Meriden School Year 7 Mathematics Task 4, 2023 PDF

Summary

This is a Year 7 mathematics task from Meriden School, 2023. The task contains multiple questions on various geometric topics such as coordinate geometry, area, perimeter, angles, and conversions.

Full Transcript

Name: Teacher: Meriden School Year 7 Mathematics Task 4, 2023 Time allowed: 50 minutes Instructions to all students: Attempt all q...

Name: Teacher: Meriden School Year 7 Mathematics Task 4, 2023 Time allowed: 50 minutes Instructions to all students: Attempt all questions. Answer each question in the space provided. Question 1 /22 All necessary working must be shown. Question 2 /21 Use blue or black pen. Question 3 /12 No calculators are permitted. Total /55 Diagrams are not necessarily drawn to scale. Question 1 (22 marks) (a) Using the number plane below: (i) Find the coordinates of A and B. 2................................................................................................................................................................................................................ (ii) Plot the points C(−2, 1) and D(0, 4.5) on the number plane above. 2 (b) Complete these conversions: (i) 500 cm = m 1 (ii) 3.5 m = mm 1 (iii) 200 000 mm = km 1 (iv) 2 000 000 mm2 = m2 1 – 2– (c) Find the perimeter of the composite shape below. 2............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. (d) Find the areas of the following shapes: (i) 1........................................................................................................................................................................................................................................................................................................................ (ii) 1........................................................................................................................................................................................................................................................................................................................ – 3– (e) Find the area of the composite shape below. 2........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (f) What is the supplement of 62◦ ? 1.................................................................................................................................................................................................................. – 4– (g) In the diagram shown, AB ∥ CD and EH is a transversal. Name an angle that is: (i) vertically opposite to ∠EF B, 1................................................................................................................................................................................................................ (ii) co-interior with ∠AF G, 1................................................................................................................................................................................................................ (iii) corresponding with ∠F GI, 1................................................................................................................................................................................................................ (iv) alternate with ∠F GI. 1................................................................................................................................................................................................................ – 5– (h) Solve: (i) x+5=8 1........................................................................................................................................................................................................................................................................................................................ x (ii) = −5 1 4........................................................................................................................................................................................................................................................................................................................ (iii) 6x = 48 1........................................................................................................................................................................................................................................................................................................................ End of Question 1 – 6– Spare writing page: Clearly indicate which part of Question 1 is being answered here......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... – 7– Name: Teacher: Question 2 (21 marks) (a) For the rule y = 2x − 3, (i) Complete the table by filling in the missing values. 2 x -3 -1 0 1... y -9... 5 (ii) Plot the points from the table, then draw a line for the rule on the number plane 2 below. x (b) Solve − 8 = −6. 2 2............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. – 8– (c) The number plane shows coordinates that have been joined with a line. (i) Complete the table of values that was used for the above graph. 1 x 0 1 2 y 10 (ii) Find the rule for the completed table. 2................................................................................................................................................................................................................................................................................................................................................................................................................................ – 9– (i) Using the kite below: (ii) Write a simplified expression for the perimeter of the kite. 2................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (iii) If the perimeter of the kite is 84 cm and the value of a is 15 cm, find the value 2 of b................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. – 10 – (d) The solution to finding the values of a◦ , b◦ and c◦ for the diagram has been partially 3 completed below. Complete the solution by filling in the blanks. a◦ = (Corresponding angles on parallel lines) b◦ = 50◦ ( ) a◦ + + = 180◦ (Straight angle) c◦ = (e) The area of the rectangle and parallelogram is the same. If the length and width of the 2 rectangle is 15 cm and 12 cm respectively, and one of the sides of the parallelogram is 9 cm, find x................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ – 11 – (f) A square of side length 12 centimetres has a triangle removed from it as shown. 3 Find the shaded area........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... End of Question 2 – 12 – Spare writing page: Clearly indicate which part of Question 2 is being answered here......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... – 13 – Name: Teacher: Question 3 (12 marks) (a) AB is an interval on the number plane. A has the coordinates (0, 4) and B has the 2 coordinates (2, 10). Points C and D are such that ABCD is a parallelogram of area 42 units2 and contained in the first quadrant. AD is parallel to the x-axis. Find the possible coordinates of C and D............................................................................................................................................................................................................................................................................................................................ (b) How many square pieces of paper of side 10 cm can be cut from a roll of paper 60 m long 2 and 10 m wide?...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... – 14 – (c) Find the value of the pronumeral x, giving reasons. 3.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. – 15 – (d) Using appropriate working and geometrical reasoning explain why AB and CD are not 2 parallel......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... – 16 – (e) In the diagram, AB = 8 cm, DE = 6 cm, BC = DE and the area of triangle ABD is 40 cm2. (i) Show that the length CD is 10 cm. 1........................................................................................................................................................................................................................................................................................................................ (ii) Find the area of triangle ACD. 1........................................................................................................................................................................................................................................................................................................................ (iii) If the area of triangle CF D is 15 cm2 , find the area of triangle BCF. 1................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ End of paper – 17 – Spare writing page: Clearly indicate which part of Question 3 is being answered here......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... – 18 –

Use Quizgecko on...
Browser
Browser