EE2C1 Transistor Circuits Lecture 5 MOSFETs PDF
Document Details
Uploaded by Deleted User
TU Delft
Tags
Summary
This document is a lecture on MOSFETs, covering their device structure, physical operation, and I-V characteristics. It's a part of a course on transistor circuits, likely for undergraduate students in electrical or electronic engineering at TU Delft.
Full Transcript
EE2C1 β Transistor Circuits Lecture 5 MOSFETs Lecture programme Signals, Noise Amplifier Models Operational Amplifiers The Diode Small-Signal Modelling The MOSFET MOSFET Amplifiers BJTs and BJT Amplifiers CMOS Digital Logic Digital Design: Power, Spee...
EE2C1 β Transistor Circuits Lecture 5 MOSFETs Lecture programme Signals, Noise Amplifier Models Operational Amplifiers The Diode Small-Signal Modelling The MOSFET MOSFET Amplifiers BJTs and BJT Amplifiers CMOS Digital Logic Digital Design: Power, Speed and Area EE2C1 - Lecture 5 - MOSFETs 2 Today: the MOSFET Device Structure S&S 5.1 Physical Operation S&S 5.1 * I-V Characteristics S&S 5.2 * The underlying physics will be covered in detail EE2P2 Semiconductor Physics. Here, an intuitive description will be given. EE2C1 - Lecture 5 - MOSFETs 3 NMOS Device Structure Cross Section Typical dimensions: πΏπΏ β 3 nm (very advanced).. 180 nm (reasonably affordable).. 1 Β΅m (almost fossil) ππ β 10 nm.. 100 Β΅m π‘π‘ππππ β 1 nm.. 10 nm EE2C1 - Lecture 5 - MOSFETs 4 NMOS Device Structure Circuit symbols D NMOS is a 4-terminal device: Source, Drain, Gate and Body Source and Drain from pn-junction diodes with the Body G Need to be reverse biased! β Body connected to the lowest supply, or to the source Body often not drawn explicitly β 3-terminal device S EE2C1 - Lecture 5 - MOSFETs 5 Creating a Channel for Current Flow Apply a positive voltage π£π£πΊπΊπΊπΊ to the gate Holes in the substrate are pushed away β depletion region Electrons from S and D are attracted β n-type conducting channel between S and D Channel only forms if π£π£πΊπΊπΊπΊ > πππ‘π‘ πππ‘π‘ is the threshold voltage How much larger π£π£πΊπΊπΊπΊ is than πππ‘π‘ is expressed by the overdrive voltage π£π£ππππ = π£π£πΊπΊπΊπΊ β πππ‘π‘ EE2C1 - Lecture 5 - MOSFETs 6 Creating a Channel for Current Flow If π£π£π·π·π·π· = 0, no current flows through the channel We can think of the MOSFET as a parallel-plate capacitor holding a channel charge ππ = πΆπΆππππ β ππππ β π£π£ππππ πΆπΆππππ = ππππππ /π‘π‘ππππ is the oxide capacitance per unit gate area [F/m2] Larger overdrive π£π£ππππ β more channel charge (deeper channel) EE2C1 - Lecture 5 - MOSFETs 7 Applying a Small π£π£π·π·π·π· Applying a small positive voltage at the drain gives an electric field in the channel Electrons drift towards the drain β current flow ππ πππ·π· = ππππ πΆπΆππππ π£π£ π£π£ πΏπΏ ππππ π·π·π·π· πππ·π·π·π· where ππππ is the electron mobility The MOSFET behaves as a voltage-controlled resistor 1 1 πππ·π·π·π· = = πππ·π·π·π· ππππ πΆπΆππππ ππ βπΏπΏ π£π£ππππ EE2C1 - Lecture 5 - MOSFETs 8 πππ·π· Applying a Small π£π£π·π·π·π· π£π£π·π·π·π· ππ πππ·π·π·π· = (ππππ πΆπΆππππ ) π£π£ = ππππ π£π£ππππ πΏπΏ ππππ Process dependent Design dependent parameter ππππβ² = ππππ πΆπΆππππ aspect ratio ππ βπΏπΏ MOSFET transconductance parameter ππππ = (ππππ πΆπΆππππ )(ππ βπΏπΏ) EE2C1 - Lecture 5 - MOSFETs 9 Increasing π£π£π·π·π·π· Resistance πππ·π· increases with π£π£π·π·π·π· Slope β‘ πππ·π·π·π· 0 π£π£π·π·π·π· Increasing π£π£π·π·π·π· reduces the channel width towards the drain β tapered channel β increased resistance ππ 1 πππ·π· = ππππβ² π£π£ππππ β π£π£π·π·π·π· π£π£π·π·π·π· πΏπΏ 2 average overdrive along the channel EE2C1 - Lecture 5 - MOSFETs 10 Channel Pinch-Off When further increasing π£π£π·π·π·π· , the channel is pinched off at the drain This happens when there is no longer an inversion layer at the drain, i.e. π£π£πΊπΊπΊπΊ < πππ‘π‘ pinch-off π£π£πΊπΊπΊπΊ β π£π£π·π·π·π· < πππ‘π‘ π£π£π·π·π·π· > π£π£πΊπΊπΊπΊ β πππ‘π‘ = π£π£ππππ The drain current saturates, i.e. becomes (approximately) independent of π£π£π·π·π·π· 1 β² ππ 2 πππ·π· = ππππ π£π£ 2 πΏπΏ ππππ EE2C1 - Lecture 5 - MOSFETs 11 NMOS Triode Region and Saturation Region Slope = ππ πππ·π·π·π· = ππππβ² π£π£ πΏπΏ ππππ π£π£ππππ = π£π£πΊπΊπΊπΊ β πππ‘π‘π‘π‘ β€ 0 Cutoff β no channel πππ·π· = 0 ππ 1 π£π£ππππ > 0, π£π£π·π·π·π· < π£π£ππππ Triode β channel from S to D πππ·π· = ππππβ² π£π£ππππ β π£π£π·π·π·π· π£π£π·π·π·π· πΏπΏ 2 1 β² ππ 2 π£π£ππππ > 0, π£π£π·π·π·π· β₯ π£π£ππππ Saturation β pinch-off at D πππ·π· = ππ π£π£ππππ 2 ππ πΏπΏ EE2C1 - Lecture 5 - MOSFETs 12 NMOS vs PMOS NMOS PMOS p-type body n-type body EE2C1 - Lecture 5 - MOSFETs 13 NMOS vs PMOS NMOS PMOS n-type channel p-type channel p-type body n-type body π£π£πΊπΊπΊπΊ > πππ‘π‘π‘π‘ induces an n-channel π£π£πΊπΊπΊπΊ < πππ‘π‘π‘π‘ induces a p-channel Threshold voltage πππ‘π‘π‘π‘ is positive Threshold voltage πππ‘π‘π‘π‘ is negative Current flows from drain to source Current flows from source to drain In saturation (π£π£π·π·π·π· > π£π£ππππ = π£π£πΊπΊπΊπΊ β πππ‘π‘π‘π‘ ) In saturation (π£π£πππ·π· > π£π£ππππ = π£π£πππΊπΊ β |πππ‘π‘ππ |) 1 β² ππ 2 1 β² ππ 2 πππ·π· = ππ π£π£ πππ·π· = ππ π£π£ 2 ππ πΏπΏ ππππ 2 ππ πΏπΏ ππππ EE2C1 - Lecture 5 - MOSFETs 14 PMOS Triode Region and Saturation Region π£π£ππππ = π£π£ππππ β |πππ‘π‘π‘π‘ | β€ 0 Cutoff β no channel πππ·π· = 0 ππ 1 π£π£ππππ > 0, π£π£ππππ < π£π£ππππ Triode β channel from S to D πππ·π· = ππππβ² π£π£ππππ β π£π£ππππ π£π£ππππ πΏπΏ 2 1 β² ππ 2 π£π£ππππ > 0, π£π£πππ·π· β₯ π£π£ππππ Saturation β pinch-off at D πππ·π· = ππ π£π£ππππ 2 ππ πΏπΏ EE2C1 - Lecture 5 - MOSFETs 15 Complementary MOS (CMOS) CMOS technology combines NMOS and PMOS transistors in one substrate Often, NMOS transistors are built in a common p-substrate, PMOS transistors are built in an n-well body (isolated by reverse-biasing the n-well to substrate diode) EE2C1 - Lecture 5 - MOSFETs 16 The NMOS πππ·π· β π£π£π·π·π·π· Characteristics MOSFET as a switch: cut-off (off) and triode (on) MOSFET as an amplifier: saturation region EE2C1 - Lecture 5 - MOSFETs 17 The NMOS πππ·π· β π£π£πΊπΊπΊπΊ Characteristic In the saturation region, MOSFET can be seen as a voltage- controlled current source We can make amplifiers with this! EE2C1 - Lecture 5 - MOSFETs 18 Finite Output Resistance in Saturation pinch-off So far, we have assumed that πππ·π· is independent of π£π£π·π·π·π· in the saturation region However, the pinch-off point in the channel depends on π£π£π·π·π·π· This makes the channel-length dependent on π£π£π·π·π·π· This channel-length modulation leads to a finite output resistance EE2C1 - Lecture 5 - MOSFETs 19 Finite Output Resistance in Saturation 1 β² ππ 2 πππ·π· = ππππ π£π£ β 1 + πππ£π£π·π·π·π· 2 πΏπΏ ππππ Extra term due to channel-length modulation ππ is technology dependent πππ΄π΄ = 1βππ is called the Early voltage EE2C1 - Lecture 5 - MOSFETs 20 Finite Output Resistance in Saturation Included in the equivalent model using an output resistance ππππ 1 πππ΄π΄ ππππ = β² = β² πππππ·π· πππ·π· 1 ππ where πππ·π·β² = ππππβ² π£π£ππππ 2 is the drain 2 πΏπΏ current without channel-length modulation EE2C1 - Lecture 5 - MOSFETs 21 Summary In MOSFETs, current flow in the channel between source and drain is regulated by voltage applied to the gate Two types: NMOS (n-channel) and PMOS (p-channel) A channel can only form if π£π£πΊπΊπΊπΊ exceeds the threshold voltage πππ‘π‘ Three main operating regions: π£π£ππππ = π£π£πΊπΊπΊπΊ β πππ‘π‘π‘π‘ β€ 0 Cutoff β no channel πππ·π· = 0 ππ 1 π£π£ππππ > 0, π£π£π·π·π·π· < π£π£ππππ Triode β channel from S to D πππ·π· = ππππβ² π£π£ππππ β π£π£π·π·π·π· π£π£π·π·π·π· πΏπΏ 2 1 β² ππ 2 π£π£ππππ > 0, π£π£π·π·π·π· β₯ π£π£ππππ Saturation β pinch-off at D πππ·π· = ππ π£π£ππππ 2 ππ πΏπΏ MOSFET as a switch β cutoff and triode regions In triode region at small π£π£π·π·π·π· , the MOSFET acts as a voltage-controlled resistor MOSFET as an amplifier β saturation region Can be modelled as a voltage-controlled current source Channel-length modulation gives a finite output resistance ππππ EE2C1 - Lecture 5 - MOSFETs 22 Whatβs next? Study: S&S 5.1 and 5.2 Practice: see problems listed on Brightspace! Next lecture: MOSFET Circuits at DC Questions? Use the Q&A Forum on Brightspace Or: [email protected], [email protected] EE2C1 - Lecture 5 - MOSFETs 23