Chapter 29 Inverse Trigonometrical Functions PDF
Document Details
Uploaded by NourishingRoseQuartz
Tags
Summary
This document discusses inverse trigonometric functions, covering their properties, domain, range, and formulas. It provides a comprehensive explanation of how to understand and work with inverse trigonometric functions.
Full Transcript
60 126 Inverse Trigonometrical Functions The inverse of a function f : A B exists if f is one-one onto i.e., a bijection and is given by f (x ) y f 1 (y) x. E3 Consider the sine function with domain R and range [–1, 1]. Clearly this function is not a bijection and so it is not invertible. If...
60 126 Inverse Trigonometrical Functions The inverse of a function f : A B exists if f is one-one onto i.e., a bijection and is given by f (x ) y f 1 (y) x. E3 Consider the sine function with domain R and range [–1, 1]. Clearly this function is not a bijection and so it is not invertible. If we restrict the domain of it in such a way that it becomes one–one, then it would become invertible. If we consider sine as a function with domain 2 , 2 and co-domain [–1, 1], then it is a bijection and therefore, invertible. The inverse of ID sine function is defined as sin 1 x sin x , where , and x [1, 1]. 2 2 5.1 Properties of Inverse Trigonometric Functions. (1) Meaning of inverse function cot x cot 1 x (iv) U (ii) cos x cos 1 x (i) sin x sin1 x (iii) tan x tan 1 x (v) sec x sec 1 x (vi) cosec x cosec 1 x D YG (2) Domain and range of inverse functions 1 (i) If sin y x , then y sin Y (1, /2) x , under certain condition. 1 sin y 1; but sin y x. 1 x 1 Again, sin y 1 y 2 and sin y 1 y 2. Keeping in mind numerically smallest angles or real numbers. O y = sin– 1 x X U y(–1, – 2 /2) 2 These restrictions on the values of x and y provide us with the domain and range for the function y sin 1 x. ST i.e., Domain : x [1, 1] Range: y , 2 2 Let cos y x , then y cos (ii) Y 1 x , under certain conditions 1 (–1, cos y 1 /2) 1 x 1 cos y 1 y cos y 1 y 0 O y = cos– 1 X x (1, 0) 0 y {as cos x is a decreasing function in [ 0 , ]; hence cos cos y cos 0 These restrictions on the values of x and y provide us the domain and range for the function y cos 1 x. Inverse Trigonometrical Functions 127 i.e. Domain: x [1, 1] y [0, ] Range : If tan y x , then y tan 1 x , under certain conditions. Here, tan y R x R , tan y 2 y y y= 2 2 60 (iii) Thus, Domain x R ; Range y , 2 2 y = –/2 y = tan– 1 x E3 (iv) If cot y x , then y cot 1 x under certain conditions, cot y R x R; y= ID cot y 0 y These conditions on x and y make the function, cot y x one-one and onto so that the inverse function exists. i.e., y cot 1 x (0, /2) is O y = cot– 1 Domain : x R y (0, ) D YG (v) If sec y x , then y sec 1 x , where | x | 1 and 0 y , y x (–1,) 2 Here, Domain: x R (1, 1) Range: y [0, ] 2 If cosec y x , then y cosec 1 x U (vi) Where | x | 1 and 2 y 2 ST Here, Domain R (1, 1) Range , {0} 2 2 Function sin 1 x x U meaningful. Range : x O y = /2 y O (1, /2) ,y 0 (1,0 – y= ) sec 1 x x (–1, – ) Domain (D) 1 x 1 or [1, 1] cos 1 x 1 x 1 or [1, 1] tan 1 x x i.e., x R or (, ) cot 1 x x i.e., x R or O y = cosec– 1 x Range (R) 2 2 , 2 2 or 0 or [0, ] or , 2 2 2 2 0 or (0, ) x 128 Inverse Trigonometrical Functions (, ) x 1, x 1 or (, 1] [1, ) x cosec 1 x x 1, x 1 or (, 1] [1, ) (3) sin 1 (sin ) , Provided that 2 2 0, 2 sec 1 (sec ) , Provided that 0 cosec 1 (cosec ) , Provided that (4) sin(sin 1 2 2 2 , 0 0, 2 2 or Provided 2 0 or 0 2 cos(cos 1 x ) x, Provided that 1 x 1 x ) x, Provided that 1 x 1 , tan (tan 1 x ) x , Provided that x x cot(cot 1 x ) x, that U Provided sec(sec 1 x ) x, Provided that x 1 or 1 x D YG cosec (cosec –1 x ) x, Provided that x 1 or 1 x (5) sin 1 ( x ) sin 1 x cot 1 ( x ) cot 1 x (6) sin 1 x cos 1 x 2 sec 1 x cosec -1 x cos 1 ( x ) cos 1 x , tan 1 ( x ) tan 1 x sec 1 ( x ) sec 1 x cosec 1 ( x ) cosec –1 x tan 1 x cot 1 x , for all x [1, 1] 2 2 , for all x R , for all x (, 1] [1, ) Here; sin Here; cos 1 1 x , cosec x , tan x , sec 1 x , cot 1 1 /2 x belong to I and IV Quadrant. x belong to I and II Quadrant. ST U Important Tips 1 I Quadrant is common to all the inverse functions. III Quadrant is not used in inverse function. IV Quadrant is used in the clockwise direction i.e., II I 2 IV y0 – (7) Principal values for inverse circular functions Principal values for x 0 0 sin 1 x 0 cos 1 x 2 that cot 1 (cot ) , Provided that 0 , or E3 2 2 ID cos 1 (cos ) , , 0 tan 1 (tan ) , Provided that , 0 or 0, , 2 2 2 60 sec 1 Principal values for x 0 2 2 2 sin 1 x 0 cos 1 x I 0 Inverse Trigonometrical Functions 129 0 cot 1 x 0 sec 1 x 1 2 2 2 4 2 2 2 2 tan 1 x 0 cot 1 x sec 1 x cosec 1 x 0 4 2 3 5 1 1 2 Thus sin 1 , not not ; tan 1 ( 3 ) not ; cot 1 (1) not ; cos 1 6 3 3 4 3 2 6 2 3 E3 2 0 cosec x 60 0 tan 1 x etc. Note : sin 1 x , cos 1 x , tan 1 x are also written as arc sin x , arc cos x and arc tan x respectively. ID It should be noted that if not otherwise stated only principal values of inverse circular functions are to be considered. x 1 x2 cot 1 1 x2 1 sec 1 2 x 1x D YG sin 1 x cos 1 1 x 2 tan 1 U 1 1 (8) Conversion property : Let, sin 1 x y x sin y cosec y y cosec –1 x x cosec –1 1 x 1 x2 cos 1 x sin 1 1 x 2 tan 1 x 1 sec 1 1 cosec –1 2 x 1x x tan 1 x sin 1 2 1 x 2 cot 1 1 sec 1 1 x 2 cosec 1 1 x x x 1 sin 1 cosec 1 x , for all x (,1] [1, ) x U Note : cos 1 1 2 1 x x cot 1 2 1x 1 1 cos 1 sec 1 x , for all x (, 1] [1, ) x x ST 1 for x 0 1 cot x , tan 1 1 x cot x , for x 0 – x2 (9) General values of inverse circular functions: We know that if is the smallest angle whose sine is x, then all the angles whose sine is x can be written as nx (1)n , where n 0, 1, 2,..... Therefore, the general value of sin 1 x can be taken as n (1)n . The general value of sin 1 x is denoted by sin 1 x. Thus, we have sin 1 x nπ (1) n α, 1 x 1, if sin α x and π π α 2 2 Similarly, general values of other inverse circular functions are given as follows: 130 Inverse Trigonometrical Functions cos 1 x 2n , 1 x 1 ; If cos x , 0 tan 1 x n , x R ; If tan x, cot 1 x n , x R ; If cot x , 0 sec 1 x 2n , x 1 or x 1 ; If sec x , 0 and cosec1 x n (1)n, x 1 or x 1 ; If cosec x , Solution: (b) sin 1 sin 3 3 Example: 2 sec 1[sec(30 o )] (b) 30 o 5 The principal value of sin 1 sin is 3 D YG Example: 3 (b) 5 3 Solution: (c) 5 3 sin 1 sin . sin 1 3 2 3 Example: 4 2 The principal value of sin 1 sin 3 2 3 U (a) Example: 5 1 (b) 5 60 2 2 and x 0 4 3 (c) 30 (d) 2 (c) o 3 5 8 [MP PET 1992] (d) 150 (d) 2 3 [IIT 1986] (c) 4 3 (d) None of these 2 )] = sin 1 sin . 3 3 3 2 5 (c) 3 5. Put cos 1 x then x cos 2 5 1 , x cos o 4 3 is 5 Also tan [Roorkee 1992] [MP PET 1996] 1 1 Put cot 1 cot 2 2 sin Example: 6 1 Considering only the principal values, if tan(cos 1 x ) sin cot 1 , then x is equal to 2 (a) Solution: (d) (b) The principal vlaue of sin 1 [sin( ST Solution: (d) (c) o sec 1 [sec( 30 o )] sec 1 (sec 30 o ) 30 o. 5 3 2 sin 1 x 2 2 Solution: (c) (a) 2 U (a) – 60 E3 3 is The principal value of sin 1 2 2 (a) (b) 3 3 2 ID Example: 1 5. 3 If sin [sin ( 600 )] , then one of the possible value of is (d) 5 3 Inverse Trigonometrical Functions 131 (a) Solution: (a) 3 2 (b) (c) 2 3 (d) 2 3 sin 1 [sin(600 o )] = sin1[ sin(360 240 )] sin 1 [ sin 240 o ] sin 1 [ sin(180 o 60 o )] sin1 sin 60 o sin 1 sin . 3 3 5 5 Value of cos 1 cos sin 1 sin is 3 3 (a) 0 [Roorkee 2000] 2 (b) (c) 60 Example: 7 2 3 (d) 5 5 cos 1 cos sin 1 sin cos 1 cos 2 sin 1 sin 2 0. 3 3 3 3 3 3 Example: 8 The equation 2 cos 1 x sin 1 x Given equation is 2 cos 1 x sin 1 x cos 1 x If sin 1 x sin 1 y (a) Solution: (b) Example: 10 2 cos 1 x 2 6 (d) 2 cos 1 y 2 3 cos 1 x cos 1 y 3. 3 4 (b) 0 U ST 2 tan 1 x 2 (c) 4 4 0 (d) 1 2 tan 1 x 2 2 0 2 tan 1 x We know that sin 1 y cos 1 y x 1 x 2 (c) (b) 1 According to question, x 4 2 tan 1 x 2 4. x4 x6 x2 x3 ... cos 1 x 2 ... for 0 | x | 2 , then x equals If sin 1 x 2 4 2 4 2 (a) Solution: (b) (c) 2 3 sin 1 x cos 1 x tan 1 x We know Example: 11 3 [EAMCET 1994] If sin 1 x cos 1 x tan 1 x , x 0 then the smallest interval in which lies is (a) Solution: (b) 2 , then cos 1 x cos 1 y 3 (b) sin 1 x sin 1 y (d) Three solutions 4 , which is not possible as cos 1 x 0, . 3 cos 1 x 2 3 [AMU 1999] 11 11 cos 1 x (cos 1 x sin 1 x ) 6 6 D YG Example: 9 11 6 2 (c) Two solutions U Solution: (a) (b) Only one solution ID (a) No solution 11 has 6 E3 Solution: (a) 10 3 2 1 2 [IIT Screening 2001] (d) – 1 , | y| 1 x2 x3 x4 x6 .......... x 2 ............. 2 4 2 4 x2 x x2 , ( 0 | x | 2 ) 2x x 3 2x 2 x 3 x x 2 2 2 x 2 x2 x 1 2 132 Inverse Trigonometrical Functions x x 2 0 x (1 x ) 0 x 0 and x = 1, but x 0. So, x 1. Example: 12 If sin 1 x cot 1 1 , then x is 2 2 [Karnataka 1999; Roorkee 1999] 1 5 2 5 2 (d) 5 1 1 cot 1 cos 1 2 5 x sin 1 x cot 1 2 2 sin 1 x cos 1 (c) ; Clearly, x 1 5 3 2 2. E3 Solution: (b) 1 (b) 60 (a) 0 1 Example: 13 The value of sin(cot 1 x ) is [MP PET 2001; UPSEAT 1987] (b) (1 x 2 )3 / 2 Example: 14 sin(cot 1 x ) = sin sin 1 1x 2 = 1 1 x2 The number of real solutions of tan 1 (a) Zero tan 1 x (x 1) sin 1. x (x 1) sin 1 x2 x 1 (b) One x2 x 1 2 is (c) Two [IIT Screening1999] (d) Infinite D YG Solution: (c) 1 U Solution: (d) (d) (1 x 2 )1 / 2 (c) (1 x 2 )1 / 2 ID (a) (1 x 2 )3 / 2 2 tan 1 x(x 1) is defined, when x ( x 1) 0........(i) sin1 x 2 x 1 is defined, when 0 x (x 1) 1 1 or 0 x (x 1) 0........(ii) From (i) and (ii), x ( x 1) 0 or x 0 and –1. Hence, number of solutions is 2. 5.2 Formulae for Sum and Difference of Inverse Trigonometric Function. If x 0, y 0 and xy 1 xy ; (2) tan 1 x tan 1 y tan 1 1 xy If x 0, y 0 and xy 1 xy ; (3) tan 1 x tan 1 y tan 1 1 xy If x 0, y 0 and xy 1 x y ; (4) tan 1 x tan 1 y tan 1 1 xy If xy 1 x y ; (5) tan 1 tan 1 y tan 1 1 xy If x 0, y 0 and xy 1 x y ; (6) tan 1 x tan 1 y tan 1 1 xy If x 0, y 0 and xy 1 ST U x y ; (1) tan 1 x tan 1 y tan 1 1 xy Inverse Trigonometrical Functions 133 x y z xyz (7) tan 1 x tan 1 y tan 1 z tan 1 1 xy yz zx S S 3 S 5 ........... (8) tan 1 x 1 tan 1 x 2 .......... tan 1 x n tan 1 1 , 1 S 2 S 4 S 6 ........ (10) xy 1 yx cot 1 x cot 1 y cot 1 xy 1 yx E3 (9) cot 1 x cot 1 y cot 1 60 where S k denotes the sum of the products of x 1 , x 2 ,........, x n taken k at a time. (11) sin 1 x sin 1 y sin 1 {x 1 y 2 y 1 x 2 } ; (12) ID If 1 x , y 1 and x 2 y 2 1 or if xy 0 and x 2 y 2 1 sin 1 x sin 1 y sin 1 {x 1 y 2 y 1 x 2 }, If 0 x , y 1 and x 2 y 2 1 (14) U (13) sin 1 x sin 1 y sin 1 {x 1 y 2 y 1 x 2 }, If 1 x ; y 0 and x 2 y 2 1 sin 1 x sin 1 y sin 1 {x 1 y 2 y 1 x 2 }, If D YG and x 2 y 2 1. (15) sin 1 x sin 1 y sin 1 {x 1 y 2 y 1 x 2 }, (16) If 1 x , y 1 and x y 0. cos 1 x cos 1 y 2 cos 1 {xy 1 x 2 1 y 2 } , If 1 x , y 1 and x y 0 cos 1 x cos 1 y cos 1 {xy 1 x 2 1 y 2 }, If 1 x , y 1, and x y. cos 1 x cos 1 y cos 1 {xy 1 x 2 1 y 2 }, If 1 y 0, 0 x 1 and x y. ST (20) xy 0 If 0 x 1, 1 y 0 and x 2 y 2 1. U (19) or sin 1 x sin 1 y sin 1 {x 1 y 2 y 1 x 2 }, If 1 x 0, 0 y 1 and x 2 y 2 1. (17) cos 1 x cos 1 y cos 1 {xy 1 x 2. 1 y 2 } , (18) 1 x ; y 1 and x 2 y 2 1 if Important Tips If tan 1 x tan 1 y tan 1 z If tan 1 x tan 1 y tan 1 z , then x y z xyz. If sin 1 x sin 1 y sin 1 z If sin 1 x sin 1 y sin 1 z , then x 1 x 2 y 1 y 2 z 1 z 2 2 xyz. If cos 1 x cos 1 y cos 1 z 3 , then xy yz zx 3. 2 2 , then xy yz zx 1. , then x 2 y 2 z 2 2 xyz 1. 134 Inverse Trigonometrical Functions If cos 1 x cos 1 y cos 1 z , then x 2 y 2 z 2 2 xyz 1. If sin 1 x sin 1 y sin 1 z If sin 1 x sin 1 y , then cos 1 x cos 1 y . If cos 1 x cos 1 y , then sin 1 x sin 1 y . If tan 1 x tan 1 y If cot 1 x cot 1 y If cos 1 2 60 2 , then xy 1. , then xy 1. x 2 2 xy y2 x y cos 2 sin 2 . cos 1 , then 2 ab a b a b 3 3 is The value of tan sin 1 cos 1 5 13 6 17 (a) 13 13 5 (c) (d) [AMU 2001] 17 6 3 3 2 3 = tan tan 1 tan 1 tan sin 1 cos 1 4 3 5 13 U Solution: (d) 6 (b) ID Example: 15 E3 3 , then xy yz zx 3. 2 Example: 16 D YG 3 2 17 12 17 = = tan tan 1 4 3 = tan tan 1. 3 2 12 6 6 1. 4 3 tan 1 2001] 1 1 tan 1 2 3 (a) 0 4 (c) 2 (d) 1 1 1 1 1 1 2 3 tan 1 1 . tan tan tan 1 1 4 2 3 1. 2 3 1 2 If sin 1 sin 1 sin 1 x , then x is equal to 3 3 1 U Solution: (b) (b) [MP PET 1997, 2003; UPSEAT 2003; Karnataka CET ST Example: 17 (a) 0 Solution: (c) sin 1 5 4 2 9 (c) (d) 2 1 5 4 2 1 2 4 2 1 sin 1 sin 1 1 1 sin 1 3 3 3 9 3 9 9 Therefore, x Example: 18 5 4 2 9 (b) [Roorkee 1995] 1 sin 1 5 5 4 2. 9 cot 1 3 is equal to [MP PET 1993; Karnataka CET 1995] (a) 6 (b) 4 (c) 3 (d) 2 Inverse Trigonometrical Functions 135 1 1 5 cot 1 3 cot 1 1 5 5 1 Example: 19 If sin 1 65 56 (a) sin 1 C sin 1 Example: 20 24 65 (b) Given, sin 1 C sin 1 (c) 2 2 (b) f 2 cos 1 3 3 3 56 65 = cos 1 x (cos 1 1 (c) f 3 3 1 1 (d) f 2 cos 1 3 3 3 U 3 1. 1 x2 Soltuion: (a,d) f (x ) cos 1 x cos 1 x 2 2 1 1 cos 1 x ) , according as cos 1 or cos 1 x 2 2 D YG 1 2 1 if cos 1 cos 1 x , which holds for x 2 3 2 = 2 cos 1 x cos 1 sin 1 (d) 25 5 9 56 3 5 3 1 56 sin 1 1 1 sin 1. sin C 65 5 13 169 13 25 65 5 x 1 3 3 x 2 , then If f (x ) cos 1 x cos 1 2 2 = cos 1 16 65 3 12 cos 1 5 13 2 (a) f 3 3 Example: 21 [Pb. CET 1999] ID Solution: (d) 3 12 cos 1 sin 1 C, then C 5 13 60 sin 1 E3 Solution: (b) 1 1 1 2 3 1 1 1 cot 3 = cot (2) cot (3) cot 3 2 cot (1) 4. 1 1 1 if cos 1 cos 1 x , which holds for x . 2 2 3 12 4 63 cos 1 tan 1 13 5 16 (a) 0 (b) 2 (c) (d) 3 2 12 48 15 63 3 63 63 63 tan 1 tan 1 tan 1 tan 1 . = tan 1 ( xy 1 ) = tan 1 5 20 36 16 4 16 16 16 tan 1 Example: 22 If sin 1 ST U Solution: (c) 4 1 4 1 sin 1 and cos 1 cos 1 , then 5 3 5 3 (a) Solution: (a) 4 sin 1 5 Since (b) 1 (c) (d) None of these 3 1 1 16 1 8 2 1 8 2 3 1 sin = sin 9 3 25 15 15 15 8 2 3 1, 15 2 4 1 sin 1 sin 1 ( ) . 5 2 3 2 2 Example: 23 If cos 1 x y cos 1 , then 9 x 2 12 xy cos 4 y 2 2 3 (a) 36 sin 2 (b) 36 cos 2 (c) 36 tan 2 (d) None of these 136 Inverse Trigonometrical Functions Solution: (a) cos 1 x y cos 1 2 3 x y x 2 y 2 . 1 1 cos 2 3 4 9 The number of solutions of sin 1 x sin 1 2 x (a) 0 (b) 1 sin 1 2 x sin 1 2x 3 2 1 x2 x 2 2 (d) Infinitie x 3 1 28 2 3 1 , (not 7 2 3 ). 7 x 2 2 xy y2 x y If cos 1 cos 1 , then 2 cos 2 ab a b a b [UPSEAT 1999; MP U PET 1995] (a) sin 2 (c) tan 2 (b) cos 2 x y x2 y2 We have cos 1 . 1 2 1 2 a b a b D YG Solution: (a) (c) 2 3 3 3. 1 x2 x 1 sin 1 x sin 1 2 4 2 3 5x 2 (1 x 2 ) or 28 x 3 2 4 Example: 25 is 3 E3 Solution: (b) ID Example: 24 60 (xy 6 cos ) 2 (4 x 2 )(9 y 2 ) 9 x 2 12 xy cos 4 y 2 36 (1 cos 2 ) 36 sin 2 . (d) cot 2 xy x2 y2 1 2 1 2 cos ab a b 2 x 2 y 2 x 2y 2 xy cos 1 2 2 2 2 a b ab ab x 2y 2 2 a b cos 2 2 xy x2 y2 x 2y 2 cos 1 2 2 2 2 ab a b a b x2 a 2 2 xy y2 cos 2 1 cos 2 sin 2 . ab b (a) 0 tan 1 Let s 2 a(a b c) tan 1 bc b(a b c) ca c(a b c) , then tan is ab ST tan 1 Solution: (a) If a, b, c be positive real numbers and the value of tan 1 U Example: 26 2 a(a b c) tan 1 bc abc abc (c) a b c (b) 1 b(a b c) tan 1 ca (d) None of these c(a b c) ab tan 1 a2 s 2 tan 1 b 2 s 2 tan 1 c 2 s 2 tan 1 (as) tan 1 (bs) tan 1 (cs) (a b c) abcs 2 tan s 2 1 (ab bc ca)s 0 as bs cs abcs 3 tan 1 2 2 2 1 abs bcs cas [ abcs 2 (a b c)] Trick : Since it is an identity so it will be true for any value of a,b,c. Let a b c 1 then Inverse Trigonometrical Functions 137 tan 1 3 tan 1 3 tan 1 3 , All possible values of p and q for which cos 1 cos 1 Solution: (c) 1 2 (b) q 1, p p cos 1 1 p 1 2 (c) 0 p 1, q 1 2 3 holds, is 4 (d) None of these 1 cos 1 1 q p cos 1 1 p cos 1 2 3 cos 1 1 q cos 1 4 60 (a) p 1, q p cos 1 1 p cos 1 1 q 1 1 1 p 1 p 1 p p . 1q . q 0 1q q q . 2 2 2 5.3 Inverse Trigonometric Ratios of Multiple Angles. 1 1 x 2 2 (2) 2 sin 1 x sin 1 (2 x 1 x 2 ), If 1 ID (1) 2 sin 1 x sin 1 (2 x 1 x 2 ) , If E3 Example: 27 tan 0. (3) 2 sin 1 x sin 1 (2 x 1 x 2 ) , If 1 x (4) 3 sin 1 x sin 1 (3 x 4 x 3 ), If 2 1 x 1 x 1 2 1 2 D YG (7) 2 cos 1 x cos 1 (2 x 2 1) , If 0 x 1 (9) 3 cos 1 x cos 1 (4 x 3 3 x ) If 1 1 x 2 2 1 x 1 2 (11) 3 cos 1 x 2 cos 1 (4 x 3 3 x ) , If 1 x ST U 2x (13) 2 tan 1 x tan 1 , If x 1 2 1 x x 1 2x (15) 2 tan 1 x sin 1 2 1 x , If 1 x 1 1 2 (8) 2 cos 1 x 2 cos 1 (2 x 2 1) , 3 cos 1 x 2 cos 1 (4 x 3 3 x ) , (12) 2x 2 tan 1 x tan 1 , if 1 x 1 1 x 2 (14) 2x 2 tan 1 x tan 1 , 2 1 x 2x (16) 2 tan 1 x sin 1 2 1 x 1 x 2 (18) 2 tan 1 x cos 1 2 1 x (19) 1 x 2 2 tan 1 x cos 1 2 1 x 1 1 , If x 3 3 if 1 x 0 (10) 2x (17) 2 tan 1 x sin 1 , If x 1 2 1 x 3x x 3 3 tan 1 x tan 1 2 1 3x 1 1 x 2 2 (6) 3 sin 1 x sin 1 (3 x 4 x 3 ), If U (5) 3 sin 1 x sin 1 (3 x 4 x 3 ) , If 1 x 1 2 If If , If x 1 , If 0 x , If x 0 (20) 138 Inverse Trigonometrical Functions (21) 1 , If x 3 x tan 1 2 a x 2 (24) 1 , If x 3 (23) 1 x sin a E3 3a2 x x 3 x tan 1 2 3 tan 1 2 a a(a 3 x ) 1 x2 1 x2 tan 1 1 x 2 1 x 2 1x 1 cos 1 x 1 x 2 2 tan 1 (cos x ) tan 1 (cosec 2 x ), then x = (a) Solution: (d) 2 (b) 2 tan 1 (cos x ) tan 1 (cos ec 2 x ) D YG 1 cos x 6 (b) {1, 2} Soltuion: (c) sin 1 x 2 tan 1 x sin 1 x sin 1 Exmaple: 30 1 x2 sin tan 1 2x U 2 cos 1 1 x 1 x2 ST (a) 0 Solution: (b) sin 2 tan 1 x 2 tan 1 2 Example: 31 If sin 1 (a) a (26) [UPSEAT 2002] (d) 3 The solution set of the equation sin 1 x 2 tan 1 x is (a) {1, 2} Solution: (d) (c) 1 cos 1 x 2 4 2 1 2 cos x 1 2 cos x 1 x . 2 3 sin 2 x sin 2 x sin x tan 1 2 cos 2x tan 1 Example: 29 U Example: 28 ID (25) tan 1 (22) 60 3x x 3 3 tan 1 x tan 1 2 1 3x 3x x 3 3 tan 1 x tan 1 2 1 3x 2x 1 x2 2x 1 x2 [AMU 2002] (c) {1, 1, 0} 1 (d) {1, , 0} 2 x x 3 x 0 x(x 1)(x 1) 0 x {1, 1, 0}. is equal to (b) 1 [Kurukshetra CEE 2001] (c) 2 (d) 1 2 x = sin = 1. 2 2 2a 2x 1 1 b cos tan 1 , then x 2 2 1a 1b 1 x2 (b) b [EAMCET 1989] (c) ab 1 ab Put a tan , b tan and x tan , then reduced form is sin 1 (sin 2 ) cos 1 (cos 2 ) tan 1 (tan 2 ) 2 2 2 Taking tan on both sides, we get tan( ) = tan tan tan tan 1 tan . tan (d) ab 1 ab Inverse Trigonometrical Functions 139 Substituting these values, we get Example: 32 ab x 1 ab 1 tan 2 tan 1 5 4 (a) 17 7 [IIT 1984] (b) 17 7 (c) 7 17 (d) 7 17 Example: 33 4 tan 1 1 1 1 tan 1 tan 1 5 70 99 2 (b) 4 tan E3 Solution: (c) 1 3 (c) 2 1 1 1 1 1 1 tan tan = 2 tan 5 5 70 99 1 1 25 4 U 1 1 1 tan 1 tan 70 99 1 1 99 70 1 1 1 1 1 120 1 tan tan = tan = tan tan 70 99 119 119 1 1. 1 99 70 D YG 1 120 = tan Example: 34 29 1 120 tan 1 = tan 119 6931 1 120 119 239 120 1 1 29 1 120 1 1 tan tan tan = tan 119 6931 119 239 1 120 1 119 239 1 tan (1) . 4 1 The value of sin 2 tan 1 cos (tan 1 2 2 ) 3 16 15 U (a) (b) 14 15 [AMU 1999] (c) 12 15 (d) 11 15 2 1 3 1 1 1 1 sin 2 tan cos [tan (2 2 )] = sin tan cos [tan (2 2 )] 1 3 1 9 ST Solution: (b) (d) None of these 1 1 1 tan 1 tan 70 99 5 5 1 1 1 1 1 tan = 2 tan tan = tan 6 70 99 12 1 25 144 1 1 [Roorkee 1981] ID (a) 60 Solution: (d) 2 5 1 1 5 5 1 1 1 7. tan 2 tan tan tan tan (1) = tan tan 1 tan 1 (1) tan. tan 1 12 1 5 17 5 4 12 1 1 25 12 3 3 1 3 1 14 sin tan 1 cos[tan 1 2 2 ] = sin sin 1 cos cos 1 . 5 3 5 3 15 4 Example: 35 a a 1 1 tan cos 1 tan cos 1 equal to 4 2 b 4 2 b (a) Solution: (b) 2a b Let cos 1 (b) 2b a [MP PET 1999] (c) a b (d) b a a a cos b b a a 1 t 1 t 1 1 tan cos 1 tan cos 1 = , where t tan b b 1 t 1 t 2 4 2 4 2 2 (1 t 2 ) 2 2b . cos a 1 t2 140 Inverse Trigonometrical Functions (a) Solution: (d) 1 1 tan 1 is equal to 5 239 (b) Since, 2 tan 1 x tan 1 4 tan So, 4 tan Example: 37 3 (d) 4 2x 1 x2 1 1 120 1 tan 1 tan 1 tan 1 5 239 119 239 The formula cos 1 1 x2 1 x2 (a) x R tan 1 120 119 120 1 119 1 239 tan 1 (120 239 ) 119 1 (119 239 ) 120. 239 2 tan 1 x holds only for (c) x (1, 1] (b) | x | 1 tan 1 1 4. (d) x [1, ) ID Solution: (d) (c) 2 20 120 1 1 1 1 5 1 10 1 24 tan 1 2 2 tan 2 tan tan 2 tan 100 1 119 5 5 24 1 1 576 25 1 1 2 60 4 tan 1 E3 Example: 36 , RHS = 2 . So, the fomula does not hold. 2 2 If x 1, the angle on the LHS is in the second quadrant while the angle on the RHS is 2 (angle in If x 1, LHS = U the fourth quadrant), which cannot be equal. If x 1, the angle on the LHS is in the second quadrant while the angle on the RHS is 2 (angle in the Solution: (a) D YG Example: 38 first quadrant) and these two may be equal. If 1 x 0 , the angle on the LHS is positive and that on the RHS is negative and the two cannot be equal. 2x is independent of x , then 2 tan 1 x sin 1 1 x2 (a) x [1, ) (b) x [1, 1] (c) x (, 1 ] (d) None of these Let x tan . Then sin 1 2 tan 1 x sin 1 2x 1 x 2 2x 1 x 2 sin 1 2 tan 1 tan 2 sin 1 (sin 2 ) 2 sin 1 (sin 2 ) 2x = 2 2 4 tan 1 x independent of x. 1 x2 2x If 2 , 2 tan 1 x sin 1 = 2 sin 1 [sin( 2 )] 2 2 = = independent of x. 2 2 1 x2 2 , 2 tan 1 x sin 1 U If 2 2 ST 3 , but , and from the principal value of tan 1 x. 4 4 4 4 , . Hence, , 2 2 4 2 , tan 1 x sin 1 4 2 Also at 4 , 2 tan 1 x sin 1 2x 1 x2 2x 1 x2 2. . 4 sin 1 1 2 2 . The given function = = constant if , . i.e., x [1, ). 4 2 Inverse Trigonometrical Functions 141 Example: 39 tan 1 x cos 1 The number of positive integral solutions of the equation y 1y sin 1 2 3 or 10 tan 1 x cot 1 y tan 1 3 is Solution: (b) (b) Two tan 1 x tan 1 (c) Zero 1 1 tan 1 3 or tan 1 = tan 1 3 tan 1 x y y or tan 1 1 3x tan 1 y 1 3x As x , y are positive integers, x 1 , 2 and corresponding y 2, 7 Solutions are (x, y) (1, 2), (2, 7). Example: 40 , and are three angles given by 2 tan 1 ( 2 1), 3 sin 1 1 Solution: (b,c) 2 tan 1 ( 2 1) 2 tan 1 tan 4 6 8 2 8 4 7 12 . Also, cos 1 1 2 (d) None of these ID 3. (c) (b) 1 1 sin 1 and cos 1 . Then 3 2 E3 2 (a) (d) None of these 1 3x y 3x 60 (a) One 1 1 1 1 cos 1 cos 1 3 3 2 4 2 So, U 1 Again cos 1 belongs to the first quadrant and is in the second quadrant. 3 . a3 a b3 b 1 1 co sec 2 tan 1 sec 2 tan 1 is equal to 2 b 2 a 2 2 D YG Example: 41 (b) (a b) (a 2 b 2 ) (a) (a b)(a 2 b 2 ) Soltuion: (c) Let tan 1 a b , tan 1 b a (c) (a b)(a 2 b 2 ) (d) None of these tan a , tan b b a a a b b 1 1 cosec 2 tan 1 sec 2 tan 1 2 b 2 a 2 2 3 3 a3 b3 b3 a3 + = 1 cos 1 cos 1 2 sin 2 2 cos 2 2 2 U = a 3 [ a 2 b 2 b] b 3 [ a 2 b 2 a] a2 b 2 (a 2 b 2 ) b 2 (a 2 b 2 ) a 2 ST = a 2 b 2 [a{ a 2 b 2 b} b{ a 2 b 2 a}] = a3 b a b 2 b3 1 2 a a b2 2 (rationalized) a 2 b 2 [ a 2 b 2 (a b)] (a 2 b 2 )(a b). ST U D YG U ID E3 60 142 Inverse Trigonometrical Functions 141 Inverse Trigonometrical Functions 143 Properties of Inverse Trigonometrical Function The domain of sin 1 x is (a) ( , ) The range of tan 1 x is (a) , 2 4. (b) , 2 2 4 (b) – 1 2 1 3 5 3 (b) 0 3 U (b) (c) 10 3 [EAMCET 1985] (d) 1 [UPSEAT 2003] (d) 0 [EAMCET 2003] (c) 1 3 (d) (c) 2 3 (d) 2 4 9 6 2 , then x 3 ST If tan 1 x 2 cot 1 x 2 (b) 3 [Karnataka CET 1999] (c) 3 1 (d) 3 3 1 If 4 sin 1 x cos 1 x , then x is equal to (a) 0 10. (c) 2 D YG (b) (d) 1 The value of tan 1 x 2 cot 1 x is (a) 9. (d) (0, ) 1 1 1 cos cos 1 sin 7 7 (a) 8. (c) – 1 5 5 The value of cos 1 cos sin 1 cos is 3 3 (a) 7. 2 1 1 sin sin 1 cos 1 2 2 (a) 6. (c) ( , ) [Pb. CET 1997; DCE 2002] (b) (a) 0 5. [DCE 2002] sin 1 x cos 1 x is equal to (a) (d) (, ) E3 3. (c) (0, 2 ) (b) [– 1, 1] ID 2. [Roorkee Screening 1993] U 1. 60 Basic Level (b) 1 2 [UPSEAT 2001] (c) 3 2 (d) 1 2 1 1 cos 2 cos 1 sin 1 5 5 (a) 2 6 5 [IIT 1981] (b) 2 6 5 (c) 1 5 (d) 1 5 144 Inverse Trigonometrical Functions 33 The value of sin 1 cos is 5 (a) (c) (b) 1 (c) 5 (b) – 3 If sec 1 x cosec –1 y, then cos 1 1 1 cos 1 x y (a) 4 (c) cos 2 (d) cos 2 is 1 3 (c) 2 1 x 1 2 [Orissa JEE 2002] (d) 5 x2 1 2 [MNR 1978; MP PET 1989] 1 x2 (c) (d) x2 1 for some x (1,1), then the value of cos 1 x is U If sin 1 x (b) 1 3 (d) 1 If cos 1 , then tan x (a) 18. (d) 30 o (c) D YG 17. (c) 15 o 3 The value of x which satisfies the equation tan 1 x sin 1 10 (b) (d) None of these E3 1 (b) (a) 3 16. 2 The value of cos(tan 1 (tan 2)) is 5 10 [MP PET 2003] (b) 90 o 1 (d) [AMU 1988] 3 sin 1 1 is The value of sin 1 2 2 (a) 15. 10 60 1 2 (a) 45 o 14. 7 5 1 If sec 1 2 sin 1 (1) , then x equals x (a) 13. (b) ID 12. 3 5 U 11. [DCE 1997; Karnataka CET 1996; IIT 1992] 3 10 ST (a) 19. (b) 5 10 (c) 7 10 (d) sec (cosec 1 x ) is equal to 9 10 [Kurukshetra CEE 2001] (a) cosec (sec 1 x ) 20. (d) None of these tan (cos 1 x ) is equal to (a) 21. (c) (b) cot x 1 x2 x sin(cot 1 x ) 2002] [IIT 1993] (b) x 1 x 2 (c) 1 x2 x (d) 1 x2 [MNR 1987; MP PET 2001; DCE Inverse Trigonometrical Functions 145 1 x2 (a) 22. (c) (1 x 2 )3 / 2 (b) x (d) (1 x 2 ) cos(tan 1 x ) [MP 1 2 PET 1988; MNR 1981] 25 24 [Karnataka CET 1994] (b) 25 7 (c) (b) 2 (c) 1 2 (b) 5 3 sec 2 (tan 1 2) cosec 2 (cot 1 3) (b) 13 9 25 [EAMCET 1983] (d) 25 9 [EAMCET 2001] (c) 15 D YG (a) 5 (c) [Bihar CEE 1974] (d) None of these U 3 5 (d) None of these ID 1 3 sin tan 4 (a) 26. 24 25 The value of sin cot 1 tan cos 1 x is equal to (a) x 25. (d) None of these 7 cot cos 1 25 (a) 24. 1 x (c) 1 x 2 2 E3 23. 1 (b) 60 1 x2 (a) (d) 6 Advance Level 27. If cos 1 x sin1 x , then 28. ST 1 2 , 2 2 (c) 0 x 1 2 (d) 1 x 1 (d) 1 x 1 2 (b) 1 x 2 2 2 (b) 3 3 , 8 8 (c) 3 7 3 32 , 8 (d) None of these If x satisfies the equation t 2 t 2 0, then there exists a value for (a) sin 1 x 31. 1 The greatest and the least values of (sin1 x )3 (cos 1 x )3 are (a) 30. (c) 0 x If (cos 1 x )2 (sin 1 x )2 0, then (a) x 29. (b) 1 x 0 U (a) x 0 (b) cos 1 x (c) sec 1 x (d) None of these (c) x (, 1] [1, ) (d) None of these If f (x ) sec 1 x tan 1 x , then f (x ) is real for (a) x [1, 1] (b) x R 146 Inverse Trigonometrical Functions If sin 1 x r n , then (a) n 7 ) 5 (c) (b) sin 1 (sin n(n 1) 2 (d) None of these 7 ) 5 (c) sec 1 (sec 7 ) 5 (d) None of these The number of real solutions of (x , y ) ; where | y | sin x , y cos 1 (cos x ), 2 x 2 is (c) 3 1 (d) 4 E3 (b) 1 The set of values of k for which x kx sin (sin 4 ) 0 for all real x is 2 (a) (b) (2, 2) (c) R x2 1 1 x cos 1 x 2 1 x 2. 1 cos 1 x holds for cos 2 4 2 (b) x R (a) | x | 1 (d) None of these ID 36. (b) 2n (a) 2 35. r 2 is the principal value of 5 (a) cos 1 (cos 34. x r 1 r 1 33. 2n 60 2n 32. (c) 0 x 1 (d) 1 x 0 U Sum and Difference of Inverse Trigonometrical Function 37. If cos 1 x cos 1 y cos 1 z 3 , then xy yz zx 2003] (a) 0 38. (b) 1 (b) 1 (b) tan 1 2 (d) – 3 [AMU 2001] (c) 1 6 (d) 1 7 ST [DCE 1999] 132 (c) tan 1 33 (d) None of these If sin 1 a sin 1 b sin 1 c , then the value of a (1 a 2 ) b (1 b 2 ) c (1 c 2 ) will be (b) abc (c) 1 abc 2 [UPSEAT 1999] (d) 1 abc 3 If tan 1 x tan 1 y tan 1 A, then A (b) x y (a) x y 42. (c) 3 1 2 tan 1 tan 1 11 12 (a) 2 abc 41. 7 6 U 5 6 33 (a) tan 1 132 40. [Karnataka CET 1 1 The value of tan tan 1 tan 1 is 2 3 (a) 39. D YG Basic Level If tan 1 2 x tan 1 3 x 2002] 4 then x = [MP PET 1988] (c) x y 1 xy (d) xy 1 xy [Roorkee 1978, 1980; MNR 1986; Karnataka CET Inverse Trigonometrical Functions 147 (a) –1 cot 1 (b) 3 (where x y 0 ) (b) 4 6 4 1 2 (c) 3 4 4 2 tan cos 1 tan 1 = 5 3 1992] 6 17 (a) (d) None of these (b) 17 6 (d) 4 [EAMCET 1992] (d) None of these [IIT 1983; EAMCET 1988; MP PET 1990; MNR (c) 7 16 (d) 16 7 1 2 tan 1 tan 1 = 4 9 1 3 cos 1 2 5 (b) U (a) 50. (c) D YG (a) 49. (c) 3 2 (b) x x y tan 1 y x y 1 [MP PET 1991; MNR 1990] 1 tan 1 (d) [AMU 1976, 1977] 2 48. 1 1 1 cos tan 1 tan 1 3 2 (a) 47. (c) ID 46. [MP PET 1992] (b) 4 (d) 2 x , then x 3 3 8 tan 1 tan 1 4 5 19 tan 1 (a) (c) –1 60 cot 1 (a) 45. (d) None of these [AMU 1978] (b) 1 1 1 6 E3 If cot (c) 1, 3 4 sin 1 cos 1 x , then x 5 5 If cos 1 (a) 0 44. 1 6 U 43. (b) 1 sin 1 1 3 sin 1 2 5 [EAMCET 1994] 1 (c) tan 1 2 (d) Both (a) and (c) cot 1 3 is equal to ST 5 [Karnataka CET 1995; MP PET 1993] (a) 51. 6 4 (c) 3 (d) 2 1 If sin sin 1 cos 1 x 1 , then x = 5 (a) 1 52. (b) (b) 0 A solution of the equation tan 1 (1 x ) tan 1 (1 x ) (a) x = 1 [UPSEAT 1994] (b) x = –1 (c) 2 4 5 (d) 1 5 is [Karnataka CET 1993] (c) x = 0 (d) x 148 Inverse Trigonometrical Functions (a) 3 3 , 4 8 If sin 1 (b) (c) 1 (d 3 [Karnataka CET 1994] (b) 2 4 (c) cos 1 5 E3 4 4 (b) 3 4 (c) If cos 1 x cos 1 y cos 1 z then If tan 1 x tan 1 y tan 1 z (b) x 2 y 2 z 2 2 xyz =0 2 , then (b) x y z xyz 0 D YG (a) x y z xyz 0 59. (d) None of these [EAMCET 1983] (b) 5 (a) x 2 y 2 z 2 xyz 0 58. 4 3 , 3 8 (d) If tan 1 2, tan 1 3 are two angles of a triangle, then the third angle is (a) 57. (c) 3 1 sin 1 tan 1 5 7 (a) 56. 3 3 , 4 8 x 5 co sec 1 , then x 5 4 2 (a) 4 55. [ISM Dhanbad 1973] If tan 1 x tan 1 y tan 1 z , then (a) 0 4 (d) None of these ID 54. x 1 2x 1 23 tan 1 tan 1 , then x = x 1 2x 1 36 60 If tan 1 (c) x 2 y 2 z 2 xyz 1 U 53. (c) xy yz zx 1 0 (d) x 2 y 2 z 2 2 xyz 1 [Karnataka CET 1996] (d) xy yz zx 1 0 1 1 1 = xy yz zx (b) 1 [MP PET 1991] (c) 1 xyz (d) xyz Advance Level If we consider only the principal values of the inverse trigonometric functions, then the value of U 60. ST 1 tan cos 1 sin 1 5 2 29 3 (a) 61. [IIT 1994] (b) 29 3 (c) 3 29 (d) The sum of first 10 terms of the series cot 1 3 cot 1 7 cot 1 13 cot 1 21 ....... is 5 (a) tan 1 6 62. is (17 ) 4 (b) tan 1 (100 ) 6 (c) tan 1 5 3 29 [Karnataka CET 1996] 1 (d) tan 1 100 3 3 3 Sum of infinite terms of the series cot 1 1 2 cot 1 2 2 cot 1 3 2 …….is 4 4 4 (a) 4 (b) tan 1 2 (c) tan 1 3 (d) None of these Inverse Trigonometrical Functions 149 tan 1 (a) 2 (b) (d) 0 4 (b) 60 (c) 4 (d) None of these 2 1 sin 1 3 2 .............. sin 1 n n 1 is sin 1 2 6 12 n(n 1) 1 3 (c) 2 (d) 5 (b) 4 (c) 3 (d) 2 If sin 1 x sin 1 y sin 1 z 9 3 , then the value of x 100 y 100 z 100 101 is equal to 2 x y 101 z 101 (a) 0 (b) 3 (c) – 3 (d) 9 U 68. 2 3 If sum of the infinite series cot 1 (2.12 ) cot 1 (2.2 2 ) cot 1 (2.2 3 ) cot(2.2 4 ) ..... is equal to (a) 67. (b) 2 The sum of the infinite series sin 1 (a) 66. (c) If sin 1 x sin 1 y sin1 z , then x 4 y 4 z 4 4 x 2 y 2 z 2 K(x 2 y 2 y 2 z 2 z 2 x 2 ), where K = (a) 1 65. 4 [Karnataka CET 2000] E3 64. 1 1 1 1 tan 1 tan 1 ......... tan 1 2 ....... to is equal 3 7 18 n n 1 ID 63. If x1 , x 2 , x 3 , x 4 are roots of the equation x x sin 2 x cos 2 x cos sin 0, 4 3 2 (a) 69. If D YG then tan 1 x 1 tan 1 x 2 tan 1 x 3 tan 1 x 4 (b) 2 is a1, a2 , a3 ,........, an d d tan 1 tan tan 1 1 a a 1 a a 1 2 2 3 (n 1) d a1 an (b) (n 1) d 1 a1an common difference (c) nd 1 a1 an (d) 3a a3 1 3a2 d, Basic Level [MP PET 1993] (b) tan 1 3a a3 1 3a2 (c) tan 1 If A tan 1 x , then sin 2 A 3a a3 1 3a2 (d) tan 1 3a a3 1 3a2 [MNR 1988; UPSEAT 2000] (a) 2x 1x 2 then an a1 an a1 3 tan 1 a is equal to (a) tan 1 71. with Inverse Trigonometric Ratios of Multiple Angles ST 70. A.P. d .......... tan 1 1 a a n 1 n U (a) an (d) (c) (b) 2x 1 x2 (c) 2x 1 x2 (d) None of these 150 Inverse Trigonometrical Functions sin(2 sin 1 0.8) [MNR 1980] (a) 0.96 (a) Only 2 3 (b) Only 2 4 1 2 tan 1 5 3 (a) 2 (b) If sin 1 (c) 4 ab 1 ab 1 If 3 tan 1 2 3 (b) 2 (c) 0 3 (c) 4 (d) 4 (d) None of these b 1 ab (c) b 1 ab [MNR 1984] (d) (b) 2 [Pb. CET 2001; AMU 1992] (c) 3 (d) 1 10 3 = U ST ab 1 ab (b) 2 x [UPSEAT 1986] (c) 2 (d) 4 1 sin cos 1 2 5 (a) [EAMCET 1983] [Dhanbad Engg. 1971] 1 1 tan 1 tan 1 , then x equals x 3 1 sin x 1 sin x cot 1 1 sin x 1 sin x 2 2 nor 3 3 (d) None of these 2a 2b sin 1 2 tan 1 x , then x = 2 1a 1 b2 (a) x 80. (d) Neither [EAMCET 1981] (b) sin 1 (a) 1 79. 2 2 , 3 3 1 1 2 tan 1 tan 1 3 7 (a) 78. (c) D YG 77. 2 3 171 (b) cos 1 221 49 (a) tan 1 29 76. [Roorkee 1975] 15 1 cos 1 2 tan 1 17 5 (a) 75. 1 , then x 9 E3 74. (d) None of these 60 If cos( 2 sin 1 x ) (c) 0.64 ID 73. (b) 0.48 U 72. x 2 [Karnataka CET 2003] (b) 1 10 (c) 1 10 (d) 1 10 Advance Level 81. ab 2 tan 1 tan 2 a b [ISM Dhanbad 1976] Inverse Trigonometrical Functions 151 a cos b (a) cos 1 a b cos If cot 1[(cos )1 / 2 ] tan 1[(cos )1 / 2 ] x. Then sin x (b) cot 2 2 x The value of sin 1 sin 2 3 x k 2 kx 2 x 2 xk k 2 (a) tan 1 2 2 x 2 xk k 84. [AIEEE 2002] 1 cos cos 6 k , where x 2k , k 0 is 2 2 2 x k kx x x 2 2 xk 2k 2 x 2 2 xk k 2 (c) tan 1 2 2 2 x 2 xk 2k (b) tan 1 2 2 x 2 xk k Solution of equation sin[2 cos 1 {cot(2 tan 1 x )}] 0 is ID 1998; (b) A 3 5 2 D YG 1 5 tan cos 1 3 2 (a) (c) C (b) 3 5 2 (c) ST U *** 2 3 5 Roorkee (d) All of these 1 3 The greater of the two angles A 2 tan 1 (2 2 1) and B 3 sin 1 sin 1 is 3 5 (a) B 86. (c) x (1 2 ) only (b) x 1 2 only [IIT 1992] (d) None of these U 85. (d) None of these [UPSEAT 1992] (a) x 1 only (d) cot 2 (c) tan 60 (a) tan 2 2 83. b cos (d) cos 1 a cos b E3 82. a cos (c) cos 1 a b cos a b cos (b) cos 1 a cos b [Roorkee 1986] (d) 2 3 5 ID E3 60 150 Inverse Trigonometrical Functions 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 b b b d a b c c b b d b d c a d d a a a 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 d b d a c c d d c c c b b c a c c d d a 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 c b b d a a b b d b d c d d a b d d b d 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 a b b b c b a b b d c a c d d a d b d a 81 82 83 84 85 86 a a c d b d ST U D YG 1 U Assignment (Basic & Advance Level)