Laplace Transform MCQ PDF
Document Details
Uploaded by Deleted User
Tags
Summary
Multiple-choice questions (MCQs) on Laplace transform, covering various topics such as the Laplace transform of sin, cos, and exponential functions. Questions include finding Laplace transforms and inverse Laplace transforms.
Full Transcript
Id Question The Laplace transform of 𝐹(𝑡) = 𝑒 𝑏𝑡 𝑠𝑖𝑛𝑎𝑡 is equal to 𝑎 A (𝑠 − 𝑏)2 + 𝑎2 𝑎 B (𝑠 + 𝑏)2 + 𝑎2 C 𝑏 (𝑠 − 𝑏)2 − 𝑎2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) =...
Id Question The Laplace transform of 𝐹(𝑡) = 𝑒 𝑏𝑡 𝑠𝑖𝑛𝑎𝑡 is equal to 𝑎 A (𝑠 − 𝑏)2 + 𝑎2 𝑎 B (𝑠 + 𝑏)2 + 𝑎2 C 𝑏 (𝑠 − 𝑏)2 − 𝑎2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆−𝒃𝒕 𝒄𝒐𝒔𝒉𝒂𝒕 is equal to A 𝑠+𝑏 (𝑠 + 𝑏)2 + 𝑎2 B 𝑠+𝑏 (𝑠 + 𝑏)2 − 𝑎2 C 𝑠−𝑏 (𝑠 − 𝑏)2 + 𝑎2 D None. Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑡)} = 𝑓(𝑠), then 𝐿{𝑒 −𝑎𝑡 𝑓(𝑡)} is equal to A 𝑓(𝑠) B 𝑓(𝑠 − 𝑎) C 𝑓(𝑠 + 𝑎) D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆2𝒕 𝒕3 is equal to A 12 (𝑠 − 4)2 B 12 (𝑠 + 4)2 C 12 (𝑠 + 4)2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒔𝒊𝒏𝒉3𝒕 is equal to A 3 𝑠2 −9 B 3 𝑠2 + 9 C 9 2 𝑠 −9 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒕 𝒄𝒐𝒔𝒂𝒕 is equal to A 𝑠 2 − 𝑎2 (𝑠 2 − 𝑎2 )2 B 𝑠 2 − 𝑎2 (𝑠 2 + 𝑎2 )2 C 𝑠 2 + 𝑎2 (𝑠 2 + 𝑎2 )2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆𝒓𝒇(√𝒕) is equal to A 1 𝑠 √𝑠 2 + 1 B 1 𝑠 √𝑠 − 1 C 1 𝑠 √𝑠 + 1 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆3𝒕 𝒆𝒓𝒇(√𝒕) is equal to A 1 (𝑠 − 3) √𝑠 + 2 B 1 (𝑠 + 3) √𝑠 − 2 C 1 (𝑠 + 3) √𝑠 + 2 D 1 (𝑠 − 3) √𝑠 − 2 Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆−𝒕 𝒆𝒓𝒇(√𝒕) is equal to A 1 (𝑠 + 1) √𝑠 B 1 (𝑠 − 1) √𝑠 C 1 (𝑠 + 1) √𝑠 + 2 D None. Answer Marks 1.5 Unit I Id 𝑓(𝑡) Question If 𝐿{𝑓(𝑡)} = 𝑓(𝑠), then 𝐿 ( ) is equal to 𝑡 𝑠 A 𝑓(𝑠) ∫ 𝑑𝑠 𝑠 ∞ ∞ B 𝑓(𝑠) ∫ 𝑑𝑠 𝑠 0 C ∞ 𝑓(𝑠) ∫𝑠 𝑠 𝑑𝑠 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = (𝒂 + 𝒃𝒕)2 , where a & b are constants, is given by A (𝑎 + 𝑏𝑠)2 B 1 (𝑎 + 𝑏𝑠)2 C 𝑎2 2𝑎𝑏 2𝑏 2 + 2 + 3 𝑠 𝑠 𝑠 D 𝑎2 2𝑎𝑏 𝑏 2 + 2 + 3 𝑠 𝑠 𝑠 Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑡)} = 𝑓(𝑠), then 𝐿{𝑒 𝑎𝑡 𝑓(𝑡)} is equal to A 𝑓 ̅ (𝑠 + 𝑎) B 𝑓 ̅ (𝑠 − 𝑎) C 𝑒 −𝑠𝑡 𝑓(𝑠) D None. Answer Marks 1.5 Unit I Id −1 Question The Laplace transform of 𝒇(𝒕) = 𝒕 2 is equal to A √𝜋 √𝑠 B √𝑠 √𝜋 C 0 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆∝𝒕 𝐜𝐨𝐬 𝒂𝒕 is equal to A 𝑠−∝ (𝑠−∝)2 + 𝑎2 B 𝑠+∝ (𝑠−∝)2 + 𝑎2 C 1 (𝑠−∝)2 D None. Answer Marks 1.5 Unit I Id 𝒕 𝒔𝒊𝒏𝒕 Question The Laplace transform of 𝑭(𝒕) = ∫0 𝒕 𝒅𝒕 is equal to cot−1 𝑠 A 𝑠 B tan−1 𝑠 𝑠 𝜋 C − tan−1 𝑠 2 D None. Answer Marks 1.5 Unit I Id Question 𝐿{ 𝑐𝑜𝑠ℎ𝑎𝑡 − 𝑐𝑜𝑠ℎ𝑏𝑡 } is equal to 𝑠 𝑠 A − 2 𝑠2 +𝑎 2 𝑠 + 𝑏2 𝑠 𝑠 B − 𝑠 2 − 𝑎2 𝑠 2 − 𝑏 2 C 𝑎 𝑏 − 𝑠 2 − 𝑎2 𝑠 2 − 𝑏 2 D None. Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑡)} = 𝑓 (𝑠) , then 𝐿{ 𝑡 𝑓(𝑡)} is equal to A 𝑑𝑓 (𝑠) − 𝑑𝑠 ∞ B ∫𝑠 𝑓 (𝑠) 𝑑𝑠 C 𝑠 𝑓 (𝑠) − 𝑓(0) D None. Answer Marks 1.5 Unit I Id 𝑓(𝑡) Question If 𝐿{𝑓(𝑡)} = 𝑓(𝑠), then 𝐿 { 𝑡 } is equal to A 𝑑𝑓 (𝑠) − 𝑑𝑠 ∞ B ∫ 𝑓 (𝑠) 𝑑𝑠 𝑠 C 1 𝑓 (𝑠) 𝑠 D None. Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑡)} = 𝑓 (𝑠), then 𝐿{ 𝑓(𝑎𝑡)} is equal to A 𝑒 −𝑎𝑠 𝑓 (𝑠) B 𝑓(𝑠 + 𝑎) C 1 𝑠 𝑓̅ ( ) 𝑎 𝑎 D None. Answer Marks 1.5 Unit I Id Question 𝐿{𝑒 −2𝑡 𝑠𝑖𝑛𝑡} is equal to A 1 𝑠2 + 1 B 𝑠+2 (𝑠 + 2)2 + 1 C 1 (𝑠 + 2)2 + 1 D None. Answer Marks 1.5 Unit I Id Question 𝐿{𝑒 −3𝑡 cos 2𝑡} is equal to A 𝑠+3 (𝑠 + 3)2 + 4 B 1 (𝑠 + 3)2 + 4 C 3 (𝑠 + 3)2 + 4 D None. Answer Marks 1.5 Unit I Id 𝑑𝑓 Question If 𝐿{𝑓(𝑡)} = 𝑓(𝑠), then 𝐿 { 𝑑𝑡 } is equal to A 𝑒 −𝑎𝑠 𝑓 (𝑠) B 𝑠 𝑓 (𝑠) − 𝑓(0) C 𝑠 𝑓 (𝑠) + 𝑓(0) D None. Answer Marks 1.5 Unit I Id Question 𝐿{cosh 𝑎𝑡} is equal to A 1 𝑠2 − 𝑎2 𝑎 B 𝑠 2 − 𝑎2 𝑠 C 𝑠 − 𝑎2 2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆−3𝒕 𝒔𝒊𝒏2𝒕 is equal to A 2 (𝑠 + 3)2 − 4 B 2 (𝑠 + 3)2 + 4 C 2 (𝑠 − 3)2 − 4 D 2 (𝑠 + 3)2 + 4 Answer Marks 1.5 Unit I Id sin 𝑡 𝑑 sin 𝑡 Question If 𝐿 { 𝑡 } = cot −1 𝑠, then 𝐿 {𝑑𝑡 ( 𝑡 )} is equal to A 𝑠 cot −1 𝑠 − 1 B s cot −1 𝑠 C 𝑠 cot −1 𝑠 + 1 D None. Answer Marks 1.5 Unit I Id 1 Question 𝑳−1 { } is equal to √𝒔+3 A 𝑒 −3𝑡 √𝜋𝑡 B 𝑒 3𝑡 √𝜋𝑡 C 𝑒𝑡 √𝜋𝑡 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = 𝒔2 +2𝒔 is given by A 1 − 𝑒 2𝑡 B 1 + 𝑒 2𝑡 C 1 − 𝑒 2𝑡 2 D 1 − 𝑒 −2𝑡 2 Answer Marks 1.5 Unit II Id 𝒔+1 Question The inverse Laplace transform of 𝒇(𝒔) = 𝐥𝐨𝐠 (𝒔−1) is given by A 2𝑐𝑜𝑠ℎ𝑡 𝑡 B 2𝑡𝑐𝑜𝑠𝑡 C 2𝑠𝑖𝑛ℎ𝑡 𝑡 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = (𝒔+3)5 is equal to A 𝑒 −3𝑡 𝑡 4 24 3𝑡 4 B 𝑒 𝑡 24 C 𝑒 −3𝑡 𝑡 4 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = 𝒔2 +4𝒔+13 is equal to A 1 −2𝑡 𝑒 sin 3𝑡 3 B 1 2𝑡 𝑒 sin 3𝑡 3 C 𝑒 −2𝑡 sin 3𝑡 D None. Answer Marks 1.5 Unit II Id 1 5 Question The inverse Laplace transform of 𝒇(𝒔) = (𝒔−4)5 + (𝒔−2)2 +52 is equal to A 𝑡4 𝑒 4𝑡 + 𝑒 2𝑡 𝑠𝑖𝑛5𝑡 24 𝑡4 B 𝑒 4𝑡 24 − 𝑒 2𝑡 𝑠𝑖𝑛5𝑡 C 𝑡3 𝑒 4𝑡 − 𝑒 2𝑡 𝑠𝑖𝑛5𝑡 24 D None. Answer Marks 1.5 Unit II Id 3𝒔+4 Question The inverse Laplace transform of 𝒇(𝒔) = 𝒔2 +9 is equal to A 4 3𝑐𝑜𝑠3𝑡 − 𝑠𝑖𝑛3𝑡 3 B 4 3𝑐𝑜𝑠3𝑡 + 𝑠𝑖𝑛3𝑡 3 C 3𝑐𝑜𝑠3𝑡 + 𝑠𝑖𝑛3𝑡 D None. Answer Marks 1.5 Unit II Id 𝒔2 −3𝒔+4 Question The inverse Laplace transform of 𝒇(𝒔) = is equal to 𝒔3 A 1 − 3𝑡 − 2𝑡 2 B 1 + 3𝑡 + 2𝑡 2 C 1 − 3𝑡 + 2𝑡 2 D None. Answer Marks 1.5 Unit II Id 𝒔+𝒂 Question The inverse Laplace transform of 𝒇(𝒔) = 𝐥𝐨𝐠 𝒔+𝒃 is equal to A 1 𝑎𝑡 (𝑒 − 𝑒 𝑏𝑡 ) 𝑡 B 1 −𝑎𝑡 (𝑒 + 𝑒 −𝑏𝑡 ) 𝑡 C 1 −𝑎𝑡 (𝑒 − 𝑒 −𝑏𝑡 ) 𝑡 D 1 − (𝑒 −𝑎𝑡 − 𝑒 −𝑏𝑡 ) 𝑡 Answer Marks 1.5 Unit II Id Question The inverse Laplace transform of 𝑓(𝒂𝒔) is equal to 1 𝑡 A 𝑎 𝑓 (𝑎 ) 1 𝑎 B 𝑎 𝑓 (𝑡 ) C 𝑡 𝑓( ) 𝑎 D None. Answer Marks 1.5 Unit II Id Question The inverse Laplace transform of 𝒇(𝒔) = 𝐜𝐨𝐭 −1 (𝒔) is equal to A 𝑠𝑖𝑛𝑡 𝑡 B 𝑐𝑜𝑠𝑡 𝑡 C 𝑠𝑖𝑛𝑡 D None. Answer Marks 1.5 Unit II Id 2 Question The inverse Laplace transform of 𝒇(𝒔) = 𝐭𝐚𝐧−1 (𝒔 ) is equal to A −1 𝑠𝑖𝑛2𝑡 𝑡 B 𝑠𝑖𝑛2𝑡 C 1 𝑠𝑖𝑛2𝑡 𝑡 D None. Answer Marks 1.5 Unit II Id 𝒔+3 Question The inverse Laplace transform of 𝒇(𝒔) = (𝒔+3)2 +4 is equal to A 𝑒 −3𝑡 𝑠𝑖𝑛2𝑡 B 𝑒 3𝑡 𝑠𝑖𝑛2𝑡 C 𝑒 −3𝑡 𝑐𝑜𝑠2𝑡 D None. Answer Marks 1.5 Unit II Id ̅̅̅̅̅ 3 Question |( ) 2 The inverse Laplace transform of 𝒇(𝒔) = 3 is equal to 𝒔2 3 A 𝑡2 −3 B 𝑡 2 1 C 𝑡2 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝑓(𝑠) = (𝑠+3)2 is equal to A 𝑡 𝑒 −3𝑡 B 𝑒 −3𝑡 C 𝑡 −3𝑡 𝑒 2 D None. Answer Marks 1.5 Unit II Id 4𝑠 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠2 +16 is equal to A cos 4𝑡 B 4 cos 4𝑡 C 4 𝑠𝑖𝑛 4𝑡 D None. Answer Marks 1.5 Unit II Id 3 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠2 +25 is equal to A 3 𝑠𝑖𝑛 5𝑡 B 3 𝑠𝑖𝑛 5𝑡 5 C 3 cos 5𝑡 5 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝑓(𝑠) = 3𝑠−4 is equal to A 1 −4𝑡 𝑒 3 3 4 B 𝑒 −3𝑡 C 1 4𝑡 𝑒3 3 D None. Answer Marks 1.5 Unit II Id 2 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠+2 is equal to A 2 𝑒 2𝑡 B 𝑒 −2𝑡 C 2 𝑒 −2𝑡 D None. Answer Marks 1.5 Unit II Id Question 𝑓(𝑠) If 𝐿−1 {𝑓(𝑠)} = 𝑓(𝑡), then 𝐿−1 { } is equal to 𝑠 𝑡 A ∫ 𝑓(𝑡) 𝑑𝑡 0 B −𝑡 𝑓(𝑡) C 1 𝑓(𝑡) 𝑡 D None. Answer Marks 1.5 Unit II Id 𝑠+𝑎 Question The inverse Laplace transform of 𝑓(𝑠) = log (𝑠+𝑏) is equal to A 𝑒 −𝑎𝑡 − 𝑒 −𝑏𝑡 𝑡 B 𝑒 −𝑏𝑡 − 𝑒 −𝑎𝑡 𝑡 C 𝑒 −𝑏𝑡 + 𝑒 −𝑎𝑡 𝑡 D None. Answer Marks 1.5 Unit II Id 3 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠4 is equal to A 𝑡3 B 𝑡3 3 C 𝑡3 2 D None. Answer Marks 1.5 Unit II Id 2𝑠+1 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠3 is equal to A 𝑡2 2𝑡 − 2 B 𝑡2 2𝑡 + 3 C 𝑡2 2𝑡 + 2 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝑓(𝑠) = 3𝑠2 +27 is equal to A 1 𝑠𝑖𝑛 3𝑡 3 B 1 cos 3𝑡 3 C 1 𝑠𝑖𝑛 3𝑡 9 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = (𝒔+2)(𝒔−1) is equal to A 1 𝑡 (𝑒 − 𝑒 −2𝑡 ) 3 B 1 𝑡 (𝑒 + 𝑒 −2𝑡 ) 3 C 1 𝑡 (𝑒 − 𝑒 −2𝑡 ) 3 D None. Answer Marks 1.5 Unit II Id Question The Fourier cosine transform of 𝒇(𝒙) = 2𝒆−5𝒙 + 5𝒆−2𝒙 is A 10 10 + 2 𝑠2 + 25 𝑠 + 4 B 10 10 2 − 2 𝑠 + 25 𝑠 + 4 C 10 10 2 − 2 𝑠 − 25 𝑠 − 4 D None. Answer Marks 1.5 Unit III Id Question If 𝐹(𝑠) is the Fourier transform of 𝑓(𝑥) , then the Fourier transform of 𝑓(𝑎𝑥) is A 1 𝑠 𝐹( ) 𝑎 𝑎 𝑠 B 𝐹( ) 𝑎 C 1 𝐹(𝑠) 𝑎 D None. Answer Marks 1.5 Unit III Id Question The Fourier cosine transform of the function 𝑓(𝑡) is ∞ A 𝐹𝑐 (𝑠) = ∫ 𝑓(𝑡) cos 𝑠𝑡 0 ∞ B 𝐹𝑐 (𝑠) = ∫ 𝑓(𝑡) cos 𝑡 𝑑𝑡 0 ∞ C 𝐹𝑐 (𝑠) = ∫ 𝑓(𝑠𝑡) cos 𝑡 𝑑𝑡 0 D None. Answer Marks 1.5 Unit III Id Question Which of the following is correct representation of Fourier transform ∞ A F(s) = ∫ f(x)eisx dx −∞ ∞ B 1 F(s) = ∫ f(s)eisx ds 2π −∞ ∞ C 1 F(s) = ∫ f(s)eisx ds 2π 0 D None. Answer Marks 1.5 Unit III Id Question The Fourier sine transform is represented by ∞ A 𝐹𝑠 (𝑠) = ∫ 𝑓(𝑡) cos(𝑠𝑡) 𝑑𝑡 −∞ ∞ B 𝐹𝑠 (𝑠) = ∫ 𝑓(𝑡) sin(𝑠𝑡) 𝑑𝑡 0 ∞ C 𝐹𝑠 (𝑠) = ∫ 𝑓(𝑡) 𝑠𝑖𝑛(𝑠𝑡) 𝑑𝑡 −∞ D None. Answer Marks 1.5 Unit III Id Question If 𝐹{𝑓(𝑥)} = 𝐹(𝑠) , then 𝐹{𝑓(𝑥 − 𝑎)} is equal to A 𝑒 𝑖𝑠𝑎 B 𝑒 𝑖𝑠𝑎 𝐹(𝑠) C Both (𝑎) & (𝑏) D None. Answer Marks 1.5 Unit III Id Question The Fourier cosine transform of 𝒆−𝒙 is 𝑠 A 𝑠2 +1 𝑠 B 𝑠2 − 1 C 1 𝑠2 + 1 D None. Answer Marks 1.5 Unit III Id Question If 𝐹{𝑓(𝑥)} = 𝐹(𝑠) and 𝐹{𝑔(𝑥)} = 𝐺(𝑠) , then by parseval's identity 1 ∞ ̅̅̅̅̅̅ 𝑑𝑠 is equal to ∫ 𝐹(𝑠)𝐺(𝑠) 2𝜋 −∞ ∞ A ̅̅̅̅̅̅ 𝑑𝑥 ∫ 𝑓(𝑥)𝑔(𝑥) 0 1 ∞ B 2𝜋 −∞ ∫ 𝑓(𝑥) 𝑔(𝑥) 𝑑𝑥 ∞ C ̅̅̅̅̅̅ 𝑑𝑥 ∫ 𝑓(𝑥)𝑔(𝑥) −∞ D None. Answer Marks 1.5 Unit III Id 1 ∞ Question If 𝐹{𝑓(𝑥)} = 𝐹(𝑠) , then by parseval's identity ∫ [𝐹(𝑠)]2 2𝜋 −∞ 𝑑𝑠 is equal to ∞ A 1 ∫ [𝑓(𝑥)]2 𝑑𝑥 𝜋 0 ∞ B ∫ [𝑓(𝑥)]2 𝑑𝑥 −∞ ∞ C 2 2π ∫ (f(x)) dx 0 D None. Answer Marks 1.5 Unit III Id Question The Parseval's identities for Fourier cosine transform is ∞ ∞ A 2 ∫ 𝐹𝑐 (𝑠)𝐺𝑐 (𝑠)𝑑𝑠 = ∫ 𝑓(𝑥) 𝑔(𝑥)𝑑𝑥 𝜋 0 0 ∞ ∞ B ∫ 𝐹𝑐 (𝑠)𝐺𝑐 (𝑠)𝑑𝑠 = ∫ 𝑓(𝑥) 𝑔(𝑥)𝑑𝑥 0 0 ∞ ∞ C 2 ∫ 𝐹𝑐 (𝑠)𝐺𝑐 (𝑠)𝑑𝑠 = ∫ 𝑓(𝑥) 𝑔(𝑥)𝑑𝑥 𝜋 −∞ −∞ D None. Answer Marks 1.5 Unit III Id Question The Parseval's identity for Fourier sine transform is ∞ ∞ A 2 ∫ {𝐹𝑠 (𝑠)}2 𝑑𝑠 = ∫ {𝑓(𝑥)}2 𝑑𝑥 𝜋 0 0 ∞ ∞ B 2 ∫ {𝐹𝑠 (𝑠)}2 𝑑𝑠 = ∫ {𝑓(𝑥)}2 𝑑𝑥 𝜋 −∞ 0 ∞ ∞ C ∫ {𝐹𝑠 (𝑠)}2 𝑑𝑠 = ∫ {𝑓(𝑥)}2 𝑑𝑥 0 0 D None. Answer Marks 1.5 Unit III Id Question The inverse Fourier sine transform is given by ∞ A 1 𝑓(𝑥) = ∫ 𝐹𝑠 (𝑠) sin(𝑠𝑥)𝑑𝑠 𝜋 0 ∞ B 2 𝑓(𝑥) = ∫ 𝐹𝑠 (𝑠) sin(𝑠𝑥)𝑑𝑠 𝜋 0 ∞ C 2 𝑓(𝑥) = ∫ 𝐹𝑠 (𝑠) cos(𝑠𝑥)𝑑𝑠 𝜋 0 ∞ D 𝑓(𝑥) = ∫ 𝐹𝑠 (𝑠) sin(𝑠𝑥)𝑑𝑠 0 Answer Marks 1.5 Unit III Id Question The inverse Fourier cosine transform is ∞ A 𝑓(𝑥) = ∫ 𝐹𝑐 (𝑠) sin(𝑠𝑥)𝑑𝑠 0 ∞ B 2 𝑓(𝑥) = ∫ 𝐹𝑐 (𝑠) cos(𝑠𝑥)𝑑𝑠 𝜋 −∞ ∞ C 2 𝑓(𝑥) = ∫ 𝐹𝑐 (𝑠) cos(𝑠𝑥)𝑑𝑠 𝜋 0 D None. Answer Marks 1.5 Unit III Id 𝑠 Question If 𝐹𝑐 {𝑓(𝑎𝑥)} = 𝑘𝐹𝑐 (𝑎) , then k is equal to A 2 𝑎 B 𝑎 C 1 𝑎 D None. Answer Marks 1.5 Unit III Id Question In the Fourier integral representation of the function ∞ 𝑓(𝑥) = ∫0 [𝐴(𝜆) cos 𝜆𝑥 + 𝐵(𝜆) sin 𝜆𝑥] 𝑑𝜆 , 𝐴(𝜆) is given by ∞ A ∫ 𝑓(𝑡) cos 𝜆𝑡 𝑑𝑡 −∞ B 1 ∞ ∫ 𝑓(𝑡) cos 𝜆𝑡 𝑑𝑡 𝜋 −∞ ∞ C ∫ 𝑓(𝑡) sin 𝜆𝑡 𝑑𝑡 −∞ D None. Answer Marks 1.5 Unit III Id Question In the Fourier integral representation of the function ∞ 𝑓(𝑥) = ∫0 [𝐴(𝜆) cos 𝜆𝑥 + 𝐵(𝜆) sin 𝜆𝑥] 𝑑𝜆 , 𝐵(𝜆) is given by A 1 ∞ ∫ 𝑓(𝑡) sin 𝜆𝑡 𝑑𝑡 𝜋 −∞ B 1 ∞ ∫ 𝑓(𝑡) cos 𝜆𝑡 𝑑𝑡 𝜋 −∞ ∞ C ∫ 𝑓(𝑡) sin 𝜆𝑡 𝑑𝑡 −∞ D None. Answer Marks 1.5 Unit III Id Question In the Fourier cosine integral representation of the function ∞ 𝑓(𝑥) = ∫0 𝐴(𝜆) cos 𝜆𝑥 𝑑𝜆 , 𝐴(𝜆) is given by A 2 ∞ ∫ 𝑓(𝑥) cos 𝜆𝑥 𝑑𝑥 𝜋 0 B 1 ∞ ∫ 𝑓(𝑥) cos 𝜆𝑥 𝑑𝑥 𝜋 0 ∞ C ∫ 𝑓(𝑥) cos 𝜆𝑥 𝑑𝑥 0 D None. Answer Marks 1.5 Unit III Id Question In the Fourier sine integral representation of the function 𝑓(𝑥) = ∞ ∫0 𝐵(𝜆) sin 𝜆𝑥 𝑑𝜆 , 𝐵(𝜆) is given by ∞ A ∫0 𝑓(𝑥) sin 𝜆𝑥 𝑑𝑥 B 1 ∞ ∫ 𝑓(𝑥) sin 𝜆𝑥 𝑑𝑥 𝜋 0 C 2 ∞ ∫ 𝑓(𝑥) sin 𝜆𝑥 𝑑𝑥 𝜋 0 D None. Answer Marks 1.5 Unit III Id Question The Fourier integral theorem is given by A 1 ∞ ∞ 𝑓(𝑥) = ∫ ∫ 𝑓(𝑡) cos[𝜆(𝑡 − 𝑥)] 𝑑𝑡 𝑑𝜆 𝜋 0 −∞ B 1 ∞ ∞ 𝑓(𝑥) = ∫ ∫ 𝑓(𝑡) cos[𝜆(𝑡 − 𝑥)] 𝑑𝑡 𝑑𝜆 𝜋 −∞ −∞ C 1 ∞ ∞ 𝑓(𝑥) = ∫ ∫ 𝑓(𝑡) cos[𝜆(𝑡 − 𝑥)] 𝑑𝑡 𝑑𝜆 2𝜋 −∞ −∞ D None. Answer Marks 1.5 Unit III Id Question If the Fourier transform of 𝑓(𝑥) is 𝐹(𝑠), then 𝐹(𝑠) is equal to ∞ A 𝐹(𝑠) = ∫ 𝑓(𝑡) 𝑒 −𝑖𝑠𝑡 𝑑𝑡 −∞ ∞ B 𝐹(𝑠) = ∫ 𝑓(𝑡) 𝑒 𝑖𝑠𝑡 𝑑𝑡 −∞ C 1 ∞ 𝐹(𝑠) = ∫ 𝑓(𝑡) 𝑒 𝑖𝑠𝑡 𝑑𝑡 𝜋 −∞ D None. Answer Marks 1.5 Unit III Id Question If the Fourier transform of 𝑓(𝑥) is 𝐹(𝑠), then 𝑓(𝑥) is equal to A 1 ∞ 𝑓(𝑥) = ∫ 𝐹(𝑠) 𝑒 −𝑖𝑠𝑥 𝑑𝑠 2𝜋 −∞ B 1 ∞ 𝑓(𝑥) = ∫ 𝐹(𝑠) 𝑒 −𝑖𝑠𝑥 𝑑𝑠 𝜋 0 ∞ C 𝑓(𝑥) = ∫ 𝐹(𝑠) 𝑒 𝑖𝑠𝑥 𝑑𝑠 −∞ D None. Answer Marks 1.5 Unit III Id 1 Question The Fourier cosine transform of 𝑓(𝑥) = 1+𝑥 2 is equal to 𝜋 𝑠 A 𝑒 4 𝜋 𝑠 B 𝑒 2 𝜋 −𝑠 C 𝑒 2 D None. Answer Marks 1.5 Unit III Id ∞ sin 𝑡 Question The value of ∫0 𝑡 𝑑𝑡 is equal to 𝜋 A 4 𝜋 B 2 C 0 D None. Answer Marks 1.5 Unit III Id Question If the Fourier cosine transform of 𝑓(𝑥) is 𝐹𝑐 (𝑠), then A 1 𝑠 𝐹𝑐 {𝑓(𝑎𝑥)} = 𝐹𝑠 ( ) 𝑎 𝑎 B 1 𝑠 𝐹𝑐 {𝑓(𝑎𝑥)} = 𝐹𝑐 ( ) 𝑎 𝑎 𝑠 C 𝐹𝑐 {𝑓(𝑎𝑥)} = 𝐹𝑐 ( ) 𝑎 D None. Answer Marks 1.5 Unit III Id Question The Fourier cosine transform of 𝒆−𝒙 is 𝑠 A 𝑠2 +1 B 1 𝑠2 + 1 𝑠 C 𝑠2 − 1 D None. Answer Marks 1.5 Unit III Id 2 2 Question The order of the partial differential equation 𝜕z + 𝜕 2z + 𝜕 z = 1 is 𝜕x 𝜕x 𝜕x 𝜕y A 1 B 2 C 3 D None. Answer Marks 1.5 Unit IV Id 2 Question The degree of the partial differential equation 𝜕z + 𝜕 z2 = 1 is. 𝜕x 𝜕y A 2 B 0 C 1 D None. Answer Marks 1.5 Unit IV Id Question The degree of the partial differential equation 2 𝜕2 z 𝜕z 𝜕z a 2 [𝜕x2 + 𝜕y] + 𝜕y = sin(x + y) is A 1 B 2 C 3 D None. Answer Marks 1.5 Unit IV Id Question The order of the partial differential equation 𝜕2 z 𝜕z 2 𝜕x2 + (𝜕y) = 1 is A 2 B 0 C 1 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a& b from z = ax + (1 − a)y + b is 𝜕z 𝜕z A 𝜕x + 𝜕y = 1 𝜕z 𝜕z B 𝜕x − 𝜕y = 1 𝜕z 𝜕z C 𝜕x + 𝜕y = 0 D None Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a& b from z = ax + by + ab is A z = xp + yq − pq B z = xp + yq + pq C z = xp − yq − pq D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a and b from z = (x2 + a2 )(y2 + b2 ) is A 2xyz = pq B xyz = pq C 4xyz = pq D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a and b from z = ax3 + by3 is A z = xp + yq B z = xp + yq + pq C 3z = xp + yq D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the arbitrary function f from z = f(y2 − x2 ) is A yp + xq = 0 B yp − xq = 0 C xp + yq = 0 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the arbitrary function f from z = x + y + f(xy) is A px − qy = x − y B px + qy = x + y C py − qx = x + y D None. Answer Marks 1.5 Unit IV Id Question The general solution of 3p + 4q = 7 is given by A ɸ(4x − 3y ,7x − 3z) = 0 B ɸ(4x + 3y ,7x + 3z) = 0 C ɸ(4x − 3y ,7x + 3z) = 0 D None Answer Marks 1.5 Unit IV Id Question The general solution of xp + yq = z is given by x y A ɸ (y , z) = 0 B ɸ(xy , z ) = 0 C ɸ(xy , yz ) = 0 D None Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating arbitrary function from z = f(x + it) + g(x − it) is 𝜕2 z 𝜕2 z A 2 + 2 = 0 𝜕x 𝜕t 𝜕2 z 𝜕2 z B + 𝜕y2 = 0 𝜕x2 𝜕2 z 𝜕2 z C − 𝜕t2 = 0 𝜕x2 D None Answer Marks 1.5 Unit IV Id Question The partial differential equation for one dimensional heat equation is 𝜕2 u 𝜕u A 2 = 𝜕t 𝜕x 𝜕u 2 B 2𝜕 u 𝜕t =c 𝜕x2 𝜕2 u 𝜕2 u C = c 2 𝜕x2 𝜕t2 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the function from z = f(x2 − y2 ) A yp + xq = 0 B xp − yq = 0 C xp + yq = 0 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the function from z = eny ∅(x − y) A p − q = nz B p+q=n C p + q = nz D None. Answer Marks 1.5 Unit IV Id Question The general solution of 2p + 3q = a is given by A ɸ(3x − 2y , ay − 3z) = 0 B ɸ(3x + 2y , ay − 3z) = 0 C ɸ(3x − 2y , ay + 3z) = 0 D None. Answer Marks 1.5 Unit IV Id Question The general solution of zp = −x is given by A ɸ(x 2 + z 2 , y ) = 0 B ɸ(x 2 − z 2 , y ) = 0 C ɸ(x 2 + z 2 , 2 y ) = 0 D None. Answer Marks 1.5 Unit IV Id Question Temperature distribution of the plate in unsteady state is given by the equation 𝜕u 𝜕2 u 𝜕2 u A = c2 ( 2 + 2 ) 𝜕t 𝜕x 𝜕y 𝜕2 u 𝜕2 u 𝜕2 u B = c 2 ( 𝜕x2 + 𝜕y2 ) 𝜕t2 𝜕2 u 2 𝜕 u 2 𝜕2 u 𝜕2 u =c ( + + ) 𝜕t2 𝜕x 2 𝜕y 2 𝜕z2 C D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation for one dimensional wave equation is 𝜕2 y 𝜕y A 2 = 𝜕t 𝜕x 𝜕y 𝜕2 y B = c 2 𝜕x2 𝜕t 𝜕2 y 𝜕2 y C = c 2 𝜕x2 𝜕t2 D None. Answer Marks 1.5 Unit IV Id Question The Laplace equation in two dimension is 𝜕2 u 𝜕2 u A 2 + 2 = 0 𝜕x 𝜕y 𝜕2 u 𝜕2 u B − 𝜕y2 = 0 𝜕x2 𝜕2 u 𝜕2 u C = 𝜕x2 𝜕y2 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the constants a and b from z = (x2 − a)(y2 − b) is 𝜕z 𝜕z A 4xyz = (𝜕x) (𝜕y) 𝜕z 𝜕z B 4 = (𝜕x) (𝜕y) 𝜕z 𝜕z C 4xy = (𝜕x) (𝜕y) D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation formed by eliminating the function y f from z = f (x) is 𝜕z 𝜕z A y (𝜕x) + x (𝜕y) = 0 𝜕z 𝜕z B (𝜕x) + (𝜕y) = 0 𝜕z 𝜕z C x (𝜕x) + y (𝜕y) = 0 D None. Answer Marks 1.5 Unit IV Id Question The general solution of the one dimensional heat flow equation 𝜕u 2 2𝜕 u 𝜕t = C 𝜕x2 is 2 2 A u = (c1 emx + c2 e−mx )c3 em c t B u = c1 (c2 x + c3 ) 2 c2 C u = (c1 cosmx + c2 sinmx)c3 e−m t D None. Answer Marks 1.5 Unit IV Id Question If u = c1 , v = c2 are the two solutions of Pp + Qq = R, then its general solution will be A ∅(u, v) = 1 B ∅(u, v) = −1 C ∅(u, v) = 0 D None. Answer Marks 1.5 Unit IV Id 𝒅2 𝒚 𝒅𝒚 Question The differential equation 𝒙2 𝒅𝒙2 + 𝒙 (𝒅𝒙) + (𝒙2 − 25)𝒚 = 0 is called A Bessel's differential equation of order 5 B Bessel's differential equation of order 4 C Bessel's differential equation of order 2 D None. Answer Marks 1.5 Unit V Id Question 𝑱−1 (𝒙) is equal to 2 A 2 √( ) 𝑐𝑜𝑠𝑥 𝜋𝑥 B 2 √( ) 𝑠𝑖𝑛𝑥 𝜋𝑥 C 𝜋𝑥 √( ) 𝑐𝑜𝑠𝑥 2 D None. Answer Marks 1.5 Unit V Id Question 𝑱1 (𝒙) is equal to 2 A 2 √( ) 𝑐𝑜𝑠𝑥 𝜋𝑥 B 2 √( ) 𝑠𝑖𝑛𝑥 𝜋𝑥 C 𝜋𝑥 √( ) 𝑐𝑜𝑠𝑥 2 D None. Answer Marks 1.5 Unit V Id 2 2 Question [ 𝑱1 (𝒙)] + [𝑱−1 (𝒙)] is equal to 2 2 2 A 𝜋𝑥 𝜋𝑥 B 2 C 1 𝜋𝑥 D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝒅𝒙 { 𝒙𝒏 𝑱𝒏 (𝒙)} is equal to A 𝑥 𝑛 𝐽𝑛 (𝑥) B 𝑥 𝑛 𝐽𝑛−1 (𝑥) C 𝑥 𝑛 𝐽𝑛+1 (𝑥) D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝒅𝒙 { 𝒙−𝒏 𝑱𝒏 (𝒙)} is equal to A −𝑥 −𝑛 𝐽𝑛 (𝑥) B −𝑥 𝑛 𝐽𝑛+1 (𝑥) C −𝑥 −𝑛 𝐽𝑛+1 (𝑥) D None. Answer Marks 1.5 Unit V Id Question The value of 𝑱−𝒏 (𝒙) is A (−1)𝑛 𝐽𝑛 (𝑥) B −1)𝑛−1 𝐽𝑛 (𝑥) C (−1)𝑛 𝐽𝑛+1 (𝑥) D None. Answer Marks 1.5 Unit V Id Question Which recurrence relation is true A 2𝑛 𝐽𝑛+1 (𝑥) = 𝐽 (𝑥) − 𝐽𝑛−1 (𝑥) 𝑥 𝑛 𝑛 B 𝐽𝑛+1 (𝑥) = 𝐽𝑛 (𝑥) − 𝐽𝑛−1 (𝑥) 𝑥 C 2𝑛 𝐽𝑛+1 (𝑥) = 𝐽 (𝑥) + 𝐽𝑛−1 (𝑥) 𝑥 𝑛 D None. Answer Marks 1.5 Unit V Id Question The Bessel equation of order zero is A 𝑑2 𝑦 𝑑𝑦 𝑥2 2 −𝑥 + (𝑥 2 − 𝑛2 )𝑦 = 0 𝑑𝑥 𝑑𝑥 B 𝑑2 𝑦 𝑑𝑦 𝑥 2+ − 𝑥𝑦 = 0 𝑑𝑥 𝑑𝑥 C 𝑑2 𝑦 𝑑𝑦 𝑥 2+ + 𝑥𝑦 = 0 𝑑𝑥 𝑑𝑥 D None. Answer Marks 1.5 Unit V Id Question The value of 𝑱0 (0) is A 0 B -1 C 1 D None. Answer Marks 1.5 Unit V Id Question Which recurrence relation is false 𝑛 A 𝐽𝑛 ′ (𝑥) + 𝐽𝑛 (𝑥) = 𝐽𝑛−1 (𝑥) 𝑥 𝑛 B ′ 𝐽𝑛 (𝑥) − 𝐽𝑛 (𝑥) = −𝐽𝑛+1 (𝑥) 𝑥 C 2𝐽𝑛 ′ (𝑥) = 𝐽𝑛−1 (𝑥) − 𝐽𝑛+1 (𝑥) D None. Answer Marks 1.5 Unit V Id Question 𝑱−𝒏 (𝒙) is equal to ∞ A (−1)𝑟 (𝑥)𝑛+2𝑟 ∑ (2)𝑛+2𝑟 𝛤𝑛 + 𝑟 + 1 𝑟=0 ∞ B (−1)𝑟 (𝑥)−𝑛+2𝑟 ∑ (2)−𝑛+2𝑟 𝛤 − 𝑛 + 𝑟 + 1 𝑟=0 ∞ C (−1)𝑟 (𝑥)2𝑟 ∑ (2)2𝑟 𝛤𝑛 + 𝑟 + 1 𝑟=0 D None. Answer Marks 1.5 Unit V Id Question If ∝ 𝑎𝑛𝑑 𝛽 are the roots of the equation 𝐽𝑛 (𝑥) = 0 , then the value of integral 1 ∫0 𝒙 𝑱𝒏 (∝ 𝒙)𝑱𝒏 (𝜷𝒙) 𝒅𝒙 if ∝ ≠ 𝜷 is A 0 B 1 1 C [𝐽𝑛+1 (∝)]2 2 D None. Answer Marks 1.5 Unit V Id Question If ∝ 𝑎𝑛𝑑 𝛽 are the roots of the equation 𝐽𝑛 (𝑥) = 0 , then the value of integral 1 ∫0 𝒙 𝑱𝒏 (∝ 𝒙)𝑱𝒏 (𝜷𝒙) 𝒅𝒙 if ∝ = 𝜷 is 1 A [𝐽𝑛+1 (∝)]2 2 B [𝐽𝑛+1 (∝)]2 1 C [𝐽 (∝)]2 2 𝑛−1 D None. Answer Marks 1.5 Unit V Id Question The value of 𝑱1 (𝒙) is 2 A 𝐽−1 (𝑥) 𝑡𝑎𝑛𝑥 2 B 𝐽−1 (𝑥) 𝑠𝑖𝑛𝑥 2 C 𝐽−1 (𝑥) 𝑐𝑜𝑡𝑥 2 D None. Answer Marks 1.5 Unit V Id Question 𝑱−5 (𝒙) is equal to 2 A 2 √( ) {( 3−𝑥 2 3 ) 𝑐𝑜𝑠𝑥 + 𝑥 𝑠𝑖𝑛𝑥} 𝜋𝑥 𝑥2 B 2 √( ) { ( 3+𝑥 2 3 ) 𝑐𝑜𝑠𝑥 + 𝑥 𝑠𝑖𝑛𝑥} 𝜋𝑥 𝑥2 C 2 √( ) {( 3−𝑥 2 3 ) 𝑠𝑖𝑛𝑥 − 𝑥 𝑐𝑜𝑠𝑥} 𝜋𝑥 𝑥2 D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝑱 (𝒙) 𝒅𝒙 0 is equal to A 𝐽1 (𝑥) B −𝐽1 (𝑥) C 𝐽0 (𝑥) D None. Answer Marks 1.5 Unit V Id Question 𝑱5 (𝒙) is equal to 2 A 2 √( ) {( 3−𝑥 2 3 ) 𝑠𝑖𝑛𝑥 − 𝑥 𝑐𝑜𝑠𝑥} 𝜋𝑥 𝑥2 B 2 √( ) {( 3−𝑥 2 3 ) 𝑠𝑖𝑛𝑥 + 𝑥 𝑐𝑜𝑠𝑥} 𝜋𝑥 𝑥2 C 2 √( ) {( 3−𝑥 2 1 ) 𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥} 𝜋𝑥 𝑥2 𝑥 D None. Answer Marks 1.5 Unit V Id Question 𝑱3 (𝒙) is equal to 2 A 2 √( ) {( 𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥)} 𝜋𝑥 𝑥 B 2 √( ) {( 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)} 𝜋𝑥 𝑥 C 2 √( ) {( 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥)} 𝜋𝑥 𝑥 D None. Answer Marks 1.5 Unit V Id Question 𝑱−3 (𝒙) is equal to 2 A 2 √( ) {(− 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥)} 𝜋𝑥 𝑥 B 2 √( ) {( 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥)} 𝜋𝑥 𝑥 C 2 √( ) {( 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)} 𝜋𝑥 𝑥 D None. Answer Marks 1.5 Unit V Id Question 𝑱4 (𝒙) is equal to A 48 8 24 ( 3 − ) 𝐽1 (𝑥) − ( 2 − 1) 𝐽0 (𝑥) 𝑥 𝑥 𝑥 48 8 24 B (𝑥 3 − 𝑥) 𝐽1 (𝑥) + (𝑥 2 − 1) 𝐽0 (𝑥) C 48 8 24 ( 3 − ) 𝐽0 (𝑥) − ( 2 − 1) 𝐽1 (𝑥) 𝑥 𝑥 𝑥 D None. Answer Marks 1.5 Unit V Id Question 4 𝑱𝒏 ʺ (𝒙) is equal to A 𝐽𝑛−2 (𝑥) − 2𝐽𝑛 (𝑥) + 𝐽𝑛+2 (𝑥) B 𝐽𝑛−2 (𝑥) + 2𝐽𝑛 (𝑥) + 𝐽𝑛+2 (𝑥) C 𝐽𝑛−2 (𝑥) + 2𝐽𝑛 (𝑥) − 𝐽𝑛+2 (𝑥) D None. Answer Marks 1.5 Unit V Id 𝑑 Question 𝑑𝑥 [𝑥 𝐽1 (𝑥)] is equal to A 𝑥 𝐽0 (𝑥) B 𝐽0 (𝑥) C 𝐽1 (𝑥) D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝒅𝒙 [𝒙𝒏 𝑱𝒏 (𝒂𝒙)] is equal to A 𝑎 𝑥 𝑛 𝐽𝑛−1 (𝑎𝑥) B 𝑎 𝑥 −𝑛 𝐽𝑛−1 (𝑎𝑥) C 𝑎 𝑥 𝑛 𝐽𝑛+1 (𝑥) D None. Answer Marks 1.5 Unit V Id Question 𝑱1 ʺ (𝒙) is equal to A 1 𝐽1 (𝑥) − 𝐽2 (𝑥) 𝑥 B 1 𝐽1 (𝑥) + 𝐽2 (𝑥) 𝑥 C 𝐽1 (𝑥) − 𝐽2 (𝑥) D None. Answer Marks 1.5 Unit V Id Question Which of the following functions is an analytic function A f(z) = z̅ B f(z) = sinz C f(z) = Im(z) D None. Answer Marks 1.5 Unit VI Id Question The function f(z) = |z|2 is analytic at A everywhere B no where C origin D None Answer Marks 1.5 Unit VI Id Question If f(z)= u + iv is an analytic function , then f ′(z) is equal to 𝜕u 𝜕v A 𝜕x − i 𝜕x B 𝜕u 𝜕v +i 𝜕x 𝜕x 𝜕u 𝜕v C 𝜕x − i 𝜕y D None Answer Marks 1.5 Unit VI Id Question If the function u = ax3 + bx2 y + cxy 2 + dy3 is to be harmonic, if A c = 3d and b = 3a B c = −3a and b = −3d C c = 3a and b = 3d D None Answer Marks 1.5 Unit VI Id Question If the function 2x + x2 +∝ y2 is to be harmonic , then the value of ∝ will be A -1 B 1 C 2 D None Answer Marks 1.5 Unit VI Id Question The transformation w = az+b cz+d , where ad − bc ≠0 represents a transformation called A Magnification and rotation B Bilinear C Inversion D None Answer Marks 1.5 Unit VI Id Question The transformation w = cz represents a transformation called A Magnification and rotation B Translation C Inversion D None Answer Marks 1.5 Unit VI Id Question The analytic function f(z) = zz−1 2 +1 has singularities at A 1& − 1 B i & − i. C 1& − i D None Answer Marks 1.5 Unit VI Id Question The value of m for the function u = 2x − x2 + my2 to be harmonic is A 0 B 1 C 2 D None Answer Marks 1.5 Unit VI Id Question A function u( x, y) is said to be harmonic if 𝜕2 u 𝜕2 u A + 𝜕y2 = 0 𝜕x2 𝜕u 𝜕u B 𝜕x + 𝜕y = 0 𝜕2 u 𝜕2 u C − 𝜕x2 = 0 𝜕x2 D None Answer Marks 1.5 Unit VI Id Question Which of the following is a bilinear transformation 2z+1 A w = 4z+2 2z+1 B w = 4z−2 C w=z D None Answer Marks 1.5 Unit VI Id Question The transformation w = z + α is known as A Magnification and rotation B Translation C Inversion D None Answer Marks 1.5 Unit VI Id Question If real part of function f(z) constant, then f(z) is A Analytic function B Nowhere analytic function C Entire function D None Answer Marks 1.5 Unit VI Id Question The Cauchy - Riemann equations for f(z) = u(x, y) + iv(x, y) to be analytic are 𝜕2 u 𝜕2 u 𝜕2 v 𝜕2 v A 2 + 2 = 0; 2 + 2 = 0 𝜕x 𝜕y 𝜕x 𝜕y B 𝜕u 𝜕v 𝜕u 𝜕v =− ; =− 𝜕x 𝜕y 𝜕y 𝜕x 𝜕u 𝜕v 𝜕u 𝜕v C 𝜕x = 𝜕y ; 𝜕y = − 𝜕x D None Answer Marks 1.5 Unit VI Id Question If f(z) = u + iv is analyticin polar form, then 𝜕u 𝜕r is 𝜕v A 𝜕Ѳ B 𝜕v r 𝜕Ѳ C 1 𝜕v r 𝜕Ѳ D None Answer Marks 1.5 Unit VI Id Question Which of the following is true : A Re(z1 − z2 ) = Re(z1 ) − Re(z2 ) B Re(z1 z2 ) = Re(z1 )Re(z2 ) C |z1 − z2 | = |z1 | − |z2 | D None Answer Marks 1.5 Unit VI Id Question f(z) = z̅ is differentiable A Nowhere B only at z = 0 C Everywhere D None. Answer Marks 1.5 Unit VI Id Question The polar form of Cauchy - Riemann equations are 𝜕u 1 𝜕v 𝜕u 𝜕v A 𝜕Ѳ = ; r 𝜕r 𝜕r = r 𝜕Ѳ 𝜕u 𝜕v 𝜕u 1 𝜕v B 𝜕Ѳ = r 𝜕Ѳ ; 𝜕r = r 𝜕Ѳ 𝜕u 1 𝜕v 𝜕u 𝜕v C 𝜕r = ; r 𝜕Ѳ 𝜕Ѳ = −r 𝜕r D None. Answer Marks 1.5 Unit VI Id Question f(z) = ex (cosy − isiny)is A analytic B Not analytic Analytic when z = 0 C D None. Answer Marks 1.5 Unit VI Id Question The harmonic conjugate of u(x, y) = ey cosx is A −ey cosy + c B −ey sinx + c C ey sinx + c D None. Answer Marks 1.5 Unit VI Id Question Function u is said to be harmonic if and only if A uxx + uyy = 0 B uxx − uyy = 0 C ux + uy = 0 D None. Answer Marks 1.5 Unit VI Id Question If u and v are harmonic functions then f(z)= u+iv is A Analytic function B Need not be analytic function C Analytic function only at z=0 D None. Answer Marks 1.5 Unit VI Id Question If eax cosy is harmonic ,then a = A i B 0 C -1 D None. Answer Marks 1.5 Unit VI Id Question The function f(z) = |z| is a nonconstant A Nowhere analytic function B analytic function only at z = 0 C Everywhere analytic function D None. Answer Marks 1.5 Unit VI Id Question f(z) = |z̅|2 is differentiable A nowhere B only at z = 0 C everywhere D None. Answer Marks 1.5 Unit VI Engineering Mathematics-III MCQ’s of all six Chapters Unit 03 Fourier Transform Id 1 Question Fourier sine transform of 𝑓(𝑥) = 𝑒 −𝛽𝑥 A 2 λ √ 𝜋 𝛽 − λ2 2 B 2 𝛽 √ 𝜋 𝛽 + λ2 2 C 2 𝛽 √ 𝜋 𝛽 − λ2 2 D 2 λ √ 𝜋 𝛽 + λ2 2 Answer B Marks 2 Unit 3 Id 2 Question 1, |𝑥| < 𝑎 The Fourier Transform of 𝑓(𝑥) = { 0, |𝑥| > 𝑎 A 2 cos 𝜆𝑎 √ 𝜋 𝜆 B 2 sin 𝜆𝑎 √ 𝜋 𝜆 C 1 sin 𝜆𝑎 √ 𝜋 𝜆 D 2 cos 𝜆𝑎 √ 𝜋 𝜆 Answer B Marks 2 Unit 3 Id 3 Question If 𝑓(𝑥) = 𝑐𝑜𝑠 𝑥 ; −∞ < 𝑥 < ∞ 𝑖𝑠 ? A None B Odd function C Neither Even nor Odd D Even function Answer D Marks 1 Unit 3 Id 4 Question If 𝑓(𝑥) is define in 0 < 𝑥 < ∞ , then sine transform of 𝑓(𝑥) is ? A ∞ 2 𝐹𝑠 (𝜆) = √ ∫ 𝑓(𝑢) sin 𝜆𝑢 𝑑𝑢 𝜋 0 B ∞ 2 𝐹𝑠 (𝜆) = √ ∫ 𝑓(𝑢) cos 𝜆𝑢 𝑑𝑢 𝜋 0 C 𝑎 2 𝐹𝑠 (𝜆) = √ ∫ 𝑓(𝑢) sin 𝜆𝑢 𝑑𝑢 𝜋 −𝑎 D 𝑎 2 𝐹𝑠 (𝜆) = √ ∫ 𝑓(𝑢) cos 𝜆𝑢 𝑑𝑢 𝜋 −𝑎 Answer A Marks 1 Unit 3 Id 5 Question Complex form of Fourier Transform of 𝑓(𝑥) is ? A ∞ 2 𝐹(𝜆) = √ ∫ 𝑓(𝑢) cos 𝜆𝑢 𝑑𝑢 𝜋 0 ∞ B 1 𝐹(𝜆) = ∫ 𝑓(𝑢) 𝑒 𝑖𝜆𝑢 𝑑𝑢 √2𝜋 −∞ C ∞ 2 𝐹(𝜆) = √ ∫ 𝑓(𝑢) sin 𝜆𝑢 𝑑𝑢 𝜋 0 𝑎 D 1 𝐹(𝜆) = ∫ 𝑓(𝑢) 𝑒 𝑖𝜆𝑢 𝑑𝑢 √2𝜋 −𝑎 Answer B Marks 1 Unit 3 Id 6 Question The Fourier cosine integral representation of 𝑓(𝑥) is 𝑎 𝑎 A 2 𝑓(𝑥) = ∫ cos 𝜆𝑥 [∫ 𝑓(𝑢) cos 𝜆𝑢 𝑑𝑢] 𝑑𝜆 𝜋 0 0 ∞ ∞ B 2 𝑓(𝑥) = ∫ sin 𝜆𝑥 [∫ 𝑓(𝑢) sin 𝜆𝑢 𝑑𝑢] 𝑑𝜆 𝜋 0 0 ∞ ∞ C 2 𝑓(𝑥) = ∫ cos 𝜆𝑥 [∫ 𝑓(𝑢) cos 𝜆𝑢 𝑑𝑢] 𝑑𝜆 𝜋 0 0 𝑎 𝑎 D 2 𝑓(𝑥) = ∫ sin 𝜆𝑥 [∫ 𝑓(𝑢) sin 𝜆𝑢 𝑑𝑢] 𝑑𝜆 𝜋 0 0 Answer C Marks 1 Unit 3 Id 7 Question If 𝑓(𝑥) = 𝑥 3 + 𝑥 ; −∞ < 𝑥 < ∞ 𝑖𝑠 ? A None B Odd function C Neither Even nor Odd D Even function Answer B Marks 1 Unit 3 Id 8 Question Fourier cosine transform of 𝑓(𝑥) = 𝑘 ; 0 < 𝑥 < 𝑎 𝑖𝑠 ? A 2 𝑘 sin 𝜆𝑎 𝐹𝑐 (𝜆) = √ 𝜋 𝜆 B 2 𝑘 cos 𝜆𝑎 𝐹𝑐 (𝜆) = √ 𝜋 𝜆 C 2 𝑘 sin 𝜆𝑎 𝐹𝑐 (𝜆) = −√ 𝜋 𝜆 D 2 𝑘 cos 𝜆𝑎 𝐹𝑐 (𝜆) = −√ 𝜋 𝜆 Answer A Marks 2 Unit 3 Id 9 Question The Fourier sine integral representation of 𝑓(𝑥) = 1 ; 0 < 𝑥 < 1 𝑖𝑠 ∞ A 2 1 + cos 𝜆 𝑓(𝑥) = ∫ [ ] sin 𝑥𝜆 𝑑𝜆 𝜋 𝜆 0 ∞ B 2 1 − sin 𝜆 𝑓(𝑥) = ∫ [ ] sin 𝑥𝜆 𝑑𝜆 𝜋 𝜆 0 ∞ C 2 1 − cos 𝜆 𝑓(𝑥) = ∫ [ ] sin 𝑥𝜆 𝑑𝜆 𝜋 𝜆 0 ∞ D 2 1 + sin 𝜆 𝑓(𝑥) = ∫ [ ] sin 𝑥𝜆 𝑑𝜆 𝜋 𝜆 0 Answer C Marks 2 Unit 3 Id 10 Question If 𝑓(𝑥) is define in 0 < 𝑥 < ∞ , then cosine transform of 𝑓(𝑥) is ? A 2 ∞ 𝐹𝑐 (𝜆) = √𝜋 ∫0 𝑓(𝑢) sin 𝜆𝑢 𝑑𝑢 B 2 ∞ 𝐹𝑐 (𝜆) = √𝜋 ∫0 𝑓(𝑢) cos 𝜆𝑢 𝑑𝑢 C 2 𝑎 𝐹𝑐 (𝜆) = √𝜋 ∫−𝑎 𝑓(𝑢) sin 𝜆𝑢 𝑑𝑢 D 2 𝑎 𝐹𝑐 (𝜆) = √𝜋 ∫−𝑎 𝑓(𝑢) cos 𝜆𝑢 𝑑𝑢 Answer B Marks 1 Unit 3 Id 11 Question Fourier sine transform of 𝑓(𝑥) = 𝑎 ; 0 < 𝑥 < 1 is ? A 2 𝑎(1 − cos 𝜆) 𝐹𝑠 (𝜆) = √ 𝜋 𝜆 B 2 (1 − cos 𝜆) 𝐹𝑠 (𝜆) = √ 𝜋 𝜆 C 2 𝑎(1 − sin 𝜆𝑎) 𝐹𝑠 (𝜆) = √ 𝜋 𝜆 D 2 (1 − sin 𝜆𝑎) 𝐹𝑠 (𝜆) = √ 𝜋 𝜆 Answer A Marks 2 Unit 3 Id 12 Question If 𝒇(𝒙) is odd function then Fourier integral of 𝒇(𝒙) reduces to A Fourier cosine integral B Fourier sine integral C Fourier complex integral D Fourier Even odd integral Answer B Marks 1 Unit 3 Id 13 Question 𝑎, |𝑥| ≤ 1 The Fourier Transform of 𝑓(𝑥) = { 0, |𝑥| > 1 A 2 𝑎 sin 𝜆 √ 𝜋 𝜆 B 2 𝑎 cos 𝜆 √ 𝜋 𝜆 C 1 sin 𝜆𝑎 √ 𝜋 𝜆 D 2 cos 𝜆𝑎 √ 𝜋 𝜆 Answer A Marks 2 Unit 3 Id 14 Question If 𝑓(𝑥) = sin 2𝑥 ; −∞ < 𝑥 < ∞ is ? A None B Odd function C Neither Even nor Odd D Even function Answer B Marks 1 Unit 3 Id 15 Question If 𝒇(𝒙) is even function then fourier integral of 𝒇(𝒙) reduces to A cosine integral B sine integral C complex integral D Even odd integral Answer A Marks 1 Unit 3 Id 16 Question The inverse Fourier transform of 𝑓(𝑥) in the interval(−∞, ∞) is defined as.. ∞ A 2 ∫0 𝑓(𝑢)𝑒 −𝑖𝜔𝑢 𝑑𝑢 B 1 ∞ ∫ 𝑓(𝜔)𝑒 𝑖𝜔𝑥 𝑑𝜔 2𝜋 −∞ ∞ C ∫ 𝑓(𝑢)𝑒 −𝑖𝜔𝑢 𝑑𝑢 −∞ ∞ D 2 ∫ 𝑓(𝜔)𝑒 𝑖𝜔𝑥 𝑑𝜔 0 Answer B Marks 1 Unit 3 Id 17 Question −3, |𝑥| ≤ 1 The Fourier transform of the function𝑓(𝑥) = { is 𝑓(𝜔) =….. 0, |𝑥| > 1 A 𝑠𝑖𝑛𝜔 𝜔 B 𝑠𝑖𝑛𝜔3 𝜔 C −𝟑𝒔𝒊𝒏𝝎 𝝎 D none of these Answer C Marks 2 Unit 3 Id 18 Question The Fourier transform of the function𝑓(𝑥) = { 1, −2 ≤ 𝑥 ≤ 0 is 𝑓(𝜔) =….. −1, 0 ≤ 𝑥 ≤ 2 A 𝑐𝑜𝑠2𝜔 − 1 𝜔 B 1+𝑐𝑜𝑠2𝜔 𝜔 C 1+sin2ω ω D none of these Answer A Marks 2 Unit 3 Id 19 Question The Fourier transform of the function𝑓(𝑥) = { 𝑥, 𝑥 > 0 is 𝑓(𝜔) =….. 0, 𝑥 < 0 A 1 ω B −𝟏 𝝎𝟐 C −1 ω D 1 , ω2 Answer B Marks 2 Unit 3 Id 20 Question If the Fourier transform of the odd function 𝑓(𝑥) = { 1, −2 ≤ 𝑥 ≤ 0 is 𝐶𝑂𝑆2𝜔−1 Then −1, 0 ≤ 𝑥 ≤ 2 𝜔 ∞ (𝑐𝑜𝑠2𝑥−1)𝑠𝑖𝑛2𝑥 using Fourier representation value of ∫0 𝑑𝑥 is… 𝑥 A 2𝜋 −𝝅 B 𝟐 C π 2 D none of these Answer B Marks 2 Unit 3 Id 21 ∞ Question If the integral equation is ∫0 𝑓(𝑥)𝑠𝑖𝑛𝜔𝑥𝑑𝑥 = 𝑒 −𝜔 , 𝜔 > 0 by using Inverse Fourier transform with 𝐹𝑐 (𝜔) = 𝑒 −𝜔 , 𝜔 > 0 then the value of 𝑓(𝑥) =… A 2(𝑥 + 1) 𝜋(𝑥 − 1) B 2𝑥 (1 + 𝑥 2 ) C 2𝑥 𝜋(1 + 𝑥 2 ) D None of these Answer C Marks 1 Unit 3 Id 22 Question ∞ 2𝑐𝑜𝑠𝜔𝑥 In Fourier cosine integral representation ∫0 𝑑𝜔 = { 0, 𝑥 < 0 such that 𝐹𝑠 (𝜔) 1+𝜔 2 𝜋𝑒 −𝑥 , 𝑥 > 0 is … A 1 1 + 𝜔2 B 𝜋 1 + 𝜔2 C 2𝑐𝑜𝑠𝜔𝑥 1−𝜔 2 D 2 1 + 𝜔2 Answer B Marks 1 Unit 3 Id 23 Question The Fourier transform of 𝑓(𝑥) = { 𝑠𝑖𝑛, 0 < 𝑥 < 𝜋 is 𝑓(𝝎)=… 0, 𝑥 < 0 𝑜𝑟 𝑥 > 𝜋 𝜋 A ∫ 𝑒 −𝑖𝜔𝑢 𝑠𝑖𝑛𝑢 𝑑𝑢 0 ∞ B ∫ 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝜔𝑥 𝑑𝑥 −∞ ∞ C ∫ 𝑠𝑖𝑛𝑢 𝑠𝑖𝑛𝜔𝑢 𝑑𝑢 0 𝜋 D ∫ 𝑒 −𝑖𝜔𝑢 𝑠𝑖𝑛𝑥 𝑑𝜔 0 Answer A Marks 1 Unit 3 Id 24 Question The Fourier sine transform of the function 𝑓(𝑥)=𝑒 −2𝑥 − 𝑒 −3𝑥 is 𝐹𝑠 (𝜔) A 𝟐 𝟑 + 9+𝜔2 4+𝜔 2 B 𝟐 𝟑 − 9+𝜔2 4+𝜔 2 C 𝝎 𝝎 2 + 4+𝜔 9 + 𝜔2 𝝎 𝝎 D − 𝟗+𝝎𝟐 𝟒+𝝎𝟐 Answer D Marks 1 Unit 3 Id 25 Question The Fourier cosine transform of 𝑓(𝑥) = 𝑒 −𝑥 is …. ω A 1+ω2 ω B ω2 −1 C 1 1 + 𝜔2 D none of these Answer C Marks 1 Unit 3 Id 26 Question If 𝐹{𝑓(𝑥)} = 𝐹(𝜔) and If 𝐹{𝑔(𝑥)} = 𝐺(𝜔) , by parseval’s identity 1 ∞ ̅̅̅̅̅̅dω =… ∫ 𝑓(ω)g(ω) 2𝜋 −∞ ∞ A ̅̅̅̅̅̅dx ∫ 𝑓(x)g(x) 0 B 1 ∞ ̅̅̅̅̅̅dx ∫ f(x)g(x) 2π −∞ ∞ C ̅̅̅̅̅̅̅𝑑𝜔 ∫ 𝑓(𝜔)𝑔(𝜔) −∞ D None of these Answer C Marks 1 Unit 3 Id 27 1 ∞ Question If 𝐹{𝑓(𝑥)} = 𝐹(𝜔) by parseval’s identity 2𝜋 ∫−∞[f(ω)]2 dω =… A 1 ∞ ∫ [f(x)]2 dx 𝜋 −∞ ∞ B ∫ [f(x)]2 dx −∞ ∞ C 2𝜋 ∫ [f(x)]2 dx 0 D None of the above Answer B Marks 1 Unit 3 Id 28 Question The Parseval’s identity for Fourier cosine transform is …. 2 ∞ ∞ A ∫ 𝐹 (𝜔) ∗ 𝐺𝑐 (𝜔)𝑑𝜔=∫0 𝑓(𝑥) ∗ 𝑔(𝑥)𝑑𝑥 𝜋 0 𝑐 ∞ ∞ B ∫0 𝐹𝑐 (𝜔) ∗ 𝐺𝑐 (𝜔)𝑑𝜔=∫0 𝑓(𝑥) ∗ 𝑔(𝑥)𝑑𝑥 C 2 ∞ ∞ ∫ 𝐹 (𝜔) 𝜋 −∞ 𝑐 ∗ 𝐺𝑐 (𝜔)𝑑𝜔=∫0 𝑓(𝑥) ∗ 𝑔(𝑥)𝑑𝑥 D None Answer A Marks 1 Unit 3 Id 29 Question The Parseval’s identity for Fourier sine transform is …. A 2 ∞ ∞ ∫ [𝐹 (𝜔)] 𝑑𝜔 = ∫ [𝑓(𝑥)]2 𝑑𝑥 2 𝜋 0 𝑠 0 B 2 ∞ ∞ ∫ [F (ω)] dω = ∫ [f(x)]2 dx 2 𝜋 −∞ s 0 ∞ ∞ C ∫ [Fs (ω)]2 dω = ∫ [f(x)]2 dx 0 0 D None of the above Answer A Marks 1 Unit 3 Id 30 Question If 𝐹(𝜔) is the Fourier transform of 𝑓(𝑥), then the Fourier transform of 𝑓(𝑎𝑥) is… A 𝜔 𝐹( ) 𝑎 B 1 𝐹(𝜔) 𝑎 C 1 𝜔 𝐹( 𝑎 ) 𝑎 D 𝑁𝑜𝑛𝑒 𝑜𝑓 𝑎𝑏𝑜𝑣𝑒 Answer 𝑪 Marks 1 Unit 3 Id 31 Question The Fourier sine transform of 𝑓(𝑥) = 𝑒 −|𝑥| is 𝝎 A 𝝎𝟐 +𝟏 B 1 𝜔2 +1 C 𝜔 2 𝜔 −1 D None of the above Answer A Marks 1 Unit 3 Id 32 Question 1, 0 ≤ 𝜔 ≤ 1 If 𝐹𝑠 (𝜔) = {2, 1 ≤ 𝜔 ≤ 2 then inverse Fourier sine transform of 𝐹𝑠 (𝜔)𝑖𝑠 𝑓(𝑥) = ⋯ 0, 𝜔 > 2 A 2 𝑐𝑜𝑠𝑥+2𝑐𝑜𝑠𝑥 ( ) 𝜋 𝑥2 B 𝟐 𝟏−𝟐𝒄𝒐𝒔𝟐𝒙+𝒄𝒐𝒔𝒙 ( ) 𝝅 𝒙 C 2 𝑠𝑖𝑛𝑥−2𝑠𝑖𝑛2𝑥 ( ) 𝜋 𝑥 D 2 cosx + 2cosx ( ) π x Answer B Marks 1 Unit 3 Id 33 Question 1 − 𝜔, 0 ≤ 𝜔 ≤ 1 If 𝐹𝑠 (𝜔) = { then inverse Fourier sine transform of 𝐹𝑠 (𝜔)𝑖𝑠 𝑓(𝑥) = ⋯ 0, 𝜔 ≥ 1 A 2 𝑥 + 𝑐𝑜𝑠𝑥 ( ) 𝜋 𝑥2 B 2 𝑥 − 𝑠𝑖𝑛𝑥 ( ) 𝜋 𝑥2 C 2 𝑥 + 𝑠𝑖𝑛𝑥 ( ) 𝜋 𝑥2 D 2 1 − cosx ( ) π x2 Answer B Marks 1 Unit 3 Id 34 Question If Fourier cosine transform of 𝑓(𝑥) is 𝐹𝑐 (𝜔) = 𝑒 −𝜔 , 𝜔 > 0 then inverse Fourier cosine transform of 𝐹𝑐 (𝜔) 𝑖𝑠 𝑓(𝑥) = A 𝑒 −𝜔 𝑐𝑜𝑠𝑥 B 2𝑥 (1 + 𝑥 2 ) C 𝟐 𝝅(𝟏+𝒙𝟐 ) D None of these Answer C Marks 1 Unit 3 Id 35 Question 𝑥, 𝑥 > 0 The Fourier transform of the function𝑓(𝑥) = { is 𝑓(𝜔) =….. 0, 𝑥 < 0 1 A ω B −1 𝜔2 −1 C ω D 1 ω2 Answer B Marks 1 Unit 3 Unit 01 Laplace Transform Id 36 Question sin 2t The Laplace transform of the function t is ------------- A tan −1 s B s cot −1 2 C s tan −1 2 D cot −1 s Answer B Marks 2 Unit 1 Id 37 Question The Laplace transform of the function e + sin 4t is ------------- 3t A 12 s ( s + 16) 2 B s2 ( s − 3)( s 2 + 16) C s 2 + 4s − 8 ( s − 3)( s 2 + 4) D s 2 + 4s ( s + 3)( s 2 + 4) Answer C Marks 2 Unit 1 Id 38 Question If is a function of t(t 0) then Laplace transform of function f(t) is A e − st f (t ) dt 0 B e − st n −1 t dt 0 C 1 e − st f (t )dt 0 D 1 e −t f (t )dt 0 Answer A Marks 1 Unit 1 Id 39 Question If f(t) = 1 then Lf(t) = − − − − − − A 1 B 1 s C 0 D Answer B Marks 1 Unit 1 Id 40 Question If f(t) = cos2t then Laplace transform of f(t) is - - - - A s s +4 2 B s s +4 2 C s s −4 2 D 2 s −4 2 Answer A Marks 1 Unit 1 Id 41 Question If f(t) = e -3t then Lf(t) = − − − − A 1 s0 s B 1 s+3 C s s+3 D 3 s+3 Answer B Marks 1 Unit 1 Id 42 Question If f(t) = t 3 then Lf(t) = − − − − A 2 s4 B 1 s2 C 1 s4 D 6 s4 Answer D Marks 1 Unit 1 Id 43 Question - 1 2 The Laplace transform of t is A 1 s B s C 1 s D s Answer D Marks 1 Unit 1 Id 44 Question If Lf(t) = f ( s ) then Ltf(t) = − − − − A f (s)ds 0 B d f (s) ds C − d f (s) ds D 1 f (s)ds 0 Answer C Marks 1 Unit 1 Id 45 Question If Lf(t) = f ( s ) then L f ' (t ) = − − − − A sf (s ) B sf ( s ) − f (0) C f ( s ) − f (0) D f ( s ) − f (0) Answer B Marks 1 Unit 1 Id 46 Question The Laplace transform of e-5t is A 1 s+5 B 1 s −5 C −1 s+5 D 1 2s + 5 Answer A Marks 1 Unit 1 Id 47 Question If Lf(t) = f ( s ) then Lf(t)u(t - a) = − − − − A L f (t + a) B e − as L f (t + a) C L f (t − a) D e as L f (t + a) Answer B Marks 1 Unit 1 Id 48 Question If Lf(t) = f ( s ) then Lf(t) (t - a) is - - - A e − as f (a) B e − as f (s ) C e − as f (t ) D e − as f (t + a) Answer A Marks 1 Unit 1 Id 49 Question If f(t) = sinht then Lf(t) = − − − A 1 s 1 s −1 2 B 1 s +1 2 C s s 1 s −1 2 D s s +1 2 Answer A Marks 1 Unit 1 Id 50 Question sin 2t The Laplace transform of the function t is ------------- A tan −1 s B s cot −1 2 C s tan −1 2 D cot −1 s Answer B Marks 2 Unit 1 Id 51 Question The Laplace transform of the function e3t + sin 4t is ------------- A 12 s ( s + 16) 2 B s2 ( s − 3)( s 2 + 16) C s 2 + 4s − 8 ( s − 3)( s 2 + 4) D s 2 + 4s ( s + 3)( s 2 + 4) Answer C Marks 1 Unit 1 Id 52 Question 3 The Laplace transform of sin t is ---------- A 3 1 4 ( s + 1)( s + 9) 2 2 B 3 s +12 C 6 ( s + 1)( s 2 + 9) 2 D 3 s +92 Answer C Marks 2 Unit 1 Id 53 Question − t t 5e 2 + 7 sin The Laplace transform of the function f(t)= 2 A 1 1 + 2 2s + 1 4s + 1 B 5 7 + 2 s +1 s +1 C 5 7 + 2 2s + 1 4s + 1 D 10 14 + 2 2s + 1 4s + 1 Answer D Marks 1 Unit 1 Id 54 Question e − at sin bt The Laplace transform of t is -------------- A s+a cot −1 b B s −b cot −1 a C 1 s tan −1 a b D 1 s tan −1 b a Answer A Marks 1 Unit 1 Id 55 Question The Laplace transform of t cosh at is------------ A s2 − a2 (s 2 + a 2 )2 B s2 + a2 (s 2 − a 2 )2 C s+a (s + a 2 )2 2 D s−a s2 + a2 Answer B Marks 1 Unit 1 Id 56 Question If Laplace transform of − at e − at − e − bt s+b e − e − bt t is log s+a then 0 t dtisequalto A log a + log b B log a − log b C a log b D 1 s+b log s s+a Answer B Marks 1 Unit 1 Id 57 Question By Laplace transform the value of e −t sin tdt 0 A 1 B 1 2 C 0 D 2 Answer B Marks 1 Unit 1 Id 58 Question The Laplace transform of f (t ) = (t − )u (t − )is A e −s sin B e −2 ( s +3) s+3 C e −2 s s −1 D e −s s2 Answer D Marks 1 Unit 1 Id 59 Question The Laplace transform of f (t ) = sin t. (t − )is A 0 B C e −2 s s −1 D e −s s2 Answer A Marks 1 Unit 1 Id 60 Question If LJ 0 (t ) = 1 then the value of J 0 (t ) dt is s2 +1 0 A 0 B C 1 D e −s s2 Answer C Marks 1 Unit 1 Id 61 Question The Laplace transform of t sin 3t dt is 0 A 3 s ( s + 9) 2 B 3 s +92 C 1 1 + 2 s s +9 D 1 1 − 2 s s −9 Answer A Marks 1 Unit 1 Id 62 Question The Laplace transform of cos2tcos4t is ---------- A 20 ( s + 36)( s 2 + 4) 2 B s ( s 2 + 20) ( s 2 + 4)( s 2 + 36) C s ( s + 4)( s 2 + 36) 2 D s 2 + 20 ( s 2 + 4)( s 2 + 36) Answer B Marks 2 Unit 1 Id 63 Question The Laplace transform of function f(t) = te -4t sin 3t is A 6s ( s + 9) 2 2 B 6( s + 4) [( s + 4) 2 + 9]2 C s 2 + 2s + 9 ( s 2 + 9) 2 D s −9 ( s 2 + 9) 2 Answer B Marks 2 Unit 1 Id 64 Question The Laplace transform of f(t) = e t -2.u (t − 2) is - - - - - A 2e − s s3 B e −2 ( s +3) s+3 C e −2 s s −1 D 2e − ( s+1) s2 Answer C Marks 1 Unit 1 Id 65 Question The Laplace transform of t 3e 2t is - - - - - A 6 s4 B 6 ( s − 2) 4 C 6 ( s + 2) 4 D 1 ( s + 2) 4 Answer B Marks 1 Unit 1 Id 66 Question The Laplace transform of (e 2t − cos 3t ) is - - - - - - A s ( s + 2)( s 2 + 9 B 2s + 9 ( s − 2)( s 2 + 9) C 2s 2 − 2s + 9 ( s + 2)( s 2 + 9) D 1 ( s − 2)( s 2 + 9) Answer B Marks 1 Unit 1 Id 67 Question The Laplace transform of 𝑓(𝑡) 𝑡2 A 1 f (s) s2 B d2 (−1) 2 f (s) ds 2 C f (s) ds ds 0 0 D d f (s)2 ds Answer C Marks 1 Unit 1 Id 68 Question The Laplace transform of e -2t t cos t dt is - - - - - 0 A 3 25 B 1 s2 −1 s ( s 2 + 1) 2 C s+2 ( s 2 + 1) 2 D 6 25 Answer A Marks 1 Unit 1 Id 69 Question Laplace Transform of 𝐻(𝑡 − 𝑎) = A 𝑒 −𝑎𝑠 𝑎 𝑠 B 𝑒 𝑎 C 𝑒 𝑎𝑠 𝑠 D 𝑒 −2𝑎𝑠 𝑎 Answer A Marks 1 Unit 1 Id 70 Question By Convolution Theorem 𝐿−1 {𝑓(𝑠) ∗ 𝑔(𝑠)} = A 𝑡 ∫ 𝑓(𝑢). 𝑔(𝑡 − 𝑢)𝑑𝑢 0 ∞ B ∫ 𝑓(𝑢). 𝑔(𝑡 − 𝑢)𝑑𝑢 0 C 𝑏 ∫ 𝑓(𝑢). 𝑔(𝑡 − 𝑢)𝑑𝑢 𝑎 D None of the above Answer B Marks 1 Unit 1 Unit 03 Inverse Laplace Transform Id 71 Question If L−1 f (s) = f (t ) , then L−1 f (s + a) is equal to A e at f (t ) B e− at f (t ) C −t f (t ) D None of these Answer A Marks 1 Unit 1 Id 72 Question If L−1 f (s) = f (t ) , then L−1 e− as f (s) is equal to A F ( t ) = f (t + a ) , t a = 0 ,ta B e− at f (t ) C F ( t ) = f (t − a ) , t a = 0 ,ta D −t f (t ) Answer C Marks 1 Unit 1 Id 73 Question If d L−1 f (s) = f (t ) , then L−1 f ( s) is equal to ds A e− at f (t ) B −t f (t ) C t f (t ) D e at f (t ) Answer B Marks 1 Unit 1 Id 74 Question L −1 f (s) = f (t) , then −1 L f (s) ds is equal to s A d f (t ) dt B −t f (t ) C t f (t ) dt 0 D 1 f (t ) t Answer D Marks 1 Unit 1 Id 75 Question 1 L−1 2 is ( s + a ) A te − at B te at C t 2 e − at D −te − at Answer A Marks 1 Unit 1 Id 76 Question 1 L−1 2 is equal to s ( s + 1) A 1 + cost B 2 − cost C 1 − cost D 1 − sint Answer C Marks 1 Unit 2 Id 77 Question e −4 s L−1 3 is equal to s A (t + 4) u (t + 4) 2 B (t − 4) u (t − 4) 2 C (t + 4) 2 u ( t + 4) 2 D (t − 4) 2 u (t − 4) 2 Answer D Marks 1 Unit 2 Id 78 Question L−1 1 is equal to A (t ) B u (t ) C ( t − 1) D u ( t − 1) Answer A Marks 1 Unit 2 Id 79 Question If L−1 f (s) = f (t ) and L−1 g (s) = g (t ) then L−1 f ( s ) * g (s) = -------- A t f ( u ) g (t − u ) du 0 B f ( u ) g (t − u ) du 0 C f ( u ) g (u − t ) dt 0 D f ( u ) g (u ) du 0 Answer A Marks 1 Unit 2 Id 80 Question 1 L−1 2 is equal to ( s − 2 ) A te 2t B te −2t C te − t D te t Answer A Marks 1 Unit 2 Id 81 Question 1 L−1 2 is equal to s + 4s + 13 A 1 2t e sin 3t 3 B e −2t sin 3t C 1 −2t e sin 3t 3 D None of these Answer C Marks 1 Unit 2 Id 82 Question 1 L−1 n is possible only if n is s A 0 B - ve integer C + ve integer D odd number Answer C Marks 1 Unit 2 Id 83 Question 1 L−1 is equal to S +3 A e−3t t B e3t t C e −3t t D None of these Answer A Marks 1 Unit 2 Id 84 Question 1 L−1 7 is equal to s A t6 6! B t −6 6! C t −6 7! D None of these Answer A Marks 1 Unit 2 Id 85 Question 1 L−1 3 = --------- s 2 A 3 2t 2 B 1 2t 2 C t 2 D None of these Answer C Marks 1 Unit 2 Id 86 Question 1 L−1 5 is equal to ( s − 1) A e−t t 4 3! B et t 4 4! C e−t t 5 4! D None of these Answer B Marks 1 Unit 2 Id 87 Question e− s L−1 2 is equal to ( s + 1) A f (t ) = ( t − 2 ) e −(t −1) , t 1 = 0 ,t 1 B f (t ) = ( t − 1) e −(t −1) , t 1 = 0 ,t 1 C f (t ) = ( t + 1) e −(t −1) , t 1 = 0 ,t 1 D None Answer B Marks 1 Unit 2 Id 88 Question 1 L−1 2 is equal to s − 16 A 1 sinh 4t 4 B 1 cosh at 4 C 1 sin 2t 3 D None Answer A Marks 1 Unit 2 Id 89 Question s L−1 2 is equal to s − 49 A sin 7t B cos7t C sinh 7t D None Answer D Marks 1 Unit 2 Id 90 Question s L−1 is equal to ( ) 2 s 2 + a 2 A 1 t sin at 2 B 1 t cos at 2a C 1 t sin at 2a D None Answer C Marks 2 Unit 2 Id 91 Question s 2 − 3s + 4 L−1 is equal to s3 A 1 + 3t + 2t 2 B 1 − 3t + 2t 2 C 2 − 3t + 2t 2 D None Answer B Marks 2 Unit 2 Id 92 Question 3s + 4 L−1 2 is equal to s +9 A 4 3sin 3t + cos 3t 3 B 4 3cos 3t + sin 3t 3 C 4 cos 3t − sin 3t 3 D none Answer B Marks 2 Unit 2 Id 93 Question s + 1 L−1 4 is equal to s 3 A 1 4 t3 + t3 1 3 B 2 −1 t +t 3 3 1 3 C −2 1 t 3 + 3t 3 1 3 D None Answer C Marks 2 Unit 2 Id 94 Question 2s − 5 L−1 2 is equal to s −4 A 5 2