Chapter 2-B PDF - Indefinite Integrals and Substitution Method
Document Details
Uploaded by WellBredBlackberryBush126
King Khalid University - جامعة الملك خالد
Tags
Summary
This document covers indefinite integrals and the substitution method in calculus. It provides examples and exercises to illustrate the application of the substitution method in integration. The material is suitable for undergraduate-level mathematics courses.
Full Transcript
## 5.5 Indefinite Integrals and the substitution Method. - $\int f(x)dx = F(x) + C$, where - $F'(x) = f(x)$ & C is Constant. ## Substitution: Running the Chain Rule Backwards. - $\frac{d}{dx}( \frac{u^{n+1}}{n+1}) = u^{n}. \frac{du}{dx}$, where $u = f(x)$ ## Integration - $\int \frac{d}{dx}...
## 5.5 Indefinite Integrals and the substitution Method. - $\int f(x)dx = F(x) + C$, where - $F'(x) = f(x)$ & C is Constant. ## Substitution: Running the Chain Rule Backwards. - $\frac{d}{dx}( \frac{u^{n+1}}{n+1}) = u^{n}. \frac{du}{dx}$, where $u = f(x)$ ## Integration - $\int \frac{d}{dx}(\frac{u^{n+1}}{n+1})dx = \int u^{n}. \frac{du}{dx}dx$ - $\implies \int u^{n}. \frac{du}{dx}dx = \frac{u^{n+1}}{n+1} + C$ ## Example 1: $\int (x^{2} + x)(3x + 1)dx$ - Solution: Put $u = x^{2} + x$, then $du = \frac{du}{dx}dx$ - $du = (3x + 1)dx$ - So by substitution we get: - $\int (x^{2} + x)(3x + 1)dx = \int udu = \frac{u^{6}}{6} + C$ - $= \frac{1}{6}(x^{2} + x)^{6} + C$ ## Example 2: $\int \sqrt{2x + 1} dx = \int (2x + 1)^{\frac{1}{2}} dx$ - Solution: Put $u = 2x + 1$, then $du = \frac{du}{dx}dx$ - $du = 2. dx$ - $\implies \int \sqrt{2x + 1} dx = \frac{1} {2}\int \sqrt{2x + 1}. 2dx$ - $=\frac{1}{2} \int u^{\frac{1}{2}} du$ - $= \frac{1}{2} \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C$ - $= \frac{1}{3} u^{\frac{3}{2}} + C$ - $= (\frac{1}{3}(2x + 1)^{\frac{3}{2}} + C$ ## Theorem 6. The Substitution Rule - If $u = g(x) $ is a differentiable function, and - $f$ is continuous on $[a, b]$, - Then - $\int f(g(x)). g'(x)dx = \int f(u) du$. ## The substitution Method to evaluate $\int f(g(x))g'(x)dx$ 1. Substitution $u = g(x) $ and $du = \frac{du}{dx}dx$ - $\implies du = g'(x) dx$ 2. Integrate with respect to u to obtain $\int F(u)du$. 3. Replace u by g(x). ## Example 3: $\int sec^{2}(5x + 1). 5dx$ - Solution: 1. Substitution: $u = 5x + 1 \implies du = \frac{du}{dx}dx $ - $\implies du = 5dx$ 2. Integration wrt u: $\int sec^{2}udu = tanu + C$ 3. Replace u = 5x + 1 $\implies (tan(5x + 1) + C$ ## Example 4: $\int cos(7\theta + 3) d\theta$ - Solution: - $u = 7\theta + 3 \implies du = \frac{du}{d\theta}d\theta$ - $du = 7. d\theta$ - $\implies \int cos(7\theta + 3) d\theta = \frac{1}{7} \int cos(7\theta + 3). 7d\theta$ - $ = \frac{1}{7} \int cos u du$ - $= \frac{1}{7} sin u + C$ - $ = \frac{1}{7} sin (7\theta + 3) + C$ ## Example 5: $\int x^{2} cos x^{3} dx$ - Solution: - $u = x^{3} \implies du = \frac{du}{dx}.dx$ - $du = 3x^{2}. dx$ - $\implies \int x^{2} cos x^{3} dx = \frac{1}{3}\int cos x^{3}. 3x^{2}dx$ - $= \frac{1}{3} \int cos u du$ - $= \frac{1}{3} sin u + C$ - $= \frac{1}{3} sin x^{3} + C$ ## Example 6: $\int x \sqrt{2x + 1} dx$ - Solution: - $u = 2x + 1 \implies du = \frac{du}{dx}dx$ - $x = \frac{u-1}{2}$ - $du = 2 dx$ - $\implies \int x (2x + 1)^{\frac{1}{2}}. dx = \frac{1}{2}\int x(2x + 1)^{\frac{1}{2}}. 2dx$ - $ = \frac{1}{2} \int (\frac{u-1}{2}). u^{\frac{1}{2}} du$ - $ = \frac{1}{4} \int (u - 1). u^{\frac{1}{2}} du$ - $ = \frac{1}{4} \int (u^{\frac{3}{2}} - u^{\frac{1}{2}}) du$ - $ = \frac{1}{4} (\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}) + C$ - $ = \frac{1}{4} (\frac{2}{5}u^{\frac{5}{2}} - \frac{2}{3}u^{\frac{3}{2}}) + C$ - $ = \frac{1}{10}(2x + 1)^{\frac{5}{2}} - \frac{1}{6}(2x + 1)^{\frac{3}{2}} + C$ ## Example 7: - a) $\int sin^{2}x dx$ - Solution: - $\int sin^{2}x dx = \frac{1}{2} \int (1 - cos2x) dx$ - Note: $sin^{2}x = \frac{1}{2}(1 - cos2x)$ - $= \frac{1}{2} \int 1 dx - \frac{1}{2} \int cos2x dx$ - $ = \frac{1}{2}x - \frac{1}{4} sin 2x + C$ - b) $\int cos^{2}x dx$ - Solution: -$ = \frac{1}{2} \int (1+ cos2x) dx$ - Note: $cos^{2}x = \frac{1}{2}(1 + cos2x)$ - $ = \frac{1}{2}\int 1 dx + \frac{1}{2} \int cos2x dx$ - $ = \frac{1}{2}x + \frac{1}{4} sin 2x + C$ - c) $\int (1 - 2sinx) sin^{2}xdx$ - $ = \int (sin^{2}x + cos^{2}x - sin x) sin 2x dx$ - Note: $1 = sin^{2}x + cos^{2}x$ - $ = \int (cos^{2}x - sin x) sin 2x dx$ - Note: $cos 2x = cos^{2}x - sin^{2}x$ - $ = \int cos 2x sin2x dx$ - Note: $cos 2x sin2x = \frac{1}{2} sin 4x$ - $ = \int \frac{1}{2} sin 4x dx $ - $ = \frac{1}{2} . \frac{-1}{4} \int sin 4x. 4dx$ - $ = \frac{-1}{8} cos(4x) + C$ ## Example 8: $\int \frac{2z}{\sqrt{z^{2} + 1}} dz$ can be written by $\int 2z (z^{2} + 1)^{\frac{-1}{2}}dz $ - Solution: - Put $u = z^{2} + 1 \implies du = \frac{du}{dz}dz$ - $du = 2z dz$ - $\implies \int (z^{2} + 1)^{\frac{-1}{2}}. 2z dz$ - $ = \int u^{\frac{-1}{2}} du$ - $ = \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C$ - $ = 2 u^{\frac{1}{2}} + C$ - $ = 2 (z^{2} + 1)^{\frac{1}{2}} + C$ - $ = 2 \sqrt{(z^{2} + 1)} + C$ ## Exercises: 5.5 - **1/245:** $\int 2(2x + 4)^{5} dx$, $u = 2x + 4$ - Sol: $u = 2x + 4 \implies du = 2 dx$ - $\implies \int (2x + 4)^{5}. 2dx = \int u^{5}. du = \frac{u^{6}}{6} + C = \frac{(2x + 4)^{6}}{6} + C$ - **3/245:** $\int 2x (x + 5)^{4} dx$, $u = x + 5$ - Sol: $u = x + 5 \implies du = 2x dx$ - $\implies \int (x + 5)^{4}. 2x dx = \int u^{4} du = \frac{u^{5}}{5} + C = \frac{(x + 5)^{5}}{5} + C$ - **5/245:** $\int (3x + 2)(3x^{2} + 4x)^{4} dx$, $u = 3x^{2} + 4x$ - Sol: $u = 3x^{2} + 4x \implies du = (6x + 4) dx \implies du = 2 (3x + 2)dx$ - $\implies \int (3x^{2} + 4x)^{4}. (3x + 2)dx = \frac{1}{2} \int (3x^{2} + 4x)^{4}. 2(3x + 2) dx$ - $= \frac{1}{2} \int u^{4} du$ - $= \frac{1}{2} \frac{u^{5}}{5} + C$ - $= \frac{1}{10} (3x^{2} + 4x)^{5} + C$ - **7/245:** $\int sin 3x dx$, $u = 3x$ - Sol. $u = 3x \implies du = 3 dx$ - $\int sin 3x dx = \frac{1}{3} \int sin 3x. 3 dx = \frac{1}{3} \int sinu du$ - $ = \frac{-1}{3} cosu + C = \frac{-1}{3} cos 3x + C$ - **9/245:** $\int sec(2t) tan(2t) dt$, $u = 2t$ - Sol: $u = 2t \implies du = 2 dt $ - $\int sec(2t) tan(2t) dt = \frac{1}{2} \int sec(2t) tan(2t). 2dt$ - $ = \frac{1}{2} \int secu. tanu. du$ - $ = \frac{1}{2} secu + C$ - $ = \frac{1}{2} sec 2t + C$ - **11/245:** $\int \frac{9x^{2}}{\sqrt{1 - x^{3}}} dx$, $u = 1 - x^{3}$ - Sol: $u = 1 - x^{3} \implies du = -3x^{2}dr$ - $\int \frac{9x^{2}}{\sqrt{1 - x^{3}}} dx = \int (1 - x^{3})^{\frac{-1}{2}}. (-3x^2)dx = -3 \int u^{\frac{-1}{2}} du$ - $ = -3 \int u^{\frac{-1}{2}}du = -3( \frac{u^{\frac{1}{2}}}{\frac{1}{2}}) + C$ - $ = -6 \sqrt{u} + C$ - $ = -6\sqrt{1 - x^{3}} +C$ - **17/245:** $\int \sqrt{3 - 2S} dS$ - Sol: Put $u = 3 - 2S \implies du = -2 dS$ - $\int \sqrt{3 - 2S} dS = \frac{-1}{2} \int (3 - 2S)^{\frac{1}{2}} . (-2) dS$ - $ = \frac{-1}{2} \int u^{\frac{1}{2}}du$ - $ = \frac{-1}{2}(\frac{u^{\frac{3}{2}}}{\frac{3}{2}}) + C$ - $ = \frac{-1}{3}(3-2S)^{\frac{3}{2}} + C$ - **19/245:** $\int \theta \sqrt[4]{1 - \theta^{2}} d\theta = \int \theta (1 - \theta^{2})^{\frac{1}{4}} d\theta$ - Sol: Put $u = 1 - \theta^{2} \implies du = -2\theta d\theta $ - $\int (1 - \theta^{2})^{\frac{1}{4}} d\theta = \frac{-1}{2} \int (1 - \theta^{2})^{\frac{1}{4}}. (-2\theta d\theta)$ - $ = \frac{-1}{2} \int u^{\frac{1}{4}} du = \frac{-1}{2}(\frac{u^{\frac{5}{4}}}{\frac{5}{4}}) + C$ - $ = \frac{-2}{5}(1 - \theta^{2})^{\frac{5}{4}} + C$ - **23/245:** $\int sec^{2}(3x +2) dx$ - Put $u = 3x + 2 \implies du = 3 dx$ - $\int sec^{2}(3x +2) dx = \frac{1}{3} \int sec^{2}(3x+2). 3 dx$ - $= \frac{1}{3}\int secu du$ - $= \frac{1}{3} tan u + C$ - $= \frac{1}{3} tan (3x + 2) + C$ - **37/245:** $\int \frac{x}{\sqrt{1 + x}} dx$ - Put $u = 1 + x \implies du = 1. dx$ - $\int \frac{x}{\sqrt{1 + x}} dx = \int \frac{u - 1}{\sqrt{u}}. \frac{dx}{\frac{du}{dx}} du$ - $ = \int \frac{(u - 1)}{\sqrt{u}} du = \int u^\frac{-1}{2}(u - 1) du$ - $ = \int (u^\frac{1}{2} - u^\frac{-1}{2}) du$ - $ = \frac{u^{\frac{3}{2}}}{\frac{3}{2}} - \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C$ - $ = \frac{2}{3}(1 + x)^{\frac{3}{2}} - 2 (1 + x)^{\frac{1}{2}} + C$ - **49/245:** $\int \frac{x}{(x^{2} - 4)^{3}} dx$ - Put $u = x^{2} - 4 \implies du = 2x dx$ - $\int \frac{x}{(x^{2} - 4)^{3}} dx = \frac{1}{2} \int (x^{2} - 4)^{-3}. 2x dx = \frac{1}{2} \int u^{-3} du$ - $ = \frac{1}{2} \frac{u^{-2}}{-2} + C$ - $ = \frac{-1}{4} (x^{2} - 4)^{-2} + C = \frac{-1}{4(x^{2} - 4)^{2}} + C$