Physics Past Paper PDF - Chapter 1: Capacitors 1

Summary

This document is an introductory chapter (1) of a physics textbook, specifically focusing on capacitors. It covers basic concepts and questions about capacitance, electric charge storage, and potential energy.

Full Transcript

‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫‪1‬الفصل االول ‪ :‬المتسعات‬ ‫‪1‬‬...

‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫‪1‬الفصل االول ‪ :‬المتسعات‬ ‫‪1‬‬ ‫مقدمة ‪:‬‬ ‫سؤال ‪ :‬ماذا يحصل لموصل كروي منفرد معزول لو زود بالشحنة الكهربائية ؟‬ ‫ز‬ ‫تختن الش ووحنة فيه مما يؤدي اىل ازدياد الجهد فيه لنقطة تبعد عن المركز بالبعد‬ ‫جواب ‪ :‬س ووو‬ ‫(𝐫) كلم زادت الشحنة‪.‬‬ ‫ز‬ ‫سؤال ‪ :‬لماذا ال يمكن االستمرار ف اضافة شحنات لموصل كروي منفرد معزول ؟‬ ‫ز‬ ‫سؤال ‪ :‬نادرا ما يستعمل الموصل الكروي المنفرد ف تخزين الشحنة ؟‬ ‫جواب ‪ :‬ألنه عند زيادة الش و و ووحنة الكهربائية يزداد جهد الموص و و وول ) 𝐯 ( وبذلك س و و ووو يزداد فرق‬ ‫فتداد بذلك المجال الكهربائ وقد يحصل تفريو ووغ كهربائ‪.‬‬ ‫وبي أي جسم اخر ز‬ ‫الجهد لكهربائ بينه ز‬ ‫أنووت وب ووه ‪:‬‬ ‫ً‬ ‫يمكن حساب جهد الموصل الكروي المنفرد المشحون المعزول عىل بعد (𝐫 ) عن مركز الشحنة وفقا‬ ‫للعالقة االتية ‪-:‬‬ ‫𝐐 𝟏‬ ‫𝟏‬ ‫𝐐‬ ‫=𝐯‬ ‫→‬ ‫=𝐤‬ ‫𝐤=𝐯 →‬ ‫𝐫 ‪𝟒𝛑𝛆°‬‬ ‫‪𝟒𝛑𝛆°‬‬ ‫𝐫‬ ‫حيث ان ‪:‬‬ ‫ز‬ ‫‪ : 𝐤 ‬ثابت التناسب ف قانون كولوم ويقاس ‪. N.m2 / C2‬‬ ‫𝟐𝐂‬ ‫𝟐𝟏‪. ) 𝟖. 𝟖𝟓 𝐱𝟏𝟎−‬‬ ‫‪ : εo ‬سماحية الفراغ ومقدارها (‬ ‫𝟐𝐦‪𝐍.‬‬ ‫وتختن فيه‬ ‫ز‬ ‫سو و و ووؤال ‪ :‬هل يمكن صو و و وون جهاز يس و و و وتعمل لخزن مقادير كبتة من الشو و و ووحنات الكهربائية‬ ‫الطاقة الكهربائية ؟‬ ‫معزولي يفصل بينهما‬ ‫ز‬ ‫ز‬ ‫شكلي كنا‬ ‫ز‬ ‫موصلي بأي‬ ‫جواب ‪ :‬نعم يمكن ذلك ‪ ,‬باستعمال نظام يتألف من‬ ‫عازل اما الفراغ او مادة عازلة كهربائية فيكون بإمكانه ز‬ ‫اختال ش و و و و و ووحنات موجبة عىل احد الموص و و و و و و ز‬ ‫ولي‬ ‫وشحنات سالبة عىل الموصل االخر يسىم هذا النظام المتسعة ‪.‬‬ ‫‪07739000619‬‬ ‫‪1‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫سؤال ‪ :‬ما ه المتسعة ؟ وما ه فائدتها ؟‬ ‫جواب ‪ :‬ه جهاز يستعمل لتخزين الشحنة الكهربائية والطاقة الكهربائية كهربائ يتكون من زوج‬ ‫اكت ) من الصفائح الموصلة يفصل بينهما عازل‪.‬‬‫( او ر‬ ‫سؤال ‪ :‬ما الفائدة العملية من المتسعة ؟‬ ‫ً‬ ‫جواب ‪ :‬مقدرتها عىل تخزين مقادير كبتة جدا من الطاقة وامكانية تفري و وغ هذه الطاقة بسعة كبتة‬ ‫ً‬ ‫جدا وبكميات هائلة عند الحاجة اليه ‪.‬‬ ‫سؤال ‪ :‬مم تتكون المتسعة ؟‬ ‫جواب ‪ :‬تتكون من زوج ( او ر‬ ‫اكت ) من الصفائح الموصلة يفصل بينهما عازل‪.‬‬ ‫معلومات هامة‪:‬‬ ‫‪ ‬تكون المتسعة بأشكال هندسيه واحجام مختلفة وفقا لتطبيقاتها العملية ‪.‬‬ ‫ر‬ ‫االكت استعماال‪.‬‬ ‫ز‬ ‫المتوازيتي وه‬ ‫ز‬ ‫الصفيحتي‬ ‫‪ ‬المتسعة ذات‬ ‫الكرتي المتمر ز‬ ‫كزتي ‪.‬‬ ‫ز‬ ‫االسطوانتي المتمر ز‬ ‫كزتي والمتسعة ذات‬ ‫ز‬ ‫‪ ‬المتسعة ذات‬ ‫ز‬ ‫وينطبق هذا الرمز عىل جمي المتسعات‪.‬‬ ‫أو‬ ‫‪ ‬رمز المتسعة ف الدوائر الكهربائية هو‬ ‫ز‬ ‫المتوازيتي ‪:‬‬ ‫ز‬ ‫الصفيحتي‬ ‫المتسعة ذات‬ ‫ز‬ ‫معزولتي‬ ‫ز‬ ‫متماثلتي‬ ‫ز‬ ‫يتي‬ ‫ولتي مسووت‬ ‫وفحتي موصو ز‬ ‫ز‬ ‫ز‬ ‫المتوازيتي من صو‬ ‫ز‬ ‫وفيحتي‬ ‫تتألف المتسووعة ذات الصو‬ ‫ز‬ ‫وفيحتي‬ ‫ومتوازيتي ومس وواحة كل منهما (𝐀) وتبعدان عن بعض ووهما بالبعد (‪ )d‬تكون الص و‬ ‫ز‬ ‫عن بعض ووهما‬ ‫ز‬ ‫واويتي مقدارا‬ ‫ز‬ ‫وحنتي متس و و و و‬ ‫ز‬ ‫وفحتي ش و و و و‬ ‫ز‬ ‫وحونتي وبعد ش و و و ووحن متس و و و ووعة تظهر عىل الص و و و و‬ ‫ً‬ ‫ابتداء غت مش و و و و‬ ‫ز‬ ‫ومختلفتي نوعا ‪.‬‬ ‫ز‬ ‫المتوازيتي ؟‬ ‫ز‬ ‫الصفيحتي‬ ‫سؤال ‪ :‬كيف يتم شحن المتسعة ذات‬ ‫المتوازيتي اىل القطب الموجب لبطارية فتظهر عليها ش و و ووحنة‬‫ز‬ ‫ز‬ ‫وفيحتي‬ ‫جواب ‪ :‬يتم ربط احدى الص و و و‬ ‫موجبة ( 𝐐‪ ) +‬والصفيحة االخرى تربط اىل القطب السالب للبطارية فتظهر عليها شحنه سالبة (‪-‬‬ ‫ز‬ ‫وفحتي بس و و و ب قوى‬ ‫ز‬ ‫المتقابلي للص و و‬ ‫ز‬ ‫وطحي‬ ‫ز‬ ‫وحنتي تقعان عىل الس و و‬ ‫𝐐) مس و وواوية لها بالمقدار وكال الش و و‬ ‫بي تلك الشحنات ‪.‬‬ ‫التجاذب ز‬ ‫ز‬ ‫سؤال ‪ :‬كم هو صاف الشحنة عىل صفيحت المتسعة ؟ ولماذا ؟‬ ‫ز‬ ‫ومختلفتي نوعا‪.‬‬ ‫ز‬ ‫متساويتي مقدارا‬ ‫ز‬ ‫شحنتي‬ ‫ز‬ ‫الصفيحتي تحمالن‬ ‫جواب ‪ :‬يساوي صفرا الن كال‬ ‫‪07739000619‬‬ ‫‪2‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ز‬ ‫المتوازنتي منتظما ؟‬ ‫ز‬ ‫الصفحتي‬ ‫بي لوح المتسعة ذات‬ ‫سؤال ‪ :‬مت يعتت المجال الكهربائ ز‬ ‫ز‬ ‫وفحتي صو و تا جدا بالمقارنة م ابعاد الص ووفيحة الواحدة‬ ‫جواب ‪ :‬عندما يكون البعد )𝐝( ز‬ ‫بي الص و‬ ‫وعندئذ يهمل عدم انتظام خطوط المجال الكهربائ عند الحافات‪.‬‬ ‫ز‬ ‫المتوازيتي‬ ‫ز‬ ‫وفيحتي‬ ‫سو و ووؤال ‪ :‬هل المجال الكهربائ ز‬ ‫بي صو و ووفيحت المتسو و ووعة المشو و ووحونة ذات الصو و و‬ ‫يتي هو مجال كهربائ منتظم ام غت منتظم ؟ وضح ذلك؟‬ ‫ز‬ ‫المست‬ ‫ز‬ ‫يتي‬ ‫ز‬ ‫الصفيحتي المست‬ ‫بي صفيحت المتسعة ذات‬ ‫جواب ‪ :‬يكون المجال الكهربائ منتظما ز‬ ‫الصفيحتي ص تا جدا م ابعاد الصفيحة الواحدة‬ ‫ز‬ ‫بسط اذا كان البعد )𝐝( ز‬ ‫بي‬ ‫المتوازيتي ر‬ ‫ز‬ ‫ز‬ ‫الحافتي ‪.‬‬ ‫ويووهمل عندئذ عدم انتظام المجال الكهربائ عند‬ ‫ز‬ ‫المتوازيتي ال ت مشحونة يكون فيها ‪:‬‬ ‫ز‬ ‫الصفحتي‬ ‫تذكور ‪ :‬المتسعة ذات‬ ‫‪ -1‬مقدار الشحنة عىل اي من صفيحتيها يساوي صفر‬ ‫ز‬ ‫الصفحتي يساوي صفر‬ ‫بي‬‫‪ -2‬مقدار فرق الجهد ز‬ ‫سع و ووة المتووسعة‪:‬‬ ‫سؤال ‪ :‬ما ه سعة المتسعة ؟‬ ‫ز ز‬ ‫جواب ‪ :‬ه النسووبة ز‬ ‫المختلة ف اي من صووفيحت المتسووعة اىل مقدار فرق الجهد‬ ‫بي مقدار الشووحنة‬ ‫ز‬ ‫الصفيحتي ‪.‬ورمزها (𝐂)‪.‬‬ ‫الكهربائ ز‬ ‫بي‬ ‫‪Q‬‬ ‫يمكن حساب سعة المتسعة من خالل القانون ‪:‬‬ ‫=‪C‬‬ ‫‪∆V‬‬ ‫سؤال ‪ :‬بأي وحده تقاس السعة الكهربائية؟‬ ‫𝐛𝐦𝐨𝐥𝐮𝐨𝐂‬ ‫(‪.‬‬ ‫جواب ‪ :‬تقاس بوحدة الفاراد (𝐝𝐚𝐫𝐚𝐅) أو )‬ ‫𝐭𝐥𝐨𝐯‬ ‫سؤال ‪ :‬ما الفائدة العملية من معرفة سعة المتسعة ؟‬ ‫جواب ‪ :‬تعتت سعة المتسعة مقياسا لمقدار الشحنة الالزم وضعها عىل أي من لوحيها لتوليد فرق‬ ‫ز‬ ‫معي بينهما والمتالك الس و ووعه الكبتة كميه اكت من الش و ووحنة ‪ ,‬والمتس و و وعة ذات الس و و وعة االكت‬ ‫جهد‬ ‫يع زت انها تستوعب شحنة بمقدار اكت ‪.‬‬ ‫سؤال ‪ ( :‬المتسعة ذات السعة االكت تستوعب شحنة اكت ) وضح العبارة االتية؟‬ ‫جواب ‪ :‬الن س و ووعة المتس و ووعة تعد مقياس و ووا لمقدار الش و ووحنة الالزم وض و ووعها عىل أي من ص و ووفيحتيها‬ ‫ز‬ ‫معي بينهما‪.‬‬ ‫لتوليد فرق جهد كهربائ‬ ‫‪07739000619‬‬ ‫‪3‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ز‬ ‫علل ‪ :‬يستعمل موصالن ف صن المتسعة بدال من موصل واحد ؟‬ ‫جواب ‪:‬‬ ‫ز‬ ‫‪ -1‬لزيادة قابليتها ف حزن الشحنات ‪.‬‬ ‫‪ -2‬التحكم بمقدار سعة المتسعة‪.‬‬ ‫‪ -3‬االحتفاظ بالشحنات لفتة اطول ‪.‬‬ ‫مالحظات ‪:‬‬ ‫بي صفيحت المتسعة يتناسب عكسيا م سعة المتسعة عند ثبوت‬ ‫فرق الجهد الكهربائ ز‬ ‫𝟏‬ ‫∝ 𝐂 ) بثبوت الشحنة ‪.‬‬ ‫شحنتها ‪.‬أي ان ‪( :‬‬ ‫𝐕∆‬ ‫المختنة عىل أي من صفيحتيها تتناسب طرديا م سعة المتسعة بثبوت فرق الجهد‬‫ز‬ ‫الشحنة‬ ‫بينهما ‪.‬أي ان ‪. ) 𝐐 ∝ 𝐂 ( :‬بثبوت فرق الجهد‬ ‫ز‬ ‫المختنة عىل أي من‬ ‫بي صفيحت المتسعة يتناسب طرديا م الشحنة‬ ‫فرق الجهد الكهربائ ز‬ ‫صفيحتيها عند ثبوت السعة أي ان ‪ ) ∆𝐕 ∝ 𝐐 ( :‬بثبوت السعة‪.‬‬ ‫بي ص و ووفيحت متس و ووعة ثابتة الس و ووعة ومقدار الش و ووحنة عىل أي من‬ ‫بي فرق الجهد ز‬ ‫س و ووؤال ‪ :‬ما العالقة ز‬ ‫صفيحتيها ؟‬ ‫ز‬ ‫جواب ‪ :‬العالقووة طرديووة‪.‬أي ان ازديوواد مقوودار الش و و و و و ووحنووة (𝐐) يتس و و و و و و ووب ف ازديوواد مقوودار فرق الجهوود‬ ‫الصفيحتي بثبوت سعة المتسعة‪.‬‬ ‫ز‬ ‫الكهربائ (𝐕∆) ز‬ ‫بي‬ ‫بجهد متساو ٍ ؟‬ ‫ٍ‬ ‫سؤال ‪ :‬تكون جمي نقاط الصفيحة الواحدة من صفائح المتسعة المشحونة‬ ‫جواب ‪ :‬وذلك الن صفيحت المتسعة مصنوعتان من مادة موصلة ومعزولتان‪.‬‬ ‫العزل الكهربائ ‪:‬‬ ‫ً‬ ‫ز‬ ‫ممتات المواد العازلة كهربائيا ؟‬ ‫سؤال ‪ :‬ما المقصود بالعازل الكهربائ ؟ او ما ه‬ ‫ز‬ ‫جواب ‪ :‬هو مادة غت موص وولة ف الظرو االعتيادية مثل الزجاج او البالس ووتيك او الورق المش ووم ‪,‬‬ ‫تعمل عىل تقليل مقدار المجال الكهربائ الموضوعة فيه ‪.‬‬ ‫ً‬ ‫علل ‪ :‬تعتت اللدائن ماده عازلة كهربائيا؟‬ ‫ز‬ ‫جواب ‪ :‬ألنها غت موصلة ف الظرو االعتيادية و تعمل عىل ت يت مقدار المجال الكهربائ‬ ‫الموضوعة فيه‪.‬‬ ‫‪07739000619‬‬ ‫‪4‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ز‬ ‫قسمي ‪ ,‬ما ه ؟‬ ‫س ‪ :‬تقسم العوازل اىل‬ ‫العوازل القطبية ‪.‬‬ ‫العوازل ال ت قطبية ‪.‬‬ ‫ً‬ ‫اوال ‪ :‬العوازل القطبية‬ ‫بي مركزي شحنتيهما‬‫ه عوازل تمتلك جزيئاتها عزوم كهربائية ثنائية القطبية دائمية فيكون التباعد ز‬ ‫الموجبة والسالبة ثابت ( مثل هذه الجزيئة تسىم دايبول ‪ ,‬أي جزيئة ثنائية القطب ) ‪ ,‬ومن امثلتها‬ ‫‪ :‬الماء النق‬ ‫ً‬ ‫ثانيا ‪ :‬العوازل ال ت قطبية‬ ‫ه عوازل تكتسب جزيئاتها عزوم كهربائية ثنائية القطب غت دائميه وبصورة مؤقتة عن طريق الحث‬ ‫الكهربائ ‪ ,‬اذ يكون التباعد ز‬ ‫بي مركزي شحنتها الموجبة والسالبة غت ثابت ‪ ,‬ومن امثلتها [ الزجاج ‪,‬‬ ‫ز‬ ‫البولثلي ]‬ ‫تأثت المجال الكهربائ المنتظم بالمواد العازلة ‪:‬‬ ‫‪‬‬ ‫بي صفيحت متسعة مشحونة ؟‬ ‫س ‪ :‬ماذا يحصل عند ادخال عازىل قطت ز‬ ‫بي صفيحت المتسعة ‪ ,‬فالمجال الكهربائ يجعل معظم‬ ‫ج) عند ادخال هذا الن ع من العازل ز‬ ‫الدايبوالت تصطف بموازه المجال الكهربائ ‪ ,‬ونتيجة لذلك يتولد مجال كهربائ داخل العازل باتجاه‬ ‫بي‬ ‫ً‬ ‫مقدارا ‪ ,‬فيقل مقدار المجال الكهربائ المحصل ز‬ ‫معاكس التجاه المجال الخارح واقل منه‬ ‫صفيحت المتسعة‪.‬‬ ‫بي صحفيت المتسعة ؟‬ ‫س ‪ :‬ماذا يحصل عند ادخال عازل غت قطت ز‬ ‫بي صفيحت متسعة‬ ‫س ‪ :‬ما تأثت المجال الكهربائ المنتظم بالمواد العازلة غت القطبية الموضوعة ز‬ ‫مشحونة ؟‬ ‫بي صفيحت المتسعة ‪ ,‬يعمل المجال الكهربائ عىل أزاحه مركزي‬ ‫ج) عند ادخال هذا الن ع من العازل ز‬ ‫ز‬ ‫ز‬ ‫الشحنتي الموجبة والسالبة ف الجزيئة الواحدة بإزاحة ضئيلة ‪ ,‬أي تكتسب عزوم كهربائية ثنائية‬ ‫القطب بصورة مؤقته عن طريق الحث الكهربائ ‪ ,‬فيتحول الجزيء اىل دايبول كهربائ يصطف باتجاه‬ ‫معاكس ألتجاه المجال الكهربائ المؤثر‪.‬‬ ‫ز‬ ‫وبالنتيجة تظهر شحنة سطحية موجبة عىل وجه العازل المقابل للصفيحة السالبة للمتسعة ف ز‬ ‫حي‬ ‫تظهر شحنة سطحية سالبة عىل وجه العازل المقابل للصفيحة الموجبة ( يبق العازل متعادل كهربائيا‬ ‫)‪.‬‬ ‫‪07739000619‬‬ ‫‪5‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ز‬ ‫س ‪ :‬ف اي ن ع من أنواع العوازل الكهربائية تظهر شحنات سطحية عىل وجهيها ذاكرا العالقة الرياضية‬ ‫للمجال الكهربائ المتولد بينها ؟‬ ‫ج) العوازل غت القطبية ه الت تظهر شحنات سطحية عىل وجهيها عند وضعها داخل مجال كهربائ‪,‬‬ ‫‪Ek = E - Ed‬‬ ‫‪ ,‬فيكون المجال الكهربائ المحصل وفق العالقة ‪:‬‬ ‫بي صفيحتيها ؟‬ ‫بي صفيحت المتسعة عند ادخال مادة عازلة ز‬‫س ‪ :‬ماذا يحصل للمجال الكهربائ ز‬ ‫بي صفيحتيها ؟‬ ‫بي صفيحت المتسعة عند إدخال مادة عازلة ز‬‫س‪ :‬يقل مقدار المجال الكهربائ ز‬ ‫الجواب ‪ :‬يقل مقدار المجال الكهربائ بس ب تولد مجال كهربائ داخل العازل يعاكس باالتجاه المجال‬ ‫بي صفيحت المتسعة فيكون المجال المحصل [ ‪ ] Ek = E – Ed‬فيقل بنسبه ثابت العزل‬ ‫الكهربائ ز‬ ‫للمادة‬ ‫بي‬ ‫ز‬ ‫الحت ز‬ ‫ز‬ ‫المتوازيتي مشحونة ومفصولة عن البطارية‪ ,‬لو مأل‬ ‫ز‬ ‫الصفيحتي‬ ‫س‪ :‬متسعة ذات‬ ‫بي صفيحتيها سينخفض ‪,‬‬ ‫صفيحتيها بالماء النق بدل من الهواء ‪ ,‬فإن مقدار فرق الجهد الكهربائ ز‬ ‫ما تعليل ذلك؟‬ ‫ج) بما ان المتسعة مفصولة عن المصدر ‪ ,‬فان ادخال العازل الكهربائ يس ب نقصان مقدار المجال‬ ‫ز‬ ‫الصفيحتي بنسبة ثابت العزل ‪ K‬فيقل فرق الجهد بنسبة ثابت العزل ‪.K‬‬ ‫الكهربائ ز‬ ‫بي‬ ‫بي العوازل القطبية والعوازل ال ت قطبية ؟‬ ‫س ‪ :‬ما الفرق ز‬ ‫العوازل ال ت قطبية‬ ‫العوازل القطبية‬ ‫ت‬ ‫ً‬ ‫ً‬ ‫‪ 1‬تمتل و ووك جزيئ و وات و ووه عزوم و ووا كهرب و ووائي و ووة ثن و ووائيو ووة ال تمتلك جزيئاته عزوما كهربائية ثنائية القطب‬ ‫دائميه‬ ‫القطب دائميه‬ ‫بي مركزي ش و و و و و ووحنتيو و ووه الموجبو و ووة التباعد ز‬ ‫بي مركزي شو و ووحنتيه الموجبة والسو و ووالبة‬ ‫‪ 2‬التبو و وواعو و وود ز‬ ‫ً‬ ‫ً‬ ‫غت ثابتا‬ ‫والسالبة ثابتا‬ ‫‪ 3‬تص و و و و و ووطف دايبوالت العووازل بموازاة خطوط يص و و و و و ووبح لهوا عزم ثنوائ قطت وه داخول المجوال‬ ‫المج ووال المؤثر وتح ووافظ عىل اتج وواهه ووا بع وود ويزول هذا العزم بعد زوال المجال الخارح‬ ‫زوال المجال الخارح‬ ‫‪07739000619‬‬ ‫‪6‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫خالصــة‬ ‫ز‬ ‫صفحتي متسعة تحتوي عىل عازل وكاالئ ‪:‬‬ ‫زف كال نوع العازل يكون المجال الكهربائ المحصل ز‬ ‫بي‬ ‫𝐝𝐄 ‪𝐄 = 𝐄 −‬‬ ‫حيث ان ‪:‬‬ ‫𝐤𝐄 ‪ :‬المجال الكهربائ المحصل بوجود العازل‬ ‫ز‬ ‫الصفحتي بوجود الفراغ‬ ‫𝐄‪ :‬المجال الكهربائ المؤثر ز‬ ‫بي‬ ‫𝐝𝐄‪ :‬المجال الكهربائ داخل العازل ‪.‬‬ ‫𝟏‬ ‫لذلك سو يقل مقدار المجال الكهربائ ز‬ ‫) أي أن ‪:‬‬ ‫بي صفيحت المتسعة بوجود العازل بمقدار (‬ ‫𝐊‬ ‫و‬ ‫‪E‬‬ ‫= 𝒌𝑬‬ ‫‪K‬‬ ‫وبما أن المجال الكهربائ يتناس و ووب طرديا م فرق الجهد ز‬ ‫بي ص و ووفيحت المتس و ووعة لذا فأن فرق الجهد‬ ‫ً‬ ‫ز‬ ‫ً‬ ‫أيضا بثبوت البعد ز‬ ‫𝟏‬ ‫الصفيحتي وفقا للعالقة االتية ‪ :‬و‬ ‫بي‬ ‫سو يقل بمقدار ( )‬ ‫𝐊‬ ‫𝐝 ‪∆𝐕 = 𝐄.‬‬ ‫أي أن فرق الجهد ز‬ ‫بي صفيحت المتسعة بوجود العازل يصبح كاالئ ‪ :‬و‬ ‫𝐯∆‬ ‫= 𝐤𝐯∆‬ ‫𝐤‬ ‫حيث ان (𝐤) يمثل ثابت العزل الكهربائ للمادة العازلة ‪.‬‬ ‫ثابت العزل (𝐤) ‪ :‬النسبة ز‬ ‫بي سعة المتسعة بوجود العازل اىل سعة المتسعة بوجود الهواء او الفراغ‬ ‫ز‬ ‫ممتة للوسط العازل ‪.‬ويكون خاىل من الوحدات ‪ ,‬ويحسب ‪:‬‬ ‫وهو صفة‬ ‫𝐤𝐂‬ ‫=𝐤‬ ‫𝐜‬ ‫‪07739000619‬‬ ‫‪7‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫تن يه ‪:‬‬ ‫‪ ‬عند ادخال العازل ز‬ ‫بي ص و و و و ووفحت المتس و و و و ووعة المتص و و و و وولة بالبطارية فان فرق جهدها يبق ثابت بينما‬ ‫تزداد شحنتها نتيجة لزيادة سعتها لذلك يكون‪:‬‬ ‫𝐕 ∆ = ‪∆ 𝐕k‬‬ ‫‪ ‬عند ادخل العازل ز‬ ‫بي صو ووفحت المتسو ووعة المشو ووحونة والمفصو ووولة عن البطارية فان شو ووحنتها تبق‬ ‫ثابتة بينما ‪.‬‬ ‫بي صفيحتيها وتزداد سعتها لذلك يكون ‪:‬‬ ‫‪ ‬يقل مقدار فرق الجهد ز‬ ‫𝐐 = 𝐊𝐐‬ ‫بي صو و ووفيحت المتسو و ووعة يتناسو و ووب طرديا م فرق الجهد الكهربائ (𝐕∆) بثبوت‬‫‪ ‬المجال الكهربائ ز‬ ‫ز‬ ‫عكسيا م البعد بثبوت فرق الجهد الكهربائ ز‬ ‫ً‬ ‫ز‬ ‫البعد ز‬ ‫الصفيحتي‪.‬‬ ‫بي‬ ‫الصفيحتي وتتناسب‬ ‫بي‬ ‫ز‬ ‫ثابتي أو مت تين‬ ‫بي صووفيحت المتسووعة يثبت إذا كان كل من فرق الجهد والبعد‬ ‫‪ ‬المجال الكهربائ ز‬ ‫زف آن واحد‪.‬‬ ‫س ‪ :‬ما تفست زيادة سعة المتسعة بإدخال مادة عازلة ز‬ ‫بي صفيحتيها بدال عن الهواء ؟‬ ‫ج) تفس و و و و ووت ذلك هو تولد مجال كهربائ داخل المادة العازلة معاكس باتجاهه للمجال االص و و و و ووىل ز‬ ‫بي‬ ‫ز‬ ‫وفيحتي الن‬ ‫وفحتي ويقل فرق الجهد ز‬ ‫بي الصو‬ ‫ز‬ ‫صووفحت المتسووعة فيضووعف المجال المحصوول ز‬ ‫بي الصو‬ ‫ز‬ ‫الصفيحتي‪.‬‬ ‫فتداد سعة المتسعة ألنها تتناسب عكسيا م فرق الجهد ز‬ ‫بي‬ ‫البعد ثابت ز‬ ‫الضوري الكتابة عىل كل متسعة قيمة اقىص فرق جهد كهربائ ؟ ولماذا ؟‬ ‫س ‪ :‬هل ترى من ز‬ ‫ز‬ ‫وحيفتي‬ ‫ج) نعم زضوري جدا ‪.‬الن عند االس و و ووتمرار زف زيادة مقدار فرق الجهد الكهربائ ز‬ ‫بي الص و و و‬ ‫س و و وويؤدي اىل زيادة المجال الكهربائ اىل حد كبت فيحص و و وول انهيار كبت للمادة العازلة نتيجة لعبور‬ ‫يعت تلف المتسعة‪.‬‬ ‫رشاره كهربائية وهذا ز‬ ‫س ‪ :‬ما المقصود بقوة العزل الكهربائ ؟‬ ‫ج) هو اقىص مقدار للمجال الكهربائ يمكن ان تتحمله المادة العازلة قبل حصول االنهيار الكهربائ‬ ‫بي صفيحتيها فتتفرغ‬ ‫للعازل وتتلف المتسعة بحصول االنهيار الكهربائ نتيجة لعبور رشاره كهربائية ز‬ ‫المتسعة من شحنتها ‪.‬‬ ‫ز‬ ‫وتعد قوة العزل مقياس لقابلية المتسعة ف الصمود امام فرق الجهد الكهربائ المسلط عليها ‪.‬‬ ‫‪07739000619‬‬ ‫‪8‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫بي صفيحت متسعة مشحونة ومفصولة‬ ‫أشح نشاط ز‬ ‫يبي تأثت إدخال العازل الكهربائ ز‬ ‫نشاط ‪ /1‬ر‬ ‫ز‬ ‫ز‬ ‫عن البطارية ف مقدار فرق الجهد (تجربة فراداي) وتأثته ف سعة المتسعة ؟‬ ‫أدوات النشاط ‪:‬‬ ‫ز‬ ‫المتوازيتي ( العازل بينهما هواء ) غت مشحونة ‪,‬‬ ‫ز‬ ‫الصفيحتي‬ ‫متسعة ذات‬ ‫بطارية فولطيتها مناسبة ‪ ,‬جهاز فولطميت ‪ ,‬اسالك توصيل ‪ ,‬ل ح من مادة‬ ‫عازلة كهربائيا‪.‬‬ ‫خطوات النشاط ‪:‬‬ ‫ز‬ ‫الصفيحتي ‪ ,‬ثم نربط القطب االخر‬ ‫‪.1‬نربط أحد قطت البطارية بإحدى‬ ‫ز‬ ‫بالصفيحة الثانية‪ ,‬ستنشحن احدى الصفيحتي بالشحنة الموجبة ( ‪) + Q‬‬ ‫واألخرى بالشحنة السالبة (‪. )- Q‬‬ ‫ز‬ ‫يحتي ‪.‬‬ ‫‪.2‬نفصل البطارية عن الصف‬ ‫‪.3‬نربط الطر الموجب للفولطميت بالصفيحة الموجبة ونربط طرفه السالب‬ ‫مؤش الفولطميت عند قراءة معينة ‪,‬‬ ‫ر‬ ‫بالصفيحة السالبة ‪ ,‬نالحظ انحرا‬ ‫بي صفيحت المتسعة المشحونة‬ ‫يعت تولد فرق جهد كهربائ (𝐕∆) ز‬ ‫ذلك ز‬ ‫ز‬ ‫ف الحالة الت يكون فيها الهواء هو العازل بينهما‬ ‫ز‬ ‫‪.4‬ندخل الل ح العازل ز‬ ‫بي صفيحت المتسعة المشحونة نالحظ نقصان ف‬ ‫قراءة الفولطميت (𝐕∆) ‪.‬‬ ‫االستنتاج ‪:‬‬ ‫بي صفيحت المتسعة المشحونة‬ ‫‪ ‬ادخال مادة عازلة كهربائيا ثابت عزلها ( ‪ ) k‬ز‬ ‫يتس ب زف انقاص فرق الجهد الكهربائ بينهما بنسبة ثابت العزل ( ‪ ) k‬فتكون ( = 𝐤𝐕∆) ‪.‬‬ ‫𝐕∆‬ ‫𝐤‬ ‫𝐐‬ ‫ز‬ ‫‪ ‬ونتيجة لنقصان فرق الجهد ز‬ ‫الصفيحتي تزداد سعة المتسعة طبقا للمعادلة ( = 𝐂) بثبوت‬ ‫بي‬ ‫𝐕∆‬ ‫مقدار الشحنة ‪. Q‬‬ ‫‪ ‬أي إن سعة المتسعة بوجود العازل الكهربائ تزداد بنسبة ( ‪ ) k‬فتكون 𝐂 𝐤 = 𝐤𝐂 ‪.‬‬ ‫‪07739000619‬‬ ‫‪9‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫العوامل التي تعتمد عليها سعة المتسعة ذات الصفيحتين‬ ‫المتقابلتين‬ ‫ز‬ ‫يحتي؟‬ ‫س ‪ :‬ما العوامل الت تعتمد عليها سعة المتسعة ذات الصف‬ ‫ز‬ ‫وفيحتي (𝐀) ‪ :‬أن س ووعة المتس ووعة (𝐂) تتناس ووب طرديا‬ ‫‪.1‬المس وواحة الس ووطحية المتقابلة لصل من الص و‬ ‫ز‬ ‫الصفيحتي أي أن ‪C α A :‬‬ ‫م المساحة المتقابلة لصل من‬ ‫ز‬ ‫وفيحتي أي‬ ‫وفيحتي )𝐝( ‪ :‬أن سووعة المتسووعة (𝐂) تتناسووب عكسوويا م البعد ز‬ ‫بي الصو‬ ‫ز‬ ‫‪.2‬البعد ز‬ ‫بي الصو‬ ‫𝟏‬ ‫‪Cα‬‬ ‫أن ‪:‬‬ ‫𝐝‬ ‫ز‬ ‫وفيحتي‬ ‫وفيحتي ‪ :‬أن سووعة المتسووعة تزداد بإدخال مادة عازله ز‬ ‫بي الصو‬ ‫ز‬ ‫‪.3‬ن ع الوسووط العازل ز‬ ‫بي الصو‬ ‫بدال من الهواء أو الفراغ أي أن ‪𝐂𝐤 = 𝐊𝐂 :‬‬ ‫ز‬ ‫المتقابلتي نطبق ‪:‬‬ ‫ز‬ ‫الصفيحتي‬ ‫لحساب سعة المتسعة ذات‬ ‫عندما يكون الوسط العازل هواء أو فراغ تحسب ‪-:‬‬ ‫‪𝐀𝛆°‬‬ ‫=𝐂‬ ‫𝐝‬ ‫ز‬ ‫الصفيحتي مادة عازلة كهربائيا غت الهواء أو الفراغ تحسب ‪-:‬‬ ‫عندما يكون الوسط العازل ز‬ ‫بي‬ ‫‪𝐀𝛆°‬‬ ‫𝐊 = 𝐊𝐂‬ ‫𝐝‬ ‫حيث ان ( 𝐊𝐂 ) سعة المتسعة بوجود مادة عازلة ‪.‬‬ ‫حيث أن (𝐤) ثابت العزل ‪.‬‬ ‫مووالح وظو ووات ‪:‬‬ ‫ز‬ ‫الصفيحتي‪.‬‬ ‫بي صفيحت المتسعة تماما فان سمكه يساوي البعد ز‬ ‫بي‬ ‫‪.1‬عندما يمأل العازل الح زت ز‬ ‫‪.2‬ش و و و و و ووحنة المتس و و و و و ووعة ه ش و و و و و ووحنة أي من ص و و و و و ووفيحتيها الموجبة او الس و و و و و ووالبة وال يقص و و و و و وود بيها‬ ‫شحنتهاالصلية‪.‬‬ ‫‪.3‬ثابت العزل الكهربائ للفراغ او الهواء يس و و وواوي واحد بينما يكون للمواد العازلة االخرى اكت من‬ ‫واحد‪.‬‬ ‫‪.4‬لتح يل المساحة والبعد نطبق ‪-:‬‬ ‫‪07739000619‬‬ ‫‪10‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫بي صو و و ووفيحت متسو و و ووعة مشو و و ووحونة هو (𝟎𝟎𝟎𝟒𝐦‪ ) 𝐕/‬والبعد ز‬ ‫بي‬ ‫سو و و ووؤال ‪ :‬اذا كان المجال الكهربائ ز‬ ‫وفيحتي (𝐦𝐜 𝟐 ‪ )𝟎.‬احسووب سووعة المتسووعة اذا علمت ان مقدار الشووحنة عىل اي من صووفيحتيها‬ ‫ز‬ ‫الصو‬ ‫(𝐂𝛍𝟎𝟎𝟒) ؟‬ ‫الحل‪:‬‬ ‫𝐕 𝟖 = ‪∆𝐕 = 𝐄 × 𝐝 = 𝟒𝟎𝟎𝟎 × 𝟎. 𝟐 × 𝟏𝟎-2‬‬ ‫𝐐‬ ‫𝟔‪𝟒𝟎𝟎 × 𝟏𝟎−‬‬ ‫= 𝐂 ∴‬ ‫=‬ ‫𝟔‪= 𝟓𝟎 × 𝟏𝟎−‬‬ ‫𝐕∆‬ ‫𝟖‬ ‫‪-------------------------------------------------------------------------------‬‬ ‫المتوازيتي سووعتها ( ‪ )10 pF‬شووحنت بواسووطة بطارية فرق الجهد‬‫ز‬ ‫ز‬ ‫وفيحتي‬ ‫مثال ‪ : 1‬متسووعة ذات الصو‬ ‫بي قطبيها (‪ ) 12 V‬فاذا فص و و و و و وولت المتس و و و و و ووعة عن البطارية ثم ادخل ز‬ ‫بي ص و و و و و ووفيحتيها ل ح من مادة‬ ‫ز‬ ‫الحت بينهما ‪.‬ما مقدار ‪:‬‬ ‫ز‬ ‫عازلة كهربائيا ثابت عزلها (‪ )6‬يمأل‬ ‫ز ز‬ ‫المختنة ف اي من صفيحت‬ ‫الشحنة‬ ‫سعة المتسعة بوجود العازل الكهربائ ‪.‬‬ ‫ي صفيحت المتسعة بعد ادخال العازل ‪.‬‬ ‫فرق الجهد ب ز‬ ‫الحل‪:‬‬ ‫𝐂𝐩 𝟎𝟐𝟏 = 𝟐𝟏 × 𝟎𝟏 = 𝐕∆ 𝐂 = 𝐐‬ ‫𝐅𝐩 𝟎𝟔 = 𝟎𝟏 × 𝟔 = 𝐂 𝐊 = 𝐤𝐂‬ ‫𝐐‬ ‫𝟎𝟐𝟏‬ ‫= ‪∆𝐕k‬‬ ‫=‬ ‫𝐕𝟐 =‬ ‫𝐤𝐂‬ ‫𝟎𝟔‬ ‫‪-------------------------------------------------------------------------------‬‬ ‫بي ص ووفيحتيها (𝐦𝐜 𝟓 ‪ )𝟎.‬وكل من ص ووفيحتيها‬ ‫المتوازيتي البعد ز‬ ‫ز‬ ‫ز‬ ‫وفحتي‬ ‫مثال ‪ : 2‬متس ووعة ذات الص و‬ ‫مربعة الش و و و ووكل طول ض و و و وول كل منها (𝐦𝐜 𝟎𝟏) ويفص و و و وول بينهما الفراغ اذا علمت ان س و و و ووماحية الفراغ‬ ‫مقدارها 𝟐𝟏‪ , εo = C2 / N.m2𝟖. 𝟖𝟓 𝐱𝟏𝟎−‬ما مقدار ‪:‬‬ ‫ز ز‬ ‫المختلة ف اي من صفيحتها بعد تسليط فرق جهد (𝐕 𝟎𝟏) بينهما ؟‬ ‫‪ )1‬سعة المتسعة ‪ )2‬الشحنة‬ ‫الحل‪:‬‬ ‫‪𝐀= 10x 10 =100cm2 = 100x10-4 m2‬‬ ‫‪𝐝 = 0.5cm = 0.5x10-2 m‬‬ ‫‪𝐀𝛆°‬‬ ‫𝟒‪𝟖.𝟖𝟓 𝐱𝟏𝟎−𝟏𝟐 ×𝟏𝟎𝟎𝐱𝟏𝟎−‬‬ ‫)‪1‬‬ ‫=𝐜‬ ‫=‬ ‫‪= 1.77 × 10-11 F‬‬ ‫𝐝‬ ‫𝟐‪𝟎.𝟓𝐱𝟏𝟎−‬‬ ‫‪2) Q = C ∆𝐕 = 1.77 × 10-11 × 10 = 1.77 × 10-10 C‬‬ ‫‪= 1.77 × 10-11 × 1012 = 1.77 × 10 = 17.7 pC‬‬ ‫‪07739000619‬‬ ‫‪11‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫بي صفيحتيها (𝐦𝐦 𝟎𝟏) ومساحة كل منها ( 𝟐𝐦 𝟐)‬ ‫متوازيتي البعد ز‬ ‫ز‬ ‫ز‬ ‫صفحتي‬ ‫سؤال ‪ :‬متسعة ذات‬ ‫ز‬ ‫فاذا كانت الصفيحتان ف الفراغ وشحنتا حت اصبح فرق الجهد بينهما (𝐕 𝟎𝟎𝟎𝟎𝟐) ‪ ,‬ما مقدار ‪)1 :‬‬ ‫سعة المتسعة ‪ )2 ,‬شحنة اي من صفيحتيها‪.‬‬ ‫‪-------------------------------------------------------------------------------‬‬ ‫ز‬ ‫المتوازيتي مس و وواحة الص و ووفيحة الواحدة ( 𝟐𝐦𝐜𝟎𝟎𝟏) والمس و ووافة‬ ‫ز‬ ‫وفيحتي‬ ‫س و ووؤال ‪ :‬متس و ووعة ذات الص و و‬ ‫ُ‬ ‫بينهما (𝐦𝐦𝟏) ربطت صفيحتيها إىل فرق جهد كهربائ مقداره (𝐯𝟎𝟐𝟏) ‪.‬احسب‪:‬‬ ‫‪ - 2‬شحنة المتسعة ‪.‬‬ ‫‪1‬و سعة المتسعة ‪.‬‬ ‫‪------------------------------------ -------------------------------------------‬‬ ‫ز‬ ‫للصفيحتي عىل سعة المتسعة ؟‬ ‫س ‪ :‬وضح بتجربة تأثت ت ت المساحة السطحية (𝐀) المتقابلة‬ ‫ز‬ ‫معي ومفصو و و و ووولة عن البطارية اىل فولتميت‬ ‫ج) نربط متسو و و و ووعة مشو و و و ووحونة بشو و و و ووحنة (𝐐) ذات مقدار‬ ‫بي ص و ووفيحتيها فعندما تكون المس و وواحة الس و ووطحية المتقابلة لص و ووفيحت‬ ‫لقياس فرق الجهد الكهربائ ز‬ ‫ز‬ ‫الصفيحتي (‬ ‫المتسعة تساوي (𝐀) تكون قراءة الفولتميت عند تدريجه معينة فيكون فرق الجهد ز‬ ‫بي‬ ‫𝟏‬ ‫ز‬ ‫وفيحتي اىل نص ووف ما كانت عليه (𝐀 ) وذلك‬ ‫𝐕∆ ) وعند تقليل المس وواحة الس ووطحية المتقابلة للص و‬ ‫𝟐‬ ‫وفيحتي جانبا م بقاء مقدار الشووحنة ثابتا سووو نالحظ ازدياد قراءة الفولتميت اىل‬ ‫ز‬ ‫بإزاحة احدى الصو‬ ‫بي ص و ووفيحتيها بثبوت مقدار‬ ‫ض و ووعف ما كانت غليه (𝐕∆‪ ) 2‬تقل س و ووعة المتس و ووعة بازدياد فرق الجهد ز‬ ‫ز‬ ‫وفيحتي‬ ‫الش ووحنة (𝐐) نس ووتنت من ذلك ‪ [.‬ان س ووعة المتس ووعة تقل بنقص ووان المس وواحة المتقابلة للص و‬ ‫والعكس صحيح اي ان ( 𝐀 ∝ 𝐂 ) ]‪.‬‬ ‫ز‬ ‫المتوازيتي عىل سعة المتسعة؟‬ ‫بي الصفيحت ز‬ ‫ي‬ ‫س ‪ :‬وضح بتجربة تأثت ت ت البعد ز‬ ‫معي ومفص و ووولة عن المص و وودر الفولطية ( بطارية )‬ ‫ز‬ ‫ج) نربط متس و ووعة مش و ووحونة بش و ووحنة ذات مقدار‬ ‫طرف فولتميت فإذا كان البعد االول ز‬ ‫ز‬ ‫ومربوطة ز‬ ‫بي المتس و و ووعة (𝐝) تكون قراءة الفولتميت تش و و ووت اىل‬ ‫بي‬ ‫وحونتي بش و و ووحنة معينة (𝐐) وعند تقريب‬ ‫ز‬ ‫ز‬ ‫وفيحتي المش و و و‬ ‫معي اىل فرق الجهد (𝐕∆) ز‬ ‫بي الص و و و‬ ‫ز‬ ‫مقدار‬ ‫𝟏‬ ‫البعد اىل نصف ما كانت عليه (𝐝 ) م بقاء مقدار الشحنة ثابتا نالحظ ان قراءة الفولطميت تقل اىل‬ ‫𝟐‬ ‫يعت ازدياد‬ ‫بي ص و و ووفحت المتس و و ووعة ز‬ ‫يعت ان نقص و و ووان فرق الجهد ز‬ ‫نصو و ووف ما كانت عليه (𝐕∆ 𝟏 ) هذا ز‬ ‫𝟐‬ ‫مقدار س و و و ووعة المتس و و و ووعة بثبوت مقدار الش و و و ووحنة (𝐐) ‪.‬نس و و و ووتنت من ذلك [ ان س و و و ووعة المتس و و و ووعة ذات‬ ‫𝟏‬ ‫ز‬ ‫المتوازيتي تزداد بنقصووان البعد (𝐝) ز‬ ‫ز‬ ‫ز‬ ‫وفيحتي والعكس صووحيح اي ان ( ∝ 𝐂‬ ‫بي الصو‬ ‫وفيحتي‬ ‫الصو‬ ‫𝐝‬ ‫)]‬ ‫‪07739000619‬‬ ‫‪12‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫س ‪ :‬متسعة مشحونة ثم فصلت عن المصدر الشاحن ما الذي يحصل لقراءة الفولتميت المربوط اىل‬ ‫بي صفيحتيها نصف ما كان عليها ؟‬ ‫طرفيها لو اصبح البعد ز‬ ‫𝟏‬ ‫ج) تقل قراءة الفولتميت اىل النصو و ووف بس و و و ب مضو و وواعفة سو و ووعة المتسو و ووعة ( ∝ 𝐂 ) وان فرق الجهد‬ ‫𝐝‬ ‫يتناسب عكسيا م السعة بثبوت الشحنة‪.‬‬ ‫س ‪ :‬صو و ووفيحتان متوازيتان معزولتان ‪ ,‬البعد بينهما ثابت والهواء عازل بينهما ‪ ,‬شو و ووحنت الصو و ووفيحتان‬ ‫بواس و و و و ووطة بطارية ثم فص و و و و وولت عنها ‪.‬اذا طلب منك ان تزيد المقدار األعظم الممكن لفرق الجهد ز‬ ‫بي‬ ‫الصفيحتي ‪ ,‬كيف يمكنك تحقيق ذلك عمليا ؟ وضح ذلك‪.‬‬ ‫ز‬ ‫للصفيحتي فتقل سعة المتسعة وبتاىل يزداد فرق‬ ‫ز‬ ‫ج) يتم ذلك بتقليل المساحة السطحية المتقابلة‬ ‫ز‬ ‫وفيحتي بثبوت الش و و و ووحنة ( تبق الش و و و ووحنة ثابته اذا فص و و و وولت المتس و و و ووعة عن‬ ‫الجهد الكهربائ ز‬ ‫بي الص و و و و‬ ‫المصدر)‪.‬‬ ‫س ‪ :‬ما ه االساليب الت تتبعها المصان ل رض زيادة المتسعة ؟‬ ‫ج) االساليب ه التحكم زف العوامل المؤثرة زف سعة المتسعة‪.‬‬ ‫ز‬ ‫اللوحي ؟‬ ‫بي لوح المتسعة ص تا جدا مقارنه بأبعاد‬‫س ‪ :‬لماذا تكون المسافة الفاصلة ز‬ ‫لك تكون سعة المتسعة كبته ولك يكون المجال الكهربائ منتظم‪.‬‬ ‫جدول يوض و و ووح ماذا يحص و و وول ل و و و و و و و و و و ( الس و و ووعة ‪ ,‬والش و و ووحنة ‪ ,‬وفرق الجهد ‪ ,‬والمجال الكهربائ ‪ ,‬والطاقة‬ ‫ز‬ ‫ز‬ ‫المختنة ‪ ,‬وانحدار الجهد ) عندما تكون المتسو و و ووعة متصو و و وولة بالمصو و و وودر او مفصو و و ووولة عن المصو و و وودر ف‬ ‫ا‬ ‫اولً‪ً:‬زيادةًاملساحةًاملتقابلةًللصفيحتني‬ ‫ً‬ ‫العوامل االتية ‪:‬‬ ‫المتسعة منفصلة عن المصدر‬ ‫المتسعة متصلة بمصدر‬ ‫تزداد الن 𝐀 𝛂 𝐂‬ ‫تزداد الن 𝐀 𝛂 𝐂‬ ‫السعة‬ ‫تبق ثابتة الن المتس و و ووعة منفص و و وولة عن‬ ‫تزداد الن الس و و و و و وع ووة تزداد بثبوت فرق‬ ‫الشحنة‬ ‫المصدر‬ ‫الجهد‬ ‫يقل الن السعة تزداد بثبوت الشحنة‬ ‫يبق ثابت ألنها متصلة بالمصدر‬ ‫فرق الجهد‬ ‫يقل بس و ب نقص ووان فرق الجهد بثبوت‬ ‫المجال الكهربائ ث وواب ووت بثبوت فرق الجه وود والبع وود ز‬ ‫بي‬ ‫ز‬ ‫الصفيحتي‬ ‫البعد ز‬ ‫بي‬ ‫ز‬ ‫الصفيحتي‬ ‫تقل بس و ب نقص ووان فرق الجهد بثبوت‬ ‫ز‬ ‫المختنة تزداد بس و و و و و و ب زيادة الشو و و و و ووحنة بثبوت‬ ‫الطاقة‬ ‫الشحنة‬ ‫فرق الجهد‬ ‫يقل بس و ب نقص ووان فرق الجهد بثبوت‬ ‫ث وواب ووت بثبوت فرق الجه وود والبع وود ز‬ ‫بي‬ ‫انحدار الجهد‬ ‫ز‬ ‫الصفيحتي‬ ‫بي‬‫البعد ز‬ ‫الصفيحتيز‬ ‫‪07739000619‬‬ ‫‪13‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ثانياً‪ً:‬نقصانًالبعدًبنيًصفيحتيًاملتسعة‬ ‫المتسعة منفصلة عن المصدر‬ ‫المتسعة متصلة بمصدر‬ ‫𝟏‬ ‫𝟏‬ ‫السعة‬ ‫تزداد الن 𝛂 𝐂‬ ‫تزداد الن 𝛂 𝐂‬ ‫𝐝‬ ‫𝐝‬ ‫تبق ثوابتووة الن المتس و و و و و وعووة منفص و و و و و ولووة عن‬ ‫تزداد الن السعة تزداد بثبوت فرق‬ ‫الشحنة‬ ‫المصدر‬ ‫الجهد‬ ‫يقل الن السعة تزداد بثبوت الشحنة‬ ‫فرق الجهد يبق ثابت ألنها متصلة بالمصدر‬ ‫يبق ث وواب ووت الن فرق الجه وود يق وول والبع وود‬ ‫ز‬ ‫الصفيحتي‬ ‫يزداد لنقصان البعد ز‬ ‫بي‬ ‫المجال‬ ‫𝐕∆‬ ‫بثبوت فرق الجهد‬ ‫الكهربائ‬ ‫=𝐄‬ ‫يقل الن‬ ‫𝐝‬ ‫تزداد بس ب زيادة الشحنة بثبوت فرق تقل بسو و و و و و ب نقص و و و و ووان فرق الجهد بثبوت‬ ‫الطاقة‬ ‫الشحنة‬ ‫الجهد‬ ‫ز‬ ‫المختنة‬ ‫يبق ث وواب ووت الن فرق الجه وود يق وول والبع وود‬ ‫ز‬ ‫الصفيحتي‬ ‫بي‬‫انحدار الجهد يزداد لنقصان البعد ز‬ ‫𝐕∆‬ ‫بثبوت فرق الجهد‬ ‫=𝐄‬ ‫يقل الن‬ ‫𝐝‬ ‫ثالثاً‪ً:‬ادخلًمادةًعازلةًبنيًصفيحتيًاملتسعة‬ ‫المتسعة منفصلة عن المصدر‬ ‫المتسعة متصلة بمصدر‬ ‫ت‬ ‫تزداد الن 𝐂𝐊 = 𝐊𝐂‬ ‫تزداد الن 𝐂𝐊 = 𝐊𝐂‬ ‫السعة‬ ‫تبق ثابتة الن المتس و و ووعة منفص و و وولة عن‬ ‫تزداد الن الس و و و و و وع ووة تزداد بثبوت فرق‬ ‫الشحنة‬ ‫المصدر‬ ‫الجهد‬ ‫يقل الن السعة تزداد بثبوت الشحنة‬ ‫يبق ثابت ألنها متصلة بالمصدر‬ ‫فرق الجهد‬ ‫يقل بس و ب نقص ووان فرق الجهد بثبوت‬ ‫المجال الكهربائ ث وواب ووت بثبوت فرق الجه وود والبع وود ز‬ ‫بي‬ ‫ز‬ ‫الصفيحتي‬ ‫البعد ز‬ ‫بي‬ ‫ز‬ ‫الصفيحتي‬ ‫تقل بس و ب نقص ووان فرق الجهد بثبوت‬ ‫ز‬ ‫المختنة تزداد بس و و و و و و ب زيادة الشو و و و و ووحنة بثبوت‬ ‫الطاقة‬ ‫الشحنة‬ ‫فرق الجهد‬ ‫يقل بس و ب نقص ووان فرق الجهد بثبوت‬ ‫ث وواب ووت بثبوت فرق الجه وود والبع وود ز‬ ‫بي‬ ‫انحدار الجهد‬ ‫ز‬ ‫الصفيحتي‬ ‫بي‬‫البعد ز‬ ‫ز‬ ‫الصفيحتي‬ ‫‪07739000619‬‬ ‫‪14‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫‪07739000619‬‬ ‫‪15‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫معي ما تأثت ادخال ماده عازله ز‬ ‫بي لوحيها عل ما‬ ‫ز‬ ‫س ‪ :‬لديك متسعه متصلة بمصدر لفرق جهد‬ ‫يأئ ‪:‬‬ ‫‪ -4‬شدة المجال‬ ‫‪ -3‬الشحنة‬ ‫‪ -2‬السعه‬ ‫‪1‬و فرق الجهد‬ ‫ج)‬ ‫ثابت ألنها متصلة بالمصدر‬ ‫تزداد الن 𝐂𝐊 = 𝐊𝐂‬ ‫𝐕∆ 𝐂 = 𝐐‬ ‫تزداد الن‬ ‫(وانحدار الجهد هنا ثابت)‬ ‫ثابت الن شدة المجال = انحدار الجهد‬ ‫س ‪ :‬اذا شحنت ثم فصلت عن المصدر فما تأثت ادخال ماده عازله لوحيها عىل ما يأئ ‪:‬‬ ‫‪ -4‬شدة المجال‬ ‫‪ -3‬الشحنة‬ ‫‪ -2‬السعه‬ ‫‪ -1‬فرق الجهد‬ ‫ج)‬ ‫𝐐‬ ‫= 𝐂‬ ‫يقل الن‬ ‫𝐕∆‬ ‫تزداد الن 𝐂𝐊 = 𝐊𝐂‬ ‫ثابته الن المتسعة منفصله عن المصدر‬ ‫يقل الن فرق الجهد يقل‪.‬‬ ‫ز‬ ‫س ‪ :‬متسعه مشحونة وغت متصلة بالمصدر استبدل الهواء ز‬ ‫بي لوحيها بعازل اخر فما تأثت ذلك ف‬ ‫كل مما يأئ ‪:‬‬ ‫‪ -2‬السعة ‪-3‬الشحنة ‪ -4‬شدة المجال‬ ‫‪ -1‬فرق الجهد‬ ‫ج)‬ ‫𝐐‬ ‫= 𝐂‬ ‫يقل الن‬ ‫𝐕∆‬ ‫تزداد الن 𝐂𝐊 = 𝐊𝐂‬ ‫ثابتة الن المتسعة غت متصلة بالمصدر‪.‬‬ ‫يقل الن فرق الجهد يقل‪.‬‬ ‫س ‪ :‬متس ووعه متص وولة بمص وودر ثم زادت المس وواحة المش ووتكة المتقابلة لص ووفيحتيها ما تأثت ذلك عىل‬ ‫كل مما يائ ‪:‬‬ ‫بي‬ ‫ز‬ ‫المختنة ز‬ ‫‪ -2‬السووعه ‪ -3‬الشووحنة ‪ -4‬شوودة المجال ‪ -5‬الطاقة‬ ‫‪ -1‬فرق الجهد‬ ‫صفيحتيها‬ ‫ج)‬ ‫فرق الجهد ثابت ألنها متصلة‬ ‫السعه تزداد الن 𝐀𝛂𝐂‬ ‫الشحنة تزداد الن السعه زادت‬ ‫شدة المجال ثابت الن فرق الجهد ثابت‬ ‫الطاقة تزداد الن الشحنة زادت وفرق الجهد يقل‪.‬‬ ‫‪07739000619‬‬ ‫‪16‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫س ‪ :‬متس ووعه مش ووحونة ومفص ووولة عن المص وودر زادت المس وواحة المش ووتكة المتقابلة لص ووفيحتيها ما‬ ‫تأثت ذلك عىل كل مما يأئ ‪:‬‬ ‫بي‬ ‫ز‬ ‫المختنة ز‬ ‫‪ - 1‬فرق الجهد ‪ -2‬السعه ‪ -3‬الشحنة ‪ -4‬شدة المجال ‪ -5‬الطاقة‬ ‫صفيحتيها‪.‬‬ ‫ج)‬ ‫𝐐‬ ‫= 𝐂‬ ‫فرق الجهد يقل ألنها غت متصلة بالمصدر‬ ‫𝐕∆‬ ‫السعه تزداد الن 𝐀 ∝ 𝐂‬ ‫الشحنة ثابته لعدم اتصالها بالمصدر‬ ‫𝐕∆‬ ‫= 𝐄 والن )𝐝( ثابت و )𝐕∆( يقل‬ ‫شدة المجال يقل الن‬ ‫𝐝‬ ‫الطاقة تقل الن الشحنة ثابته وفرق الجهد يقل‪.‬‬ ‫بي لوحيها ثابت عزله اكت من ثابت عزل‬‫س ‪ :‬متسعه مشحونة ومفصولة عن المصدر وض عازل ز‬ ‫الهواء ما تأثت عىل كل مما يأئ ‪ -1:‬فرق الجهد ‪ -2‬السعه ‪ -3‬الشحنة ‪ -4‬شدة المجال ‪-5‬‬ ‫ي صفيحتيها‬ ‫ز‬ ‫المختنة ب ز‬ ‫الطاقة‬ ‫ج)‬ ‫𝐐‬ ‫=‪C‬‬ ‫فرق لجهد يقل ألنها غت متصلة بالمصدر‬ ‫𝐕∆‬ ‫السعة تزداد الن 𝐂𝐊 = 𝐊𝐂‬ ‫الشحنة ثابته 𝐕∆ 𝐂 = 𝐐‬ ‫𝐕∆‬ ‫= 𝐄 والن )‪ (d‬ثابت و )𝐕∆( يقل‬ ‫المجال الكهربائ يقل الن‬ ‫𝐝‬ ‫ز‬ ‫المختنة تقل الن فرق الجهد يقل )𝐕∆( والشحنة ثابته (𝐐(‪.‬‬ ‫الطاقة‬ ‫‪07739000619‬‬ ‫‪17‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ربط المتسعات ‪:‬‬ ‫هناك طريقتان لربط المتسعات وه ‪:‬‬ ‫ً‬ ‫أوال ‪ :‬طريقة الربط عىل التوازي‪.‬‬ ‫ً‬ ‫ثانيا ‪ :‬طريقة الربط عىل التواىل‪.‬‬ ‫ً‬ ‫أوال ‪ :‬طريقة الربط عىل التوازي‬ ‫س ‪ :‬ما ال رض من ربط المتسعات عىل التوازي ؟ ولماذا ؟‬ ‫ج) للحص و ووول عىل س و ووعة مكافئة كبتة المقدار يمكن بواس و ووطتها تخزين ش و ووحنة كهربائية وبفرق جهد‬ ‫واط حيث ال يمكن الحصول عىل ذلك باستعمال متسعة واحدة‪.‬‬ ‫س ‪ :‬لماذا توصل المتسعات عىل التوازي ؟‬ ‫ج) للحصول عىل شحنه كبته وسعه كبته وفرق جهد ثابت‬ ‫ز‬ ‫س ‪ :‬ما تأثت ربط المتسعات عىل السعه المكافئة الصلية ف حالة ربط المتسعات عىل التوازي ؟‬ ‫ج) عىل التوازي تزداد السعه المكافئة الن 𝟐𝐂 ‪𝐂𝐞𝐪 = 𝐂𝟏 +‬‬ ‫س ‪ :‬ما تفست زيادة السعة المكافئة المربوطة عىل التوازي ؟‬ ‫ج) وذلك لزيادة المس و و وواحة الس و و ووطحية المتقابلة لص و و ووفيحت المتس و و ووعة المكافئة لربط التوازي بثبوت‬ ‫الصفيحتي ون ع العازل‪.‬‬ ‫ز‬ ‫البعد ز‬ ‫بي‬ ‫ز‬ ‫س ‪ :‬لديك متس و و ووعتان مختلفتان ف الس و و ووعة وفرق الجهد والش و و ووحنة ربطتا عىل التوازي‪.‬ماذا يحص و و وول‬ ‫لفرق الجهد؟ وكيف تتوزع الشحنة؟‬ ‫للمتسعتي يتساوى ألنها مربوطة عىل التوازي وبما أن شحنة المتسعة تتناسب طرديا‬ ‫ز‬ ‫ج) فرق الجهد‬ ‫م السعة فالمتسعة ذات السعة األكت ستكون شحنتها أكت‪.‬‬ ‫‪07739000619‬‬ ‫‪18‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫قوانين ربط المتسعات على التوازي‬ ‫ز‬ ‫السعة المكافئة تساوي مجم ع سعات المتسعات وتكون أكت من أكت سعة ف المجموعة أي أن‪ :‬و‬ ‫‪𝐜𝐞𝐪 = 𝐜𝟏 + 𝐜𝟐 + 𝐜𝟑 +.................‬‬ ‫الشحنة الصلية تساوي مجم ع الشحنات عىل كل متسعة أي أنه ‪ :‬و‬ ‫‪𝐐𝐞𝐪 = 𝐐𝟏 + 𝐐𝟐 + 𝐐𝟑.................‬‬ ‫فرق الجهد متساوي عىل جمي المتسعات ويساوي فرق جهد المصدر أي أنه ‪ :‬و‬ ‫𝟑𝐯∆ = 𝟐𝐯∆ = 𝟏𝐯∆ = 𝐥𝐚𝐭𝐨𝐭𝐕∆‬ ‫مالحظات تخص الربط التوازي‪:‬‬ ‫‪07739000619‬‬ ‫‪19‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫عند حل المسائل المتعلقة بربط التوازي نطبق قانون المتسعة العام وهو ‪:‬‬ ‫𝐐‬ ‫= 𝐂‬ ‫𝐕∆‬ ‫ز‬ ‫السعة المكافئة تكون أكت من أكت أي سعة ألي متسعة ف المجموعة عىل فرض ثبوت البعد‬ ‫ون ع العازل‪.‬‬ ‫إذا كانت المتسعات متساوية السعة (𝐂) فأن ‪-:‬‬ ‫𝐂𝐧 = 𝐪𝐞𝐂‬ ‫عند ربط المتسعات عىل التوازي فان السعة المكافئة قبل وبعد العازل تحسب ‪:‬‬ ‫𝐐‬ ‫𝐓𝐐‬ ‫= 𝐪𝐞𝐂‬ ‫قبل العازل ‪:‬‬ ‫= 𝐤𝐪𝐞𝐂‬ ‫بعد العازل ‪:‬‬ ‫𝐕∆‬ ‫𝐓𝐕∆‬ ‫س ‪ :‬أشووتق العالقة يمكن من خاللها حسوواب السووعة المكافئة ( 𝐪𝐞𝐂) لمجموعة المتسووعات المربوطة‬ ‫عىل التوازي؟‬ ‫ج) فرق الجهد‬ ‫‪𝐐T = 𝐐1 + 𝐐2‬‬ ‫لكن‪:‬‬ ‫𝐕∆ 𝐂 = 𝐐‬ ‫‪∴ 𝐐T = 𝐂1 ∆𝐕1 + 𝐂2 ∆𝐕2‬‬ ‫بما ان الربط عىل التوازي ‪-:‬‬ ‫𝟐𝐯∆ = 𝟏𝐯∆ = 𝐥𝐚𝐭𝐨𝐭𝐕∆‬ ‫𝐕∆ 𝟐𝐂 ‪∴ 𝐂𝐞𝐪 ∆𝐯 = 𝐂𝟏 ∆𝐕 +‬‬ ‫𝐕∆ ) 𝟐𝐂 ‪𝐂𝐞𝐪 ∆𝐯 = (𝐂𝟏 +‬‬ ‫𝟐𝐂 ‪𝐂𝐞𝐪 = 𝐂𝟏 +‬‬ ‫‪07739000619‬‬ ‫‪20‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ز ز‬ ‫المختنة ف المجال الكهربائ للمتسعة‬ ‫الطاقة‬ ‫ز ز‬ ‫المختنة ف المجال الكهربائ للمتسعة ؟‬ ‫س ‪ :‬كيف يمكن حساب الطاقة‬ ‫ز‬ ‫ز‬ ‫ز‬ ‫ج) من خالل رس و و و و و ووم مخطط بيائ يمثل العالقة ز‬ ‫المختنة (𝐐) ف اي من ص و و و و و ووفيحت‬ ‫بي الش و و و و و ووحنة‬ ‫المتس ووعة وفرق الجهد الكهربائ (𝐕∆) بينهما ‪.‬وذلك عن طريق حس وواب مس وواحة المثلث كما موض ووح‬ ‫زف الشكل االئ ‪:‬‬ ‫‪1‬‬ ‫القاعدة × االرتفاع‬ ‫مساحة المثلث =‬ ‫‪2‬‬ ‫حيث ان ‪:‬‬ ‫القاعدة تمثل (𝐕∆)‬ ‫واالرتفاع يمثل مقدار الشحنة (𝐐) ‪.‬‬ ‫المختنة زف المجال الكهربائ للمتسعة كاالئ ‪:‬‬ ‫ز‬ ‫لذلك يمكن حساب الطاقة‬ ‫𝟏‬ ‫= 𝐜𝐢𝐫𝐭𝐜𝐞𝐥𝐞𝐄𝐏‬ ‫𝐐 ‪∆𝐕.‬‬ ‫𝟐‬ ‫المختنة زف المجال الكهربائ للمتسعة من العالقة االتية ‪:‬‬ ‫ز‬ ‫يمكن حساب الطاقة‬ ‫𝐭 × 𝐏 = 𝐜𝐢𝐫𝐭𝐜𝐞𝐥𝐞𝐄𝐏‬ ‫ز ز‬ ‫المختنة ف المجال الكهربائ للمتسعة ؟‬ ‫س ‪ :‬عىل ماذا يعمد مقدار الطاقة‬ ‫ج)‬ ‫بي صفيحت كل متسعة‪.‬‬ ‫ز‬ ‫الشحنة المختنة ز‬ ‫سعة المتسعة ‪.‬‬ ‫بي صفيحت المتسعة ‪.‬‬ ‫فرق الجهد ز‬ ‫مالحظات تخص الطاقة ‪:‬‬ ‫‪07739000619‬‬ ‫‪21‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬ ‫السادس العلمي‬ ‫ز ز‬ ‫ً‬ ‫المختنة ف المجال الكهربائ للمتسعة‬ ‫‪ -‬اذا كان فرق الجهد المطبق عىل المتسعة كبتا فان الطاقة‬ ‫ً‬ ‫يكون كبتا أي انها تتناسب طردي ‪.‬‬ ‫المختنة زف المجال الكهربائ ز‬ ‫بي صووفيحتيها‬ ‫ز‬ ‫بي صووفيحت متسووعة فان الطاقة‬ ‫‪ -‬عند ادخال عازل ز‬ ‫اما ان تزداد بسو و و ب زياد الش و ووحنة وثبوت فرق الجهد أو تقل بسو و و ب نقص و ووان فرق الجهد وثبوت‬ ‫الشحنة ‪.‬‬ ‫‪------------------------------------ -------------------------------------------‬‬ ‫مثال ‪ : 3‬ارب و متسعات سعاتها حسب التتيب)𝑭𝝁 ‪ (4𝝁𝑭 ,8 𝝁𝑭, 12 𝝁𝑭, 6‬مربوطة م بعضها‬ ‫بي قطبيها )‪.)12V‬احسب مقدار‪:‬‬‫بي قطت بطارية فرق الجهد ز‬ ‫عىل التوازي‪ ,‬ربطت المجموعة ز‬ ‫‪.1‬السعة المكافئة للمجموعة‪.‬‬ ‫المختنة زف اي من صفيحت كل متسعة‪.‬‬ ‫ز‬ ‫‪.2‬الشحنة‬ ‫ز‬ ‫ز‬ ‫‪.3‬الشحنة الصلية المختنة ف المجموعة‪.‬‬ ‫الحل‪:‬‬ ‫𝐹𝜇 ‪1- 𝐶𝑒𝑞 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4= 4 + 8 + 12 + 6 = 30‬‬ ‫‪ - 2‬توازي الربط ∵‬ ‫𝑉‪∴ Δ𝑉𝑡 = Δ𝑉1 = Δ𝑉2 = Δ𝑉3 = Δ𝑉4 = 12‬‬ ‫𝐶‪𝑄1 = 𝐶1. Δ𝑉1 = 4 × 12 = 48 μ‬‬ ‫𝐶‪𝑄2 = 𝐶2. Δ𝑉2 = 8 × 12 = 96 μ‬‬ ‫𝐶‪𝑄3 = 𝐶3. Δ𝑉3 = 12 × 12 = 144 μ‬‬ ‫𝐶‪𝑄4 = 𝐶4. Δ𝑉4 = 6 × 12 = 72 μ‬‬ ‫‪3- 𝑄𝑡 = 𝐶𝑒𝑞. Δ𝑉𝑡 = 30 × 12 = 360 μ‬‬ ‫‪-------------------------------------------------------------------------------‬‬ ‫ز ز‬ ‫المختنة ف المجال الكهربائ لمتسعة سعتها )𝑭𝝁 ‪ (2‬اذا شحنت لفرق‬ ‫مثال ‪ : 6‬ما مقدار الطاقة‬ ‫جهد كهربائ(‪ (5000V‬وما مقدار القدرة الت نحصل عليها عند تفري ها بزمن(𝒔𝝁 ‪)10‬؟‬ ‫الحل‪:‬‬ ‫𝟏‬ ‫𝟏‬ ‫𝟐)𝟎𝟎𝟎𝟓( 𝟔‪𝑃. 𝐸 = 𝑪. ∆𝑽𝟐 = × 𝟐 × 𝟏𝟎−‬‬ ‫𝟐‬ ‫𝟐‬ ‫𝟐) 𝟑‪𝑃. 𝐸 =𝟏𝟎 (𝟓 × 𝟏𝟎+‬‬ ‫𝟔‪−‬‬ ‫𝟔‪𝑃. 𝐸 =𝟏𝟎−𝟔 × 25 × 𝟏𝟎+‬‬ ‫𝐽 ‪𝑃. 𝐸 = 25‬‬ ‫𝑬‪𝑷.‬‬ ‫𝟓𝟐‬ ‫𝟓𝟐‬ ‫=‪P‬‬ ‫=‬ ‫= 𝟔‪−‬‬ ‫𝒕‬ ‫𝟎𝟏×𝟎𝟏‬ ‫𝟓‪𝟏𝟎−‬‬ ‫𝟓‪+‬‬ ‫𝟎𝟏 × ‪𝑃 = 25‬‬ ‫𝑡𝑡𝑎𝑤‬ ‫‪07739000619‬‬ ‫‪22‬‬ ‫الـــفــــيـــــزيــــــــــــــــــاء‬ ‫أ‪.‬صالح العبيدي‬

Use Quizgecko on...
Browser
Browser