Class 10th Math Past Paper PDF

Summary

This document is a math exam paper for class 10th, containing various mathematical concepts. It covers topics such as numbers, algebra, geometry, trigonometry, mensuration, statistics, and probability. Problems and formulas are included.

Full Transcript

fo’k;&xf.kr ¼d{kk&10½ le;&3 ?kaVk blesa 70 vad dh fyf[kr ijh{kk ,oa 30 vad dk izkstsDV dk;Z gksxkA U;wure mRrh.kkZad 23 ,oa 10 dqy&33 vadA bdkbZ...

fo’k;&xf.kr ¼d{kk&10½ le;&3 ?kaVk blesa 70 vad dh fyf[kr ijh{kk ,oa 30 vad dk izkstsDV dk;Z gksxkA U;wure mRrh.kkZad 23 ,oa 10 dqy&33 vadA bdkbZ bdkbZ dk uke vad I la[;k i)fr 05 II chtxf.kr 18 III funsZ'kkad T;kfefr 05 IV T;kfefr 10 V f=dks.kfefr 12 VI esUlqjs'ku 10 VII lkaf[;dh rFkk izkf;drk 10 ;ksx 70 bdkbZ&1 % la[;k i)fr& ¼1½ okLrfod la[;k,¡ 05 vad vadxf.kr dk vk/kkjHkwr izes;&mnkgj.k lfgr 2 , 3 , 5 vifjes; la[;kvksa dk iquHkzZe.k] vifjes; la[;kvksa dk lR;kiuA bdkbZ&2 % chtxf.kr 18 vad 1- cgqin& cgqin ds 'kwU;kadA f}?kkr cgqinksa ds xq.kkadksa vkSj 'kwU;kdksa ds e/; lEcU/kA 2- nks pj okys jSf[kd lehdj.k ;qXe & ,d jSf[kd lehdj.k ;qXe dks gy djus dh chtxf.krh; fof/kA 1- izfrLFkkiu fof/k 2- foyksiu fof/k 3- f}?kkr lehdj.k& ekud f}?kkr lehdj.k ax2 + bx + c = 0, (a  0) f}?kkr lehdj.kksa ¼dsoy okLrfod ewy½ dk f}?kkr lw=ksa }kjk] xq.ku[k.M }kjk gy fudkyukA f}?kkr lehdj.k dk fofoDrdj vkSj muds ewyksa dh izd`fr ds chp lEcU/kA f}?kkr lehdj.k dk nSfud thou esa vuqiz;ksx rFkk bu ij vk/kkfjr bckjrh iz'uA 4-lekUrj Jsf.k;k¡& lekUrj Js.kh ds nosa in dh O;qRifRr rFkk lekUrj Js.kh ds izFke n inksa dk ;ksxA lkekU; thou ij vk/kkfjr iz'uksa dks gy djus ds fy, bldk vuqiz;ksxA bdkbZ&3 % funsZ'kkad T;kfefr & 05 vad 1- js[kk ¼f}foeh;½& funsZ'kkad T;kfefr dh vo/kkj.kk] jSf[kd lehdj.kksa ds xzkQ] nwjh lw=] foHkktu lw= ¼vkUrfjd foHkktu½A bdkbZ&4 % T;kfefr 10 vad 1- f=Hkqt & le:i f=Hkqt ds ifjHkk"kk] mnkgj.k] izfrmnkgj.kA ¼d½ f=Hkqt dh ,d Hkqtk ds lekUrj [khaph x;h js[kk f=Hkqt dh 'ks"k nks Hkqtkvksa dks leku vuqikr esa foHkkftr djrh gSA ¼[k½ f=Hkqt dh nks Hkqtkvksa dks leku vuqikr esa foHkkftr djus okyh js[kk] rhljh Hkqtk ds lekUrj gksrh gSA ¼x½ ;fn nks f=Hkqtksa esa laxr&Hkqtkvksa dk ,d ;qXe vuqikfrd gks vkSj vUrfjr dks.k cjkcj gks] rks f=Hkqt le:i gksrs gSaA ¼?k½ ;fn nks f=Hkqtksa esa laxr dks.kksa dk ,d ;qXe cjkcj gks vkSj mudh laxr Hkqtk,¡ vuqikfrd gks] rks f=Hkqt le:i gksrs gSaA ¼M-½ ,d f=Hkqt dk ,d dks.k] nwljs f=Hkqt ds laxr dks.k ds cjkcj gksa rFkk mudh laxr Hkqtk,¡ vuqikfrd gksa rks f=Hkqt le:i gksxkA 1- o`Rr& o`Rr dh Li'kZ js[kk] Li'kZ fcUnq ¼d½ o`Rr dh Li'kZjs[kk] Li'kZ fcUnq ls gksdj tkus okyh f=T;k ij yEc gksrh gSA ¼[k½ fdlh okº; fcUnq ls [khaph xbZ] nks Li'kZ js[kkvksa dh yEckb;k¡ cjkcj gksrh gSaA bdkbZ&5 % f=dks.kfefr 12 vad 1- f=dks.kfefr dk ifjp; & ledks.k f=Hkqt ds U;wudks.kksa ds f=dks.kferh; vuqikr] 00 vkSj 900 ds f=dks.kferh; vuqikr] f=dks.kferh; vuqikrksa ds eku ¼00] 300] 450] 600] 900½A muds chp lEcU/kA 2- f=dks.kferh; loZlkfedk,¡ & loZlfedkvksa Sin2 + Cos2 = 1,1$tan2 = Sec2, 1$ Cot2=cosec2 dks LFkkfir djuk rFkk bldk vuqiz;ksxA 3- Å¡pkbZ vkSj nwjh & mUu;u dks.k] voueu dks.k] Å¡pkbZ vkSj nwjh ij lk/kkj.k iz'u ¼iz'u nks ledks.k f=Hkqtksa ls vf/kd ugha gksuk pkfg,½A mUu;u@voueu dks.k dsoy 300] 450 rFkk 600 gksus pkfg,A bdkbZ&6 % esUlqjs'ku 10 vad 1- o`Rrksa ls lEcfU/kr {ks=Qy & o`Rr ds f=T;[kaM rFkk o`Rr[k.M ds {ks=QyA 2- i`"Bh; {ks=Qy vkSj vk;ru & fuEukafdr fdUgha nks }kjk la;ksftr lery vkd`fr;ksa dk i`"Bh; {ks=Qy rFkk vk;ru&?ku] ?kukHk] xksyk] v)Zxksyk] vkSj yEco`Rrh; csyu@'kadqA fefJr iz'u ¼nks fHkUu rjg ds Bkslksa dk la;kstu ls lEcfU/kr iz'u] blls vf/kd ugha½A bdkbZ&7 % lkaf[;dh rFkk izkf;drk 10 vad 1- lkaf[;dh & oxhZd`r vkadM+ksa dk ek/;] ekf/;dk rFkk cgqydA 2- izkf;drk & izkf;drk dh lS)kfUrd ifjHkk"kk] ,dy ?kVuk ij vk/kfkjr lkekU; iz'uA izkstsDV dk;Z vad foHkktu “kSf{kd l= 2024&25 gsrq vkUrfjd ewY;kadu 1&izFke vkUrfjd ewY;kadu ijh{kk& ¼Ikjh{kk + izkstDV½ vxLr ekg 5+5 vad izkstDV ¼**Hkkjr dk ijEijkxr xf.kr Kku uked iqfLrdk ls rS;kj djk;sa½ 2&f}rh; vkUrfjd ewY;kadu ijh{kk&¼Ikjh{kk + izkstDV½ fnLkEcj ekg 5+5 vad 3&Pkkj ekfld ijh{kk,a 10 vad  izFke ekfld ijh{kk ¼cgqfodYih; iz”uksa ¼MCQ½ ds vk/kkj ij½ ebZ ekg  f}rh; ekfld ijh{kk ¼o.kZukRed iz”uksa ds vk/kkj ij½ tqykbZ ekg  r`rh; ekfld ijh{kk ¼cgqfodYih; iz”uksa ¼MCQ½ ds vk/kkj ij½ uoEcj ekg  prqFkZ ekfld ijh{kk ¼o.kZukRed iz”uksa ds vk/kkj ij½ fnLkEcj ekg pkjksa ekfld ijh{kkvksa ds izkIrkadksa ds ;ksx dks 10 vadksa esa ifjofrZr fd;k tk;A uksV&fuEufyf[kr¼fcUnq 1 ls 11 rd½ esa ls dksbZ nks izkstsDV izR;sd Nk= ls rS;kj djk;sa rFkk ,d izkstsDV fcUnq&12 ls vfuok;Z :i ls rS;kj djk;saA v/;kid fo"k; ls lEcfU/kr vU; izkstsDV vius Lrj ls Hkh ns ldrs gSaA ¼1½ ikbFkkxksjl izes; dk lR;kiu xRrk ;k pkVZ ij f=Hkqt ,oa oxZ dks cukdj djukA ¼2½ tula[;k v/;;u esa lkaf[;dh dh mi;ksfxrkA ¼3½ fofHkUu T;kferh; vkd`fr;ksa dh okLrqdyk ,oa fuekZ.k esa Hkwfedk dk v/;;u djukA ¼4½ f=dks.kfefr vuqikrksa ds fpUgksa dk Kku pkVZ ds ek/;e ls djkukA dks.k ds iwjd ¼Complementary angle½] lEiwjd dks.k ¼supplementary angle½ vkfn dks.kksa ds f=dks.kferh; vuqikr dks.kksa ds laxr vuqikr esa fp= ds ek/;e ls O;Dr djukA ¼5½ mRrj e/;dky ds fdlh ,d Hkkjrh; xf.krK ¼jkekuqtu] ukjk;.k if.Mr vkfn½ dk O;fDrRo ,oa xf.kr esa ;ksxnkuA ¼6½ 2442 lsaeh0 eki ds nks dkxt ysdj yEckbZ ,oa pkSM+kbZ dh fn'kk esa eksM+dj nks vyx&vyx csyu cukb,A nksuksa esa fdldk oØi`"B ,oa vk;ru vf/kd gksxkA ¼7½ ljdkj }kjk yxk;s tkus okys fofHkUu izR;{k ,oa vizR;{k dj dk v/;;u djukA ¼8½ o`Rr ds dsUnz ij cuk dks.k 'ks"k ifjf/k ij cus dks.k dk nwuk gksrk gS dk fØ;kRed fu:i.k djukA ¼9½ nwjh ekius dk ;U= (Sextant½ cukuk vkSj iz;ksx djukA ¼10½ xf.kr ds fl)kUrksa dh fp=dyk esa mi;ksfxrkA ¼11½ ,d dkj@?kj [kjhnus ds fy, cSad ls yksu ysus ds fofHkUu pj.kksa dk C;ksjk izLrqr dhft,A ¼12½ laLrqr iqLrd Hkkjr dk ijEifjd xf.kr Kku ds fuEukfdr rhu [k.Mksa esa ls lqfo/kkuqlkj dksbZ ,d izkstsDV& [k.M&d& Hkkjr esa xf.kr dh mTtoy ijEijkA [k.M&[k& x.kuk dh ijEijkxr fof/k;kaA [k.M&x& Hkkjr ds izeq[k xf.krkpk;ZA

Use Quizgecko on...
Browser
Browser