models π₯π₯ π‘π‘ π¦π¦ π‘π‘ Input Output System The input and output signals can be a variety of parameters such as voltage, current, mechanical force / torque, optical intensity, electric field intensity, etc. The system can contain a variety of components such as capacitors, inductors, diodes, transistors, mechanical beams, DC / AC motors, optical devices, cells (biological). Circuits π₯π₯ π‘π‘ System π¦π¦ π‘π‘ Input Output Input ππ Output + π₯π₯ π‘π‘ + ππππ π£π£ π¦π¦ π‘π‘ β ππ = πΆπΆ ππππ β Communication Network π₯π₯ π‘π‘ π¦π¦ π‘π‘ Input Output Communication System Alice Bob A communication system where Alice send Bob data (electrical, optical, etc) through a variety of communications networks (fiber optical network, wireless, etc). Optical Systems π₯π₯ π‘π‘ Optical systems π¦π¦ π‘π‘ Input Output Optical and electrical Incident Light components Transmitted Light An optical fiber that allows optical signals in specific spectral range (e.g., near infra-red light) to pass through Electromechanical Systems π₯π₯ π‘π‘ π¦π¦ π‘π‘ Input Output Electromechanical Systems DC / AC Voltage Mechanical Torque The electromechanical system can contain components such as circuit components and AC / DC motors. Linear vs Nonlinear Systems π₯π₯ π‘π‘ π¦π¦ π‘π‘ Input Output System In linear system, its output π¦π¦ π‘π‘ is proportional to its input x π‘π‘. The linear system response is additive: π₯π₯1 π‘π‘ π¦π¦1 π‘π‘ π₯π₯1 π‘π‘ + π₯π₯2 π‘π‘ π¦π¦1 π‘π‘ + π¦π¦2 π‘π‘ π₯π₯2 π‘π‘ π¦π¦2 π‘π‘ Linear scaling: π₯π₯1 π‘π‘ π¦π¦1 π‘π‘ ππππ1 π‘π‘ ππππ1 π‘π‘ ππ: any real or complex number (constant) A Nonlinear System πππ·π· + β π π + π£π£π·π· π¦π¦ π‘π‘ π₯π₯ π‘π‘ β Any circuit containing diode(s) is in general nonlinear. Time-Invariant vs Time-Varying Systems A system whose parameters (e.g., capacitorβs capacitance) remain constant is time-invariant. In time-invariant system, if input is π₯π₯ π‘π‘ β π¦π¦ π‘π‘ delayed by T, then system response is also delayed by T. π₯π₯ π‘π‘ β ππ β π¦π¦ π‘π‘ β ππ Input ππ Output Linear time- + invariant system π₯π₯ π‘π‘ + ππππ π£π£ π¦π¦ π‘π‘ is often denoted β ππ = πΆπΆ as LTI system. ππππ β Instantaneous vs Dynamic Systems A system whose output at time t only depends on input at time t is called instantaneous or memoryless. Any circuits containing only resistors are instantaneous. A system is dynamic if its output response at time t depends on its past is called dynamic (or system with memory). Any circuits that contain components such as capacitors or inductors are dynamic. Continuous Time (CT) Signals Mathematically speaking, we can simply define signals as a function y that maps elements from set A (domain) to elements in set B (co-domain). π¦π¦: π΄π΄ β π΅π΅ Example 1 A is the set of real number that represent t (ββ < π‘π‘ < β) in unit of seconds. B is the set of real numbers that represent π£π£ (ββ < π‘π‘ < β), in unit of volts. π¦π¦ π‘π‘ = 3 cos 10π‘π‘ ππ Example 2 A represent time and B is the set of complex 20π‘π‘+ππβ3 π¦π¦ π‘π‘ = 5ππ ππ π΄π΄ numbers representing phasor currents: Example 3 A corresponds spatial position z (unit m), and B corresponds to voltage / electric potential (unit V) at any given position. π¦π¦ π§π§ = 2π§π§ Discrete Time (DT) Signals For discrete-time signals, you can think of them as π¦π¦: π΄π΄ β π΅π΅ produced by βsamplingβ continuous time signals at specific time points. In this case, A is typically a set of integers, and B is the set of real or complex numbers. From Previous Example 1 π¦π¦ π‘π‘ = 3 cos 10π‘π‘ ππ Now imagine that we sample the voltage signal every 0.5 second (i.e., time interval is Ξπ‘π‘ = 0.5 π π . We can then produce the following DT signal π¦π¦[ππ]: π¦π¦ ππ = 3 cos 10ππΞπ‘π‘ ππ n β― βππ ππ ππ ππ ππ ππ β― y[n] (V) β― 0.85 3 0.85 -2.52 -2.28 1.22 β― CT Signal Example π¦π¦ π‘π‘ = 3 cos 10π‘π‘ ππ Matlab Script % an example of CT signal clear; N_array = 1000; t1 = -1.5; t2 = 2.5; t_array = linspace(t1,t2,N_array); y_array = 3*cos(10*t_array); plot(t_array,y_array,'LineWidth',2); grid on; xlabel('t (s)','FontSize',14); ylabel('y(t) (V)','FontSize',14); print('CT_signal_1','-dpng'); DT Signal Example π¦π¦ ππ = 3 cos 10ππΞπ‘π‘ ππ Ξπ‘π‘ = 0.5 π π n β― βππ ππ ππ ππ ππ ππ β― y[n] (V) β― 0.85 3 0.85 -2.52 -2.28 1.22 β― Matlab Script % an example of DT signal clear; delta_t = 0.5; n_array = -1:4; y_array = 3*cos(10*n_array*delta_t); stem(n_array,y_array,'LineWidth',2); grid on; xlabel('n','FontSize',14); ylabel('y(n) (V)','FontSize',14); print('DT_signal_1','-dpng'); Neural Network as a Nonlinear System This example illustrates how to use a neural network to correctly recognize an digital image that contains β3β. βHow Deep Learning Worksβ IEEE Spectrum, page 32, Oct. 2021. A Single Neuron π¦π¦ π€π€0 π€π€1 π€π€πΌπΌ π₯π₯0 = 1 β― π₯π₯ππ IEEE Spectrum: How Deep Learning Works, page 32, π₯π₯1 π₯π₯πΌπΌ Oct. 2021 Architecture of a single neuron: A number (πΌπΌ) of inputs (π₯π₯ππ ) and one output (y). Each input (π₯π₯ππ ) is associated with a weight (π€π€ππ ). There may also be a bias (π€π€0 ) whose input (π₯π₯0 ) is always 1. The signal neuron is a feedforward device (input -> output). Neural Network and Attention Mechanisms B. Ghojogh and A. Ghodsi GPT (Generative Pre- trained Transformer)