Chapitre 2 Comportement mécanique des roches et massifs rocheux PDF
Document Details
Uploaded by RationalMossAgate9192
Tags
Summary
This document is a chapter on the mechanical behaviour of rocks and rock masses, which are critical for geotechnical classifications. The chapter covers definitions of key parameters like the Young's modulus, deformation, and the Poisson's ratio, and explains their significance in site investigation and excavation processes.
Full Transcript
Chapitre 2 Comportement mécanique des roches et massifs rocheux Chapitre 2 Comportement mécanique des roches et massifs rocheux II.1. PARAMETRES MECANIQUES DES ROCHES Les paramètres mécaniques, utiles dans les classifications géotechniques classiques ainsi que dans le choix et l'optimisation des t...
Chapitre 2 Comportement mécanique des roches et massifs rocheux Chapitre 2 Comportement mécanique des roches et massifs rocheux II.1. PARAMETRES MECANIQUES DES ROCHES Les paramètres mécaniques, utiles dans les classifications géotechniques classiques ainsi que dans le choix et l'optimisation des techniques et moyens de creusement, sont déterminés au laboratoire sur des échantillons représentatifs. II est souhaitable de procéder à des essais mécaniques dans plusieurs directions ; cela devient indispensable dans le cas des roches métamorphiques. II.1.1. Déformabilité II.1.1.1. Module de Young Le module d’élasticité (également appelé module de Young) est un paramètre important pour décrire la relation de contrainte et de déformation. Pour la plupart des roches, la courbe contrainte- déformation uniaxiale avant rupture prend approximativement la forme linéaire (Fig.II.1). Ceci peut être présenté par (Jaeger & Cook ,2007): 𝝈 𝑬𝜺 𝐈𝐈. 𝟏 où σ est la contrainte; ε est la déformation; la constante, E, est appelée module d'élasticité. Un matériau est linéairement élastique si la relation ci-dessus est exacte. Figure II.1: Module d'élasticité et relation contrainte-déformation pour un grès à grain moyen soumis à un essai de compression uniaxiale (Suping & Jincai , 2007). Mécanique des roches Page 28 Chapitre 2 Comportement mécanique des roches et massifs rocheux Les classes de valeur de raideur (inverse de la déformabilité) sont données dans le tableau II.1. Tableau II.1: Gosses de raideur (inverse de fa déformabilité) de la matrice rocheuse (AFTES, 2003) CLASSES VALEURS DU MODULE TERMES DESCRIPTIFS DE RAIDEUR DE YOUNG DE1 E > 50 GPa Matrice extrêmement raide DE2 20 GPa < E < 50 GPa Matrice très raide DE3 5 GPa < E < 20 GPa Matrice raide DE4 1 GPa < E < 5 GPa Matrice moyennement raide DE5 0,1 GPa < E < 1 GPa Matrice peu raide DE6 E < 0,1 GPa Matrice très peu raide Le module élastique décrit la capacité de déformation de la roche, ou la rigidité d'une roche. Pour une roche à module d'élasticité élevé, elle est moins déformable (c'est-à-dire rigide). La partie initiale de la courbe contrainte-déformation complète sera abrupte. Pour une roche à faible module élastique (tendre), elle est plus déformable et la partie initiale de la courbe contrainte-déformation complète sera douce. Le module d'élasticité statique de la roche peut être obtenu à partir d'essais en laboratoire sur une expérience de compression uniaxiale ou triaxiale. Le module d'élasticité dynamique de la roche (Ed) peut être résolu à partir des équations suivantes en connaissant les vitesses de compression élastique et de cisaillement de la roche (Suping & Jincai , 2007) : 𝑬𝒅 𝟏 𝝂 𝑽𝒑 𝐈𝐈. 𝟐 𝝆 𝟏 𝝂 𝟏 𝟐𝝂 𝑬𝒅 𝟏 𝑽𝒔 𝐈𝐈. 𝟑 𝝆 𝟐 𝟏 𝝂 où 𝑽𝒑 et 𝑽𝒔 sont les vitesses des ondes de compression et de cisaillement de la roche, respectivement; 𝝆 est la densité apparente de la roche; 𝝂 est le coefficient de Poisson de la roche. Les vitesses élastiques des roches peuvent être obtenues par levé sismique ou par diagraphie de puits sonore. Mécanique des roches Page 29 Chapitre 2 Comportement mécanique des roches et massifs rocheux II.1.1.2. Coefficient de Poisson Au cours de l'essai de compression uniaxiaie, le coefficient de Poisson 𝜐 est défini comme le rapport des pentes des courbes 𝝈𝟏 𝒇 𝜺𝟑 et 𝝈𝟏 𝒇 𝜺𝟏 dans leur partie linéaire. 𝝂 𝒅𝜺𝟑 ⁄𝒅𝜺𝟏 𝐈𝐈. 𝟒 𝜀 :déformation axiale 𝜀 :déformation transversale. Les valeurs du coefficient de Poisson des diverses roches sont généralement comprises entre 0,15 et 0,40 (voir Tableau II.2). Les résultats expérimentaux montrent que le coefficient de Poisson dans une roche dépend de la lithologie, de la contrainte de confinement, de la pression interstitielle et de la porosité de la roche. Normalement, le coefficient de Poisson est d’environ 0,2 pour les grès, d’environ 0,3 pour les roches carbonatées et de plus de 0,3 pour les schistes (Suping & Jincai , 2007). Le coefficient de Poisson peut également être calculé à partir des vitesses de l’onde élastique: 𝟏 𝟐 𝑽𝒑 ⁄𝑽𝒔 𝟏 𝝂 𝟐 𝐈𝐈. 𝟓 𝟐 𝑽𝒑 ⁄𝑽𝒔 𝟏 où 𝑽𝒑 et 𝑽𝒔 sont respectivement les vitesses de compression et de cisaillement. Tableau II.2: : Module d’Young et coefficient de Poisson pour quelques roches (Chalhoub , 2006) Matériau Module de Young E (GPa) Coefficient de Poisson 𝝂 Granite 10 – 80 0.25 – 0.35 Basalte 20 – 70 0.25 – 0.35 Quartzite 30 – 90 0.12 – 0.15 Gneiss 10 – 60 0.25 – 0.35 Schiste 7 – 50 0.15 – 0.20 Calcaire très compact 60 – 80 0.25 – 0.35 Calcaire compact 30 – 60 0.25 – 0.35 Calcaire peu compact 10 – 30 0.25 – 0.35 Calcaire tendre 2 – 10 0.25 – 0.35 Marne 0.05 – 1 0.25 – 0.35 Grés 5 – 60 0.25 – 0.35 Molasse 1.5 – 5 0.25 – 0.35 Marbre 80 – 110 0.27 – 0.3 Gypse 2 – 6.5 0.27 – 0.3 Mécanique des roches Page 30 Chapitre 2 Comportement mécanique des roches et massifs rocheux II.1.2. Résistance mécanique II.1.2. 1. Résistance en compression uniaxiale 𝛔𝐜 ou essai de compression simple La contrainte de rupture en compression uniaxiale 𝝈𝒄 est définie par: 𝝈𝒄 𝑭𝒎𝒂𝒙 ⁄𝑨 𝐈𝐈. 𝟔 𝐹 : force axiale maximale atteinte au cours de l'essai A : aire de la section transversale circulaire initiale de l'éprouvette Les classes de résistance de la roche de la présente recommandation (AFTES, 2003), en accord avec celles de la ISRM, sont données dans le tableau II.3. Les classes RC6 et RC7 correspondent souvent à des roches tendres ou des sols raides. La contrainte de résistance à la traction de la roche 𝝈𝒕𝒃 est déterminée suivant la méthode indirecte par l'essai brésilien (Figure II.2), conformément à la norme NF P 94-422. L'essai consiste à obtenir la rupture par fendage d'un échantillon cylindrique de diamètre D et hauteur H soumis à une charge de compression F appliquée sur deux génératrices opposées. La contrainte de rupture en traction brésilienne 𝝈𝒕𝒃 est donnée par la formule: 𝝈𝒕𝒃 𝟐 𝑭𝒎𝒂𝒙 ⁄𝝅 𝑫 𝑯 𝐈𝐈. 𝟕 𝐹 : charge de rupture, H : hauteur, D : diamètre.. Figure II.2 : Modèle de l'essai brésilien Mécanique des roches Page 31 Chapitre 2 Comportement mécanique des roches et massifs rocheux Tableau II.3: Classes de résistance en compression uniaxiale (AFTES , 2003) CLASSSES VALEURS DE RESISTANCE EN TERMES DESCRIPTIFS COMPRESSION UNIAXIALE 𝝈𝒄 DE RESISTANCE RC1 𝝈𝒄 𝟐𝟎𝟎𝑴𝑷𝒂 Résistance extrement élevée RC2 𝟏𝟎𝟎𝑴𝑷𝒂 𝝈𝒄 𝟐𝟎𝟎𝑴𝑷𝒂 Résistance très élevée RC3 𝟓𝟎𝑴𝑷𝒂 𝝈𝒄 𝟏𝟎𝟎𝑴𝑷𝒂 Résistance élevée RC4 𝟐𝟓𝑴𝑷𝒂 𝝈𝒄 𝟓𝟎𝑴𝑷𝒂 Résistance moyenne RC5 𝟓𝑴𝑷𝒂 𝝈𝒄 𝟐𝟓𝑴𝑷𝒂 Résistance faible RC6 𝟏𝑴𝑷𝒂 𝝈𝒄 𝟓𝑴𝑷𝒂 Résistance très faible RC7 𝝈𝒄 𝟏𝑴𝑷𝒂 Résistance extrement faible II.1.2. 2. Indice de fragilité FR L'indice de fragilité FR est défini par le rapport 𝝈𝒄 ⁄𝝈𝒕𝒃.Cet indice est intéressant pour caractériser la forabilité et le comportement à la rupture des roches dures (𝝈𝒄 25 𝑀𝑃𝑎). FR varie usuellement entre 5 et 30. Les classes de fragilité sont données dans le tableau II.4 Tableau II.4: Classes de fragilité de la matrice rocheuse (AFTES , 2003) CLASSES VALEURS DE L'INDICE DE TERMES DESCRIPTIFS DE FRAGILITE FRAGILITE FR FR1 FR>25 Très fragile FR2 15 < FR < 25 Fragile FR3 10 < FR< 15 Moyennement fragile FR4 FR< 10 Peu fragile II.1.2. 3. Dureté et forabilité Les essais de dureté et forabilité peuvent être regroupés en trois familles : 1. les essais consistant à évaluer la pénétration en rotation de forets ou de taillants, parmi lesquels les essais CERCHAR, Siever, etc. 2. les essais d'indentation statique, consistant à évaluer l'empreinte laissée par un poinçon sur la roche, parmi lesquels le punch test, les essais Vickers, Knoops, Schreiner, de micro-indentation, etc. 3. les essais de rebond, consistant à évaluer le rebond d'une masse calibrée sur la roche (scléromètre). L'essai le plus couramment employé est l'essai de pénétration dérivé de l'essai défini initialement par le CERCHAR : "Indice de résistance à la pénétration d'un foret" - Norme XP 94-412. La dureté de la roche y est caractérisée par la résistance à la pénétration d'un foret dans des Mécanique des roches Page 32 Chapitre 2 Comportement mécanique des roches et massifs rocheux conditions normalisées. L'essai de dureté est bien adapté pour les roches à grains fins et de résistance moyenne à faible. Les classes de dureté des roches établies suivant les règles appliquées par CERCHARINERIS sont données dans le tableau II.5. Tableau II.5: Classes de dureté de la matrice rocheuse suivant les résultats de l'essai CERCHAR-INERIS (AFTES , 2003) CLASSES VALEURS DE DURETE TERMES DESCRIPTIFS DE DURETE DU1 >120 Roche extrêmement dure DU2 80‐120 Roche très dure DU3 40‐80 Roche dure DU4 20‐40 Roche moyennement dure DU5 5‐20 Roche tendre DU6 4,0* Roche extrêmement abrasive AIN 2 2,0‐4,0 Roche très abrasive AIN 3 1,0‐2,0 Roche abrasive AIN 4 0,5‐1,0 Roche peu abrasive AIN 5