CT/DT Signals and Properties
9 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What grading score indicates that all work is fully correct?

  • 4.5
  • 4
  • 3
  • 5 (correct)
  • What does a score of 2 on the grading rubric indicate?

  • At least one equation relevant to the problem is present (correct)
  • Most of the algebra is correct
  • Fully correct work
  • Work is present but no applicable equations
  • What is the fundamental period for continuous time (CT) signals?

    The smallest positive real number T such that x(t) = x(t + T)

    What defines a periodic signal?

    <p>A signal is periodic if it repeats after a certain interval.</p> Signup and view all the answers

    Which of the following is a property of convolution?

    <p>All of the above</p> Signup and view all the answers

    The equation for continuous time ______ is given by: $y(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$.

    <p>convolution</p> Signup and view all the answers

    A signal can have both power and energy.

    <p>False</p> Signup and view all the answers

    What does CT/DT system stability mean?

    <p>A system is stable if its output remains bounded for any bounded input.</p> Signup and view all the answers

    What is the impulse response function for DT?

    <p>h(n) = P_E δ(n)</p> Signup and view all the answers

    Study Notes

    CT/DT Signals and Properties

    • Important Continuous-Time (CT) and Discrete-Time (DT) functions include the unit impulse, unit step, exponential (complex or real), sine/cosine, and Euler's formula.
    • Common properties for CT and DT signals are: even/odd/neither, periodic/aperiodic, power/energy/neither.
    • For periodic signals, the fundamental period is the smallest positive real number T (CT) or positive integer N (DT) for which the signal repeats.
    • For periodic signals, the fundamental frequency is the reciprocal of the fundamental period.
    • The sum and product of two periodic signals are also periodic.
    • To calculate the energy/power of CT/DT signals, specific formulas are used depending on whether the signals are continuous or discrete in time.

    CT/DT System Properties

    • Properties of CT/DT systems include Stability, Invertibility, Memory, Causality, Time Invariance, and Linearity.
    • You can determine if a system possesses these properties by analyzing the system's impulse response function and applying definitions.

    Convolution

    • Convolution is defined as the integral (CT) or summation (DT) of the product of two functions shifted in time.
    • Convolution is used to find the output y(t) of a system when the input x(t) and impulse response h(t) are known.
    • Key properties of convolution include commutativity, distributivity, associativity, and time-shift.
    • There are convolution tables that can be used to simplify the calculation of specific convolutions.

    Impulse Response Function (CT)

    • The impulse response function describes the output of a system when the input is a unit impulse.
    • For Linear Constant Coefficient Differential Equations (LCCDEs) in CT, the impulse response is found by solving a homogeneous differential equation with an initial condition determined by the input signal and the system's coefficients.
    • The homogeneous solution can be found by solving for the roots of the characteristic equation associated with the LCCDE. There can be real roots, complex roots, or repeated roots.
    • The constants in the homogeneous solution are determined by using auxiliary conditions.

    Linear Constant Coefficient Difference Equation (DT)

    • Advance form and delay form are two representations of LCCDEs.
    • The LCCDE can be expressed using the shift operator E to simplify notation and manipulation.
    • To solve for the impulse response function h(n) of a DT system, we need to find the homogeneous solution y_h(n).
    • The homogeneous solution can be found by solving for the roots of the characteristic equation associated with the LCCDE using the shift operator representation.
    • The constants in the homogeneous solutions are determined by iteratively calculating the values of the impulse response h(n) starting with the initial conditions.

    Impulse Response Function (DT)

    • The impulse response function h(n) is the output of a DT system when the input is a unit impulse.
    • For LCCDEs in DT, the impulse response function is determined by solving a homogeneous difference equation with initial conditions guided by the input and coefficients.
    • The homogeneous solution is found by finding the roots of the characteristic equation and using them to construct the general solution form.
    • The constants in the general solution can be determined iteratively.

    Convolution: Graphic Understanding

    • Convolution can be visualized using a graphic approach by shifting and multiplying the input signal and the impulse response function.
    • The convolution process involves sliding the impulse response function across the input signal, multiplying the overlapping parts, and summing the results.
    • This graphical method provides a visual understanding of how convolution operates.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    ECE 2714 Exam 1 Review PDF

    Description

    This quiz focuses on important concepts related to Continuous-Time (CT) and Discrete-Time (DT) signals and systems. Topics include various functions like unit impulse and unit step, along with properties such as periodicity and energy calculations. Additionally, it covers system properties like stability and linearity.

    More Like This

    CT Boot Camp Section 1 Flashcards
    100 questions
    CT Mod-9 Material Handling Quiz
    15 questions
    CT Registry Study Flashcards
    21 questions

    CT Registry Study Flashcards

    SustainableAntigorite1088 avatar
    SustainableAntigorite1088
    Use Quizgecko on...
    Browser
    Browser