Engg-Maths-MCQ-301 Laplace Transform PDF

Document Details

Uploaded by Deleted User

Tags

Laplace transform engineering mathematics mathematics calculus

Summary

This document contains a set of multiple choice questions (MCQs) about Laplace transform, for an engineering mathematics course. It includes a selection of relevant questions from different sections, and it appears to be an exam paper.

Full Transcript

Id Question The Laplace transform of 𝐹(𝑑) = 𝑒 𝑏𝑑 π‘ π‘–π‘›π‘Žπ‘‘ is equal to π‘Ž A (𝑠 βˆ’ 𝑏)2 + π‘Ž2 π‘Ž B (𝑠 + 𝑏)2 + π‘Ž2 C 𝑏 (𝑠 βˆ’ 𝑏)2 βˆ’ π‘Ž2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) =...

Id Question The Laplace transform of 𝐹(𝑑) = 𝑒 𝑏𝑑 π‘ π‘–π‘›π‘Žπ‘‘ is equal to π‘Ž A (𝑠 βˆ’ 𝑏)2 + π‘Ž2 π‘Ž B (𝑠 + 𝑏)2 + π‘Ž2 C 𝑏 (𝑠 βˆ’ 𝑏)2 βˆ’ π‘Ž2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = π’†βˆ’π’ƒπ’• 𝒄𝒐𝒔𝒉𝒂𝒕 is equal to A 𝑠+𝑏 (𝑠 + 𝑏)2 + π‘Ž2 B 𝑠+𝑏 (𝑠 + 𝑏)2 βˆ’ π‘Ž2 C π‘ βˆ’π‘ (𝑠 βˆ’ 𝑏)2 + π‘Ž2 D None. Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑑)} = 𝑓(𝑠), then 𝐿{𝑒 βˆ’π‘Žπ‘‘ 𝑓(𝑑)} is equal to A 𝑓(𝑠) B 𝑓(𝑠 βˆ’ π‘Ž) C 𝑓(𝑠 + π‘Ž) D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆2𝒕 𝒕3 is equal to A 12 (𝑠 βˆ’ 4)2 B 12 (𝑠 + 4)2 C 12 (𝑠 + 4)2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = π’”π’Šπ’π’‰3𝒕 is equal to A 3 𝑠2 βˆ’9 B 3 𝑠2 + 9 C 9 2 𝑠 βˆ’9 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒕 𝒄𝒐𝒔𝒂𝒕 is equal to A 𝑠 2 βˆ’ π‘Ž2 (𝑠 2 βˆ’ π‘Ž2 )2 B 𝑠 2 βˆ’ π‘Ž2 (𝑠 2 + π‘Ž2 )2 C 𝑠 2 + π‘Ž2 (𝑠 2 + π‘Ž2 )2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆𝒓𝒇(βˆšπ’•) is equal to A 1 𝑠 βˆšπ‘  2 + 1 B 1 𝑠 βˆšπ‘  βˆ’ 1 C 1 𝑠 βˆšπ‘  + 1 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = 𝒆3𝒕 𝒆𝒓𝒇(βˆšπ’•) is equal to A 1 (𝑠 βˆ’ 3) βˆšπ‘  + 2 B 1 (𝑠 + 3) βˆšπ‘  βˆ’ 2 C 1 (𝑠 + 3) βˆšπ‘  + 2 D 1 (𝑠 βˆ’ 3) βˆšπ‘  βˆ’ 2 Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = π’†βˆ’π’• 𝒆𝒓𝒇(βˆšπ’•) is equal to A 1 (𝑠 + 1) βˆšπ‘  B 1 (𝑠 βˆ’ 1) βˆšπ‘  C 1 (𝑠 + 1) βˆšπ‘  + 2 D None. Answer Marks 1.5 Unit I Id 𝑓(𝑑) Question If 𝐿{𝑓(𝑑)} = 𝑓(𝑠), then 𝐿 ( ) is equal to 𝑑 𝑠 A 𝑓(𝑠) ∫ 𝑑𝑠 𝑠 ∞ ∞ B 𝑓(𝑠) ∫ 𝑑𝑠 𝑠 0 C ∞ 𝑓(𝑠) βˆ«π‘  𝑠 𝑑𝑠 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = (𝒂 + 𝒃𝒕)2 , where a & b are constants, is given by A (π‘Ž + 𝑏𝑠)2 B 1 (π‘Ž + 𝑏𝑠)2 C π‘Ž2 2π‘Žπ‘ 2𝑏 2 + 2 + 3 𝑠 𝑠 𝑠 D π‘Ž2 2π‘Žπ‘ 𝑏 2 + 2 + 3 𝑠 𝑠 𝑠 Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑑)} = 𝑓(𝑠), then 𝐿{𝑒 π‘Žπ‘‘ 𝑓(𝑑)} is equal to A 𝑓 Μ… (𝑠 + π‘Ž) B 𝑓 Μ… (𝑠 βˆ’ π‘Ž) C 𝑒 βˆ’π‘ π‘‘ 𝑓(𝑠) D None. Answer Marks 1.5 Unit I Id βˆ’1 Question The Laplace transform of 𝒇(𝒕) = 𝒕 2 is equal to A βˆšπœ‹ βˆšπ‘  B βˆšπ‘  βˆšπœ‹ C 0 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = π’†βˆπ’• 𝐜𝐨𝐬 𝒂𝒕 is equal to A π‘ βˆ’βˆ (π‘ βˆ’βˆ)2 + π‘Ž2 B 𝑠+∝ (π‘ βˆ’βˆ)2 + π‘Ž2 C 1 (π‘ βˆ’βˆ)2 D None. Answer Marks 1.5 Unit I Id 𝒕 π’”π’Šπ’π’• Question The Laplace transform of 𝑭(𝒕) = ∫0 𝒕 𝒅𝒕 is equal to cotβˆ’1 𝑠 A 𝑠 B tanβˆ’1 𝑠 𝑠 πœ‹ C βˆ’ tanβˆ’1 𝑠 2 D None. Answer Marks 1.5 Unit I Id Question 𝐿{ π‘π‘œπ‘ β„Žπ‘Žπ‘‘ βˆ’ π‘π‘œπ‘ β„Žπ‘π‘‘ } is equal to 𝑠 𝑠 A βˆ’ 2 𝑠2 +π‘Ž 2 𝑠 + 𝑏2 𝑠 𝑠 B βˆ’ 𝑠 2 βˆ’ π‘Ž2 𝑠 2 βˆ’ 𝑏 2 C π‘Ž 𝑏 βˆ’ 𝑠 2 βˆ’ π‘Ž2 𝑠 2 βˆ’ 𝑏 2 D None. Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑑)} = 𝑓 (𝑠) , then 𝐿{ 𝑑 𝑓(𝑑)} is equal to A 𝑑𝑓 (𝑠) βˆ’ 𝑑𝑠 ∞ B βˆ«π‘  𝑓 (𝑠) 𝑑𝑠 C 𝑠 𝑓 (𝑠) βˆ’ 𝑓(0) D None. Answer Marks 1.5 Unit I Id 𝑓(𝑑) Question If 𝐿{𝑓(𝑑)} = 𝑓(𝑠), then 𝐿 { 𝑑 } is equal to A 𝑑𝑓 (𝑠) βˆ’ 𝑑𝑠 ∞ B ∫ 𝑓 (𝑠) 𝑑𝑠 𝑠 C 1 𝑓 (𝑠) 𝑠 D None. Answer Marks 1.5 Unit I Id Question If 𝐿{𝑓(𝑑)} = 𝑓 (𝑠), then 𝐿{ 𝑓(π‘Žπ‘‘)} is equal to A 𝑒 βˆ’π‘Žπ‘  𝑓 (𝑠) B 𝑓(𝑠 + π‘Ž) C 1 𝑠 𝑓̅ ( ) π‘Ž π‘Ž D None. Answer Marks 1.5 Unit I Id Question 𝐿{𝑒 βˆ’2𝑑 𝑠𝑖𝑛𝑑} is equal to A 1 𝑠2 + 1 B 𝑠+2 (𝑠 + 2)2 + 1 C 1 (𝑠 + 2)2 + 1 D None. Answer Marks 1.5 Unit I Id Question 𝐿{𝑒 βˆ’3𝑑 cos 2𝑑} is equal to A 𝑠+3 (𝑠 + 3)2 + 4 B 1 (𝑠 + 3)2 + 4 C 3 (𝑠 + 3)2 + 4 D None. Answer Marks 1.5 Unit I Id 𝑑𝑓 Question If 𝐿{𝑓(𝑑)} = 𝑓(𝑠), then 𝐿 { 𝑑𝑑 } is equal to A 𝑒 βˆ’π‘Žπ‘  𝑓 (𝑠) B 𝑠 𝑓 (𝑠) βˆ’ 𝑓(0) C 𝑠 𝑓 (𝑠) + 𝑓(0) D None. Answer Marks 1.5 Unit I Id Question 𝐿{cosh π‘Žπ‘‘} is equal to A 1 𝑠2 βˆ’ π‘Ž2 π‘Ž B 𝑠 2 βˆ’ π‘Ž2 𝑠 C 𝑠 βˆ’ π‘Ž2 2 D None. Answer Marks 1.5 Unit I Id Question The Laplace transform of 𝑭(𝒕) = π’†βˆ’3𝒕 π’”π’Šπ’2𝒕 is equal to A 2 (𝑠 + 3)2 βˆ’ 4 B 2 (𝑠 + 3)2 + 4 C 2 (𝑠 βˆ’ 3)2 βˆ’ 4 D 2 (𝑠 + 3)2 + 4 Answer Marks 1.5 Unit I Id sin 𝑑 𝑑 sin 𝑑 Question If 𝐿 { 𝑑 } = cot βˆ’1 𝑠, then 𝐿 {𝑑𝑑 ( 𝑑 )} is equal to A 𝑠 cot βˆ’1 𝑠 βˆ’ 1 B s cot βˆ’1 𝑠 C 𝑠 cot βˆ’1 𝑠 + 1 D None. Answer Marks 1.5 Unit I Id 1 Question π‘³βˆ’1 { } is equal to βˆšπ’”+3 A 𝑒 βˆ’3𝑑 βˆšπœ‹π‘‘ B 𝑒 3𝑑 βˆšπœ‹π‘‘ C 𝑒𝑑 βˆšπœ‹π‘‘ D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = 𝒔2 +2𝒔 is given by A 1 βˆ’ 𝑒 2𝑑 B 1 + 𝑒 2𝑑 C 1 βˆ’ 𝑒 2𝑑 2 D 1 βˆ’ 𝑒 βˆ’2𝑑 2 Answer Marks 1.5 Unit II Id 𝒔+1 Question The inverse Laplace transform of 𝒇(𝒔) = π₯𝐨𝐠 (π’”βˆ’1) is given by A 2π‘π‘œπ‘ β„Žπ‘‘ 𝑑 B 2π‘‘π‘π‘œπ‘ π‘‘ C 2π‘ π‘–π‘›β„Žπ‘‘ 𝑑 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = (𝒔+3)5 is equal to A 𝑒 βˆ’3𝑑 𝑑 4 24 3𝑑 4 B 𝑒 𝑑 24 C 𝑒 βˆ’3𝑑 𝑑 4 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = 𝒔2 +4𝒔+13 is equal to A 1 βˆ’2𝑑 𝑒 sin 3𝑑 3 B 1 2𝑑 𝑒 sin 3𝑑 3 C 𝑒 βˆ’2𝑑 sin 3𝑑 D None. Answer Marks 1.5 Unit II Id 1 5 Question The inverse Laplace transform of 𝒇(𝒔) = (π’”βˆ’4)5 + (π’”βˆ’2)2 +52 is equal to A 𝑑4 𝑒 4𝑑 + 𝑒 2𝑑 𝑠𝑖𝑛5𝑑 24 𝑑4 B 𝑒 4𝑑 24 βˆ’ 𝑒 2𝑑 𝑠𝑖𝑛5𝑑 C 𝑑3 𝑒 4𝑑 βˆ’ 𝑒 2𝑑 𝑠𝑖𝑛5𝑑 24 D None. Answer Marks 1.5 Unit II Id 3𝒔+4 Question The inverse Laplace transform of 𝒇(𝒔) = 𝒔2 +9 is equal to A 4 3π‘π‘œπ‘ 3𝑑 βˆ’ 𝑠𝑖𝑛3𝑑 3 B 4 3π‘π‘œπ‘ 3𝑑 + 𝑠𝑖𝑛3𝑑 3 C 3π‘π‘œπ‘ 3𝑑 + 𝑠𝑖𝑛3𝑑 D None. Answer Marks 1.5 Unit II Id 𝒔2 βˆ’3𝒔+4 Question The inverse Laplace transform of 𝒇(𝒔) = is equal to 𝒔3 A 1 βˆ’ 3𝑑 βˆ’ 2𝑑 2 B 1 + 3𝑑 + 2𝑑 2 C 1 βˆ’ 3𝑑 + 2𝑑 2 D None. Answer Marks 1.5 Unit II Id 𝒔+𝒂 Question The inverse Laplace transform of 𝒇(𝒔) = π₯𝐨𝐠 𝒔+𝒃 is equal to A 1 π‘Žπ‘‘ (𝑒 βˆ’ 𝑒 𝑏𝑑 ) 𝑑 B 1 βˆ’π‘Žπ‘‘ (𝑒 + 𝑒 βˆ’π‘π‘‘ ) 𝑑 C 1 βˆ’π‘Žπ‘‘ (𝑒 βˆ’ 𝑒 βˆ’π‘π‘‘ ) 𝑑 D 1 βˆ’ (𝑒 βˆ’π‘Žπ‘‘ βˆ’ 𝑒 βˆ’π‘π‘‘ ) 𝑑 Answer Marks 1.5 Unit II Id Question The inverse Laplace transform of 𝑓(𝒂𝒔) is equal to 1 𝑑 A π‘Ž 𝑓 (π‘Ž ) 1 π‘Ž B π‘Ž 𝑓 (𝑑 ) C 𝑑 𝑓( ) π‘Ž D None. Answer Marks 1.5 Unit II Id Question The inverse Laplace transform of 𝒇(𝒔) = 𝐜𝐨𝐭 βˆ’1 (𝒔) is equal to A 𝑠𝑖𝑛𝑑 𝑑 B π‘π‘œπ‘ π‘‘ 𝑑 C 𝑠𝑖𝑛𝑑 D None. Answer Marks 1.5 Unit II Id 2 Question The inverse Laplace transform of 𝒇(𝒔) = π­πšπ§βˆ’1 (𝒔 ) is equal to A βˆ’1 𝑠𝑖𝑛2𝑑 𝑑 B 𝑠𝑖𝑛2𝑑 C 1 𝑠𝑖𝑛2𝑑 𝑑 D None. Answer Marks 1.5 Unit II Id 𝒔+3 Question The inverse Laplace transform of 𝒇(𝒔) = (𝒔+3)2 +4 is equal to A 𝑒 βˆ’3𝑑 𝑠𝑖𝑛2𝑑 B 𝑒 3𝑑 𝑠𝑖𝑛2𝑑 C 𝑒 βˆ’3𝑑 π‘π‘œπ‘ 2𝑑 D None. Answer Marks 1.5 Unit II Id Μ…Μ…Μ…Μ…Μ… 3 Question |( ) 2 The inverse Laplace transform of 𝒇(𝒔) = 3 is equal to 𝒔2 3 A 𝑑2 βˆ’3 B 𝑑 2 1 C 𝑑2 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝑓(𝑠) = (𝑠+3)2 is equal to A 𝑑 𝑒 βˆ’3𝑑 B 𝑒 βˆ’3𝑑 C 𝑑 βˆ’3𝑑 𝑒 2 D None. Answer Marks 1.5 Unit II Id 4𝑠 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠2 +16 is equal to A cos 4𝑑 B 4 cos 4𝑑 C 4 𝑠𝑖𝑛 4𝑑 D None. Answer Marks 1.5 Unit II Id 3 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠2 +25 is equal to A 3 𝑠𝑖𝑛 5𝑑 B 3 𝑠𝑖𝑛 5𝑑 5 C 3 cos 5𝑑 5 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝑓(𝑠) = 3π‘ βˆ’4 is equal to A 1 βˆ’4𝑑 𝑒 3 3 4 B 𝑒 βˆ’3𝑑 C 1 4𝑑 𝑒3 3 D None. Answer Marks 1.5 Unit II Id 2 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠+2 is equal to A 2 𝑒 2𝑑 B 𝑒 βˆ’2𝑑 C 2 𝑒 βˆ’2𝑑 D None. Answer Marks 1.5 Unit II Id Question 𝑓(𝑠) If πΏβˆ’1 {𝑓(𝑠)} = 𝑓(𝑑), then πΏβˆ’1 { } is equal to 𝑠 𝑑 A ∫ 𝑓(𝑑) 𝑑𝑑 0 B βˆ’π‘‘ 𝑓(𝑑) C 1 𝑓(𝑑) 𝑑 D None. Answer Marks 1.5 Unit II Id 𝑠+π‘Ž Question The inverse Laplace transform of 𝑓(𝑠) = log (𝑠+𝑏) is equal to A 𝑒 βˆ’π‘Žπ‘‘ βˆ’ 𝑒 βˆ’π‘π‘‘ 𝑑 B 𝑒 βˆ’π‘π‘‘ βˆ’ 𝑒 βˆ’π‘Žπ‘‘ 𝑑 C 𝑒 βˆ’π‘π‘‘ + 𝑒 βˆ’π‘Žπ‘‘ 𝑑 D None. Answer Marks 1.5 Unit II Id 3 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠4 is equal to A 𝑑3 B 𝑑3 3 C 𝑑3 2 D None. Answer Marks 1.5 Unit II Id 2𝑠+1 Question The inverse Laplace transform of 𝑓(𝑠) = 𝑠3 is equal to A 𝑑2 2𝑑 βˆ’ 2 B 𝑑2 2𝑑 + 3 C 𝑑2 2𝑑 + 2 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝑓(𝑠) = 3𝑠2 +27 is equal to A 1 𝑠𝑖𝑛 3𝑑 3 B 1 cos 3𝑑 3 C 1 𝑠𝑖𝑛 3𝑑 9 D None. Answer Marks 1.5 Unit II Id 1 Question The inverse Laplace transform of 𝒇(𝒔) = (𝒔+2)(π’”βˆ’1) is equal to A 1 𝑑 (𝑒 βˆ’ 𝑒 βˆ’2𝑑 ) 3 B 1 𝑑 (𝑒 + 𝑒 βˆ’2𝑑 ) 3 C 1 𝑑 (𝑒 βˆ’ 𝑒 βˆ’2𝑑 ) 3 D None. Answer Marks 1.5 Unit II Id Question The Fourier cosine transform of 𝒇(𝒙) = 2π’†βˆ’5𝒙 + 5π’†βˆ’2𝒙 is A 10 10 + 2 𝑠2 + 25 𝑠 + 4 B 10 10 2 βˆ’ 2 𝑠 + 25 𝑠 + 4 C 10 10 2 βˆ’ 2 𝑠 βˆ’ 25 𝑠 βˆ’ 4 D None. Answer Marks 1.5 Unit III Id Question If 𝐹(𝑠) is the Fourier transform of 𝑓(π‘₯) , then the Fourier transform of 𝑓(π‘Žπ‘₯) is A 1 𝑠 𝐹( ) π‘Ž π‘Ž 𝑠 B 𝐹( ) π‘Ž C 1 𝐹(𝑠) π‘Ž D None. Answer Marks 1.5 Unit III Id Question The Fourier cosine transform of the function 𝑓(𝑑) is ∞ A 𝐹𝑐 (𝑠) = ∫ 𝑓(𝑑) cos 𝑠𝑑 0 ∞ B 𝐹𝑐 (𝑠) = ∫ 𝑓(𝑑) cos 𝑑 𝑑𝑑 0 ∞ C 𝐹𝑐 (𝑠) = ∫ 𝑓(𝑠𝑑) cos 𝑑 𝑑𝑑 0 D None. Answer Marks 1.5 Unit III Id Question Which of the following is correct representation of Fourier transform ∞ A F(s) = ∫ f(x)eisx dx βˆ’βˆž ∞ B 1 F(s) = ∫ f(s)eisx ds 2Ο€ βˆ’βˆž ∞ C 1 F(s) = ∫ f(s)eisx ds 2Ο€ 0 D None. Answer Marks 1.5 Unit III Id Question The Fourier sine transform is represented by ∞ A 𝐹𝑠 (𝑠) = ∫ 𝑓(𝑑) cos(𝑠𝑑) 𝑑𝑑 βˆ’βˆž ∞ B 𝐹𝑠 (𝑠) = ∫ 𝑓(𝑑) sin(𝑠𝑑) 𝑑𝑑 0 ∞ C 𝐹𝑠 (𝑠) = ∫ 𝑓(𝑑) 𝑠𝑖𝑛(𝑠𝑑) 𝑑𝑑 βˆ’βˆž D None. Answer Marks 1.5 Unit III Id Question If 𝐹{𝑓(π‘₯)} = 𝐹(𝑠) , then 𝐹{𝑓(π‘₯ βˆ’ π‘Ž)} is equal to A 𝑒 π‘–π‘ π‘Ž B 𝑒 π‘–π‘ π‘Ž 𝐹(𝑠) C Both (π‘Ž) & (𝑏) D None. Answer Marks 1.5 Unit III Id Question The Fourier cosine transform of π’†βˆ’π’™ is 𝑠 A 𝑠2 +1 𝑠 B 𝑠2 βˆ’ 1 C 1 𝑠2 + 1 D None. Answer Marks 1.5 Unit III Id Question If 𝐹{𝑓(π‘₯)} = 𝐹(𝑠) and 𝐹{𝑔(π‘₯)} = 𝐺(𝑠) , then by parseval's identity 1 ∞ Μ…Μ…Μ…Μ…Μ…Μ… 𝑑𝑠 is equal to ∫ 𝐹(𝑠)𝐺(𝑠) 2πœ‹ βˆ’βˆž ∞ A Μ…Μ…Μ…Μ…Μ…Μ… 𝑑π‘₯ ∫ 𝑓(π‘₯)𝑔(π‘₯) 0 1 ∞ B 2πœ‹ βˆ’βˆž ∫ 𝑓(π‘₯) 𝑔(π‘₯) 𝑑π‘₯ ∞ C Μ…Μ…Μ…Μ…Μ…Μ… 𝑑π‘₯ ∫ 𝑓(π‘₯)𝑔(π‘₯) βˆ’βˆž D None. Answer Marks 1.5 Unit III Id 1 ∞ Question If 𝐹{𝑓(π‘₯)} = 𝐹(𝑠) , then by parseval's identity ∫ [𝐹(𝑠)]2 2πœ‹ βˆ’βˆž 𝑑𝑠 is equal to ∞ A 1 ∫ [𝑓(π‘₯)]2 𝑑π‘₯ πœ‹ 0 ∞ B ∫ [𝑓(π‘₯)]2 𝑑π‘₯ βˆ’βˆž ∞ C 2 2Ο€ ∫ (f(x)) dx 0 D None. Answer Marks 1.5 Unit III Id Question The Parseval's identities for Fourier cosine transform is ∞ ∞ A 2 ∫ 𝐹𝑐 (𝑠)𝐺𝑐 (𝑠)𝑑𝑠 = ∫ 𝑓(π‘₯) 𝑔(π‘₯)𝑑π‘₯ πœ‹ 0 0 ∞ ∞ B ∫ 𝐹𝑐 (𝑠)𝐺𝑐 (𝑠)𝑑𝑠 = ∫ 𝑓(π‘₯) 𝑔(π‘₯)𝑑π‘₯ 0 0 ∞ ∞ C 2 ∫ 𝐹𝑐 (𝑠)𝐺𝑐 (𝑠)𝑑𝑠 = ∫ 𝑓(π‘₯) 𝑔(π‘₯)𝑑π‘₯ πœ‹ βˆ’βˆž βˆ’βˆž D None. Answer Marks 1.5 Unit III Id Question The Parseval's identity for Fourier sine transform is ∞ ∞ A 2 ∫ {𝐹𝑠 (𝑠)}2 𝑑𝑠 = ∫ {𝑓(π‘₯)}2 𝑑π‘₯ πœ‹ 0 0 ∞ ∞ B 2 ∫ {𝐹𝑠 (𝑠)}2 𝑑𝑠 = ∫ {𝑓(π‘₯)}2 𝑑π‘₯ πœ‹ βˆ’βˆž 0 ∞ ∞ C ∫ {𝐹𝑠 (𝑠)}2 𝑑𝑠 = ∫ {𝑓(π‘₯)}2 𝑑π‘₯ 0 0 D None. Answer Marks 1.5 Unit III Id Question The inverse Fourier sine transform is given by ∞ A 1 𝑓(π‘₯) = ∫ 𝐹𝑠 (𝑠) sin(𝑠π‘₯)𝑑𝑠 πœ‹ 0 ∞ B 2 𝑓(π‘₯) = ∫ 𝐹𝑠 (𝑠) sin(𝑠π‘₯)𝑑𝑠 πœ‹ 0 ∞ C 2 𝑓(π‘₯) = ∫ 𝐹𝑠 (𝑠) cos(𝑠π‘₯)𝑑𝑠 πœ‹ 0 ∞ D 𝑓(π‘₯) = ∫ 𝐹𝑠 (𝑠) sin(𝑠π‘₯)𝑑𝑠 0 Answer Marks 1.5 Unit III Id Question The inverse Fourier cosine transform is ∞ A 𝑓(π‘₯) = ∫ 𝐹𝑐 (𝑠) sin(𝑠π‘₯)𝑑𝑠 0 ∞ B 2 𝑓(π‘₯) = ∫ 𝐹𝑐 (𝑠) cos(𝑠π‘₯)𝑑𝑠 πœ‹ βˆ’βˆž ∞ C 2 𝑓(π‘₯) = ∫ 𝐹𝑐 (𝑠) cos(𝑠π‘₯)𝑑𝑠 πœ‹ 0 D None. Answer Marks 1.5 Unit III Id 𝑠 Question If 𝐹𝑐 {𝑓(π‘Žπ‘₯)} = π‘˜πΉπ‘ (π‘Ž) , then k is equal to A 2 π‘Ž B π‘Ž C 1 π‘Ž D None. Answer Marks 1.5 Unit III Id Question In the Fourier integral representation of the function ∞ 𝑓(π‘₯) = ∫0 [𝐴(πœ†) cos πœ†π‘₯ + 𝐡(πœ†) sin πœ†π‘₯] π‘‘πœ† , 𝐴(πœ†) is given by ∞ A ∫ 𝑓(𝑑) cos πœ†π‘‘ 𝑑𝑑 βˆ’βˆž B 1 ∞ ∫ 𝑓(𝑑) cos πœ†π‘‘ 𝑑𝑑 πœ‹ βˆ’βˆž ∞ C ∫ 𝑓(𝑑) sin πœ†π‘‘ 𝑑𝑑 βˆ’βˆž D None. Answer Marks 1.5 Unit III Id Question In the Fourier integral representation of the function ∞ 𝑓(π‘₯) = ∫0 [𝐴(πœ†) cos πœ†π‘₯ + 𝐡(πœ†) sin πœ†π‘₯] π‘‘πœ† , 𝐡(πœ†) is given by A 1 ∞ ∫ 𝑓(𝑑) sin πœ†π‘‘ 𝑑𝑑 πœ‹ βˆ’βˆž B 1 ∞ ∫ 𝑓(𝑑) cos πœ†π‘‘ 𝑑𝑑 πœ‹ βˆ’βˆž ∞ C ∫ 𝑓(𝑑) sin πœ†π‘‘ 𝑑𝑑 βˆ’βˆž D None. Answer Marks 1.5 Unit III Id Question In the Fourier cosine integral representation of the function ∞ 𝑓(π‘₯) = ∫0 𝐴(πœ†) cos πœ†π‘₯ π‘‘πœ† , 𝐴(πœ†) is given by A 2 ∞ ∫ 𝑓(π‘₯) cos πœ†π‘₯ 𝑑π‘₯ πœ‹ 0 B 1 ∞ ∫ 𝑓(π‘₯) cos πœ†π‘₯ 𝑑π‘₯ πœ‹ 0 ∞ C ∫ 𝑓(π‘₯) cos πœ†π‘₯ 𝑑π‘₯ 0 D None. Answer Marks 1.5 Unit III Id Question In the Fourier sine integral representation of the function 𝑓(π‘₯) = ∞ ∫0 𝐡(πœ†) sin πœ†π‘₯ π‘‘πœ† , 𝐡(πœ†) is given by ∞ A ∫0 𝑓(π‘₯) sin πœ†π‘₯ 𝑑π‘₯ B 1 ∞ ∫ 𝑓(π‘₯) sin πœ†π‘₯ 𝑑π‘₯ πœ‹ 0 C 2 ∞ ∫ 𝑓(π‘₯) sin πœ†π‘₯ 𝑑π‘₯ πœ‹ 0 D None. Answer Marks 1.5 Unit III Id Question The Fourier integral theorem is given by A 1 ∞ ∞ 𝑓(π‘₯) = ∫ ∫ 𝑓(𝑑) cos[πœ†(𝑑 βˆ’ π‘₯)] 𝑑𝑑 π‘‘πœ† πœ‹ 0 βˆ’βˆž B 1 ∞ ∞ 𝑓(π‘₯) = ∫ ∫ 𝑓(𝑑) cos[πœ†(𝑑 βˆ’ π‘₯)] 𝑑𝑑 π‘‘πœ† πœ‹ βˆ’βˆž βˆ’βˆž C 1 ∞ ∞ 𝑓(π‘₯) = ∫ ∫ 𝑓(𝑑) cos[πœ†(𝑑 βˆ’ π‘₯)] 𝑑𝑑 π‘‘πœ† 2πœ‹ βˆ’βˆž βˆ’βˆž D None. Answer Marks 1.5 Unit III Id Question If the Fourier transform of 𝑓(π‘₯) is 𝐹(𝑠), then 𝐹(𝑠) is equal to ∞ A 𝐹(𝑠) = ∫ 𝑓(𝑑) 𝑒 βˆ’π‘–π‘ π‘‘ 𝑑𝑑 βˆ’βˆž ∞ B 𝐹(𝑠) = ∫ 𝑓(𝑑) 𝑒 𝑖𝑠𝑑 𝑑𝑑 βˆ’βˆž C 1 ∞ 𝐹(𝑠) = ∫ 𝑓(𝑑) 𝑒 𝑖𝑠𝑑 𝑑𝑑 πœ‹ βˆ’βˆž D None. Answer Marks 1.5 Unit III Id Question If the Fourier transform of 𝑓(π‘₯) is 𝐹(𝑠), then 𝑓(π‘₯) is equal to A 1 ∞ 𝑓(π‘₯) = ∫ 𝐹(𝑠) 𝑒 βˆ’π‘–π‘ π‘₯ 𝑑𝑠 2πœ‹ βˆ’βˆž B 1 ∞ 𝑓(π‘₯) = ∫ 𝐹(𝑠) 𝑒 βˆ’π‘–π‘ π‘₯ 𝑑𝑠 πœ‹ 0 ∞ C 𝑓(π‘₯) = ∫ 𝐹(𝑠) 𝑒 𝑖𝑠π‘₯ 𝑑𝑠 βˆ’βˆž D None. Answer Marks 1.5 Unit III Id 1 Question The Fourier cosine transform of 𝑓(π‘₯) = 1+π‘₯ 2 is equal to πœ‹ 𝑠 A 𝑒 4 πœ‹ 𝑠 B 𝑒 2 πœ‹ βˆ’π‘  C 𝑒 2 D None. Answer Marks 1.5 Unit III Id ∞ sin 𝑑 Question The value of ∫0 𝑑 𝑑𝑑 is equal to πœ‹ A 4 πœ‹ B 2 C 0 D None. Answer Marks 1.5 Unit III Id Question If the Fourier cosine transform of 𝑓(π‘₯) is 𝐹𝑐 (𝑠), then A 1 𝑠 𝐹𝑐 {𝑓(π‘Žπ‘₯)} = 𝐹𝑠 ( ) π‘Ž π‘Ž B 1 𝑠 𝐹𝑐 {𝑓(π‘Žπ‘₯)} = 𝐹𝑐 ( ) π‘Ž π‘Ž 𝑠 C 𝐹𝑐 {𝑓(π‘Žπ‘₯)} = 𝐹𝑐 ( ) π‘Ž D None. Answer Marks 1.5 Unit III Id Question The Fourier cosine transform of π’†βˆ’π’™ is 𝑠 A 𝑠2 +1 B 1 𝑠2 + 1 𝑠 C 𝑠2 βˆ’ 1 D None. Answer Marks 1.5 Unit III Id 2 2 Question The order of the partial differential equation πœ•z + πœ• 2z + πœ• z = 1 is πœ•x πœ•x πœ•x πœ•y A 1 B 2 C 3 D None. Answer Marks 1.5 Unit IV Id 2 Question The degree of the partial differential equation πœ•z + πœ• z2 = 1 is. πœ•x πœ•y A 2 B 0 C 1 D None. Answer Marks 1.5 Unit IV Id Question The degree of the partial differential equation 2 πœ•2 z πœ•z πœ•z a 2 [πœ•x2 + πœ•y] + πœ•y = sin(x + y) is A 1 B 2 C 3 D None. Answer Marks 1.5 Unit IV Id Question The order of the partial differential equation πœ•2 z πœ•z 2 πœ•x2 + (πœ•y) = 1 is A 2 B 0 C 1 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a& b from z = ax + (1 βˆ’ a)y + b is πœ•z πœ•z A πœ•x + πœ•y = 1 πœ•z πœ•z B πœ•x βˆ’ πœ•y = 1 πœ•z πœ•z C πœ•x + πœ•y = 0 D None Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a& b from z = ax + by + ab is A z = xp + yq βˆ’ pq B z = xp + yq + pq C z = xp βˆ’ yq βˆ’ pq D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a and b from z = (x2 + a2 )(y2 + b2 ) is A 2xyz = pq B xyz = pq C 4xyz = pq D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating a and b from z = ax3 + by3 is A z = xp + yq B z = xp + yq + pq C 3z = xp + yq D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the arbitrary function f from z = f(y2 βˆ’ x2 ) is A yp + xq = 0 B yp βˆ’ xq = 0 C xp + yq = 0 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the arbitrary function f from z = x + y + f(xy) is A px βˆ’ qy = x βˆ’ y B px + qy = x + y C py βˆ’ qx = x + y D None. Answer Marks 1.5 Unit IV Id Question The general solution of 3p + 4q = 7 is given by A ΙΈ(4x βˆ’ 3y ,7x βˆ’ 3z) = 0 B ΙΈ(4x + 3y ,7x + 3z) = 0 C ΙΈ(4x βˆ’ 3y ,7x + 3z) = 0 D None Answer Marks 1.5 Unit IV Id Question The general solution of xp + yq = z is given by x y A ΙΈ (y , z) = 0 B ΙΈ(xy , z ) = 0 C ΙΈ(xy , yz ) = 0 D None Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating arbitrary function from z = f(x + it) + g(x βˆ’ it) is πœ•2 z πœ•2 z A 2 + 2 = 0 πœ•x πœ•t πœ•2 z πœ•2 z B + πœ•y2 = 0 πœ•x2 πœ•2 z πœ•2 z C βˆ’ πœ•t2 = 0 πœ•x2 D None Answer Marks 1.5 Unit IV Id Question The partial differential equation for one dimensional heat equation is πœ•2 u πœ•u A 2 = πœ•t πœ•x πœ•u 2 B 2πœ• u πœ•t =c πœ•x2 πœ•2 u πœ•2 u C = c 2 πœ•x2 πœ•t2 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the function from z = f(x2 βˆ’ y2 ) A yp + xq = 0 B xp βˆ’ yq = 0 C xp + yq = 0 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the function from z = eny βˆ…(x βˆ’ y) A p βˆ’ q = nz B p+q=n C p + q = nz D None. Answer Marks 1.5 Unit IV Id Question The general solution of 2p + 3q = a is given by A ΙΈ(3x βˆ’ 2y , ay βˆ’ 3z) = 0 B ΙΈ(3x + 2y , ay βˆ’ 3z) = 0 C ΙΈ(3x βˆ’ 2y , ay + 3z) = 0 D None. Answer Marks 1.5 Unit IV Id Question The general solution of zp = βˆ’x is given by A ΙΈ(x 2 + z 2 , y ) = 0 B ΙΈ(x 2 βˆ’ z 2 , y ) = 0 C ΙΈ(x 2 + z 2 , 2 y ) = 0 D None. Answer Marks 1.5 Unit IV Id Question Temperature distribution of the plate in unsteady state is given by the equation πœ•u πœ•2 u πœ•2 u A = c2 ( 2 + 2 ) πœ•t πœ•x πœ•y πœ•2 u πœ•2 u πœ•2 u B = c 2 ( πœ•x2 + πœ•y2 ) πœ•t2 πœ•2 u 2 πœ• u 2 πœ•2 u πœ•2 u =c ( + + ) πœ•t2 πœ•x 2 πœ•y 2 πœ•z2 C D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation for one dimensional wave equation is πœ•2 y πœ•y A 2 = πœ•t πœ•x πœ•y πœ•2 y B = c 2 πœ•x2 πœ•t πœ•2 y πœ•2 y C = c 2 πœ•x2 πœ•t2 D None. Answer Marks 1.5 Unit IV Id Question The Laplace equation in two dimension is πœ•2 u πœ•2 u A 2 + 2 = 0 πœ•x πœ•y πœ•2 u πœ•2 u B βˆ’ πœ•y2 = 0 πœ•x2 πœ•2 u πœ•2 u C = πœ•x2 πœ•y2 D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation obtained by eliminating the constants a and b from z = (x2 βˆ’ a)(y2 βˆ’ b) is πœ•z πœ•z A 4xyz = (πœ•x) (πœ•y) πœ•z πœ•z B 4 = (πœ•x) (πœ•y) πœ•z πœ•z C 4xy = (πœ•x) (πœ•y) D None. Answer Marks 1.5 Unit IV Id Question The partial differential equation formed by eliminating the function y f from z = f (x) is πœ•z πœ•z A y (πœ•x) + x (πœ•y) = 0 πœ•z πœ•z B (πœ•x) + (πœ•y) = 0 πœ•z πœ•z C x (πœ•x) + y (πœ•y) = 0 D None. Answer Marks 1.5 Unit IV Id Question The general solution of the one dimensional heat flow equation πœ•u 2 2πœ• u πœ•t = C πœ•x2 is 2 2 A u = (c1 emx + c2 eβˆ’mx )c3 em c t B u = c1 (c2 x + c3 ) 2 c2 C u = (c1 cosmx + c2 sinmx)c3 eβˆ’m t D None. Answer Marks 1.5 Unit IV Id Question If u = c1 , v = c2 are the two solutions of Pp + Qq = R, then its general solution will be A βˆ…(u, v) = 1 B βˆ…(u, v) = βˆ’1 C βˆ…(u, v) = 0 D None. Answer Marks 1.5 Unit IV Id 𝒅2 π’š π’…π’š Question The differential equation 𝒙2 𝒅𝒙2 + 𝒙 (𝒅𝒙) + (𝒙2 βˆ’ 25)π’š = 0 is called A Bessel's differential equation of order 5 B Bessel's differential equation of order 4 C Bessel's differential equation of order 2 D None. Answer Marks 1.5 Unit V Id Question π‘±βˆ’1 (𝒙) is equal to 2 A 2 √( ) π‘π‘œπ‘ π‘₯ πœ‹π‘₯ B 2 √( ) 𝑠𝑖𝑛π‘₯ πœ‹π‘₯ C πœ‹π‘₯ √( ) π‘π‘œπ‘ π‘₯ 2 D None. Answer Marks 1.5 Unit V Id Question 𝑱1 (𝒙) is equal to 2 A 2 √( ) π‘π‘œπ‘ π‘₯ πœ‹π‘₯ B 2 √( ) 𝑠𝑖𝑛π‘₯ πœ‹π‘₯ C πœ‹π‘₯ √( ) π‘π‘œπ‘ π‘₯ 2 D None. Answer Marks 1.5 Unit V Id 2 2 Question [ 𝑱1 (𝒙)] + [π‘±βˆ’1 (𝒙)] is equal to 2 2 2 A πœ‹π‘₯ πœ‹π‘₯ B 2 C 1 πœ‹π‘₯ D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝒅𝒙 { 𝒙𝒏 𝑱𝒏 (𝒙)} is equal to A π‘₯ 𝑛 𝐽𝑛 (π‘₯) B π‘₯ 𝑛 π½π‘›βˆ’1 (π‘₯) C π‘₯ 𝑛 𝐽𝑛+1 (π‘₯) D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝒅𝒙 { π’™βˆ’π’ 𝑱𝒏 (𝒙)} is equal to A βˆ’π‘₯ βˆ’π‘› 𝐽𝑛 (π‘₯) B βˆ’π‘₯ 𝑛 𝐽𝑛+1 (π‘₯) C βˆ’π‘₯ βˆ’π‘› 𝐽𝑛+1 (π‘₯) D None. Answer Marks 1.5 Unit V Id Question The value of π‘±βˆ’π’ (𝒙) is A (βˆ’1)𝑛 𝐽𝑛 (π‘₯) B βˆ’1)π‘›βˆ’1 𝐽𝑛 (π‘₯) C (βˆ’1)𝑛 𝐽𝑛+1 (π‘₯) D None. Answer Marks 1.5 Unit V Id Question Which recurrence relation is true A 2𝑛 𝐽𝑛+1 (π‘₯) = 𝐽 (π‘₯) βˆ’ π½π‘›βˆ’1 (π‘₯) π‘₯ 𝑛 𝑛 B 𝐽𝑛+1 (π‘₯) = 𝐽𝑛 (π‘₯) βˆ’ π½π‘›βˆ’1 (π‘₯) π‘₯ C 2𝑛 𝐽𝑛+1 (π‘₯) = 𝐽 (π‘₯) + π½π‘›βˆ’1 (π‘₯) π‘₯ 𝑛 D None. Answer Marks 1.5 Unit V Id Question The Bessel equation of order zero is A 𝑑2 𝑦 𝑑𝑦 π‘₯2 2 βˆ’π‘₯ + (π‘₯ 2 βˆ’ 𝑛2 )𝑦 = 0 𝑑π‘₯ 𝑑π‘₯ B 𝑑2 𝑦 𝑑𝑦 π‘₯ 2+ βˆ’ π‘₯𝑦 = 0 𝑑π‘₯ 𝑑π‘₯ C 𝑑2 𝑦 𝑑𝑦 π‘₯ 2+ + π‘₯𝑦 = 0 𝑑π‘₯ 𝑑π‘₯ D None. Answer Marks 1.5 Unit V Id Question The value of 𝑱0 (0) is A 0 B -1 C 1 D None. Answer Marks 1.5 Unit V Id Question Which recurrence relation is false 𝑛 A 𝐽𝑛 β€² (π‘₯) + 𝐽𝑛 (π‘₯) = π½π‘›βˆ’1 (π‘₯) π‘₯ 𝑛 B β€² 𝐽𝑛 (π‘₯) βˆ’ 𝐽𝑛 (π‘₯) = βˆ’π½π‘›+1 (π‘₯) π‘₯ C 2𝐽𝑛 β€² (π‘₯) = π½π‘›βˆ’1 (π‘₯) βˆ’ 𝐽𝑛+1 (π‘₯) D None. Answer Marks 1.5 Unit V Id Question π‘±βˆ’π’ (𝒙) is equal to ∞ A (βˆ’1)π‘Ÿ (π‘₯)𝑛+2π‘Ÿ βˆ‘ (2)𝑛+2π‘Ÿ 𝛀𝑛 + π‘Ÿ + 1 π‘Ÿ=0 ∞ B (βˆ’1)π‘Ÿ (π‘₯)βˆ’π‘›+2π‘Ÿ βˆ‘ (2)βˆ’π‘›+2π‘Ÿ 𝛀 βˆ’ 𝑛 + π‘Ÿ + 1 π‘Ÿ=0 ∞ C (βˆ’1)π‘Ÿ (π‘₯)2π‘Ÿ βˆ‘ (2)2π‘Ÿ 𝛀𝑛 + π‘Ÿ + 1 π‘Ÿ=0 D None. Answer Marks 1.5 Unit V Id Question If ∝ π‘Žπ‘›π‘‘ 𝛽 are the roots of the equation 𝐽𝑛 (π‘₯) = 0 , then the value of integral 1 ∫0 𝒙 𝑱𝒏 (∝ 𝒙)𝑱𝒏 (πœ·π’™) 𝒅𝒙 if ∝ β‰  𝜷 is A 0 B 1 1 C [𝐽𝑛+1 (∝)]2 2 D None. Answer Marks 1.5 Unit V Id Question If ∝ π‘Žπ‘›π‘‘ 𝛽 are the roots of the equation 𝐽𝑛 (π‘₯) = 0 , then the value of integral 1 ∫0 𝒙 𝑱𝒏 (∝ 𝒙)𝑱𝒏 (πœ·π’™) 𝒅𝒙 if ∝ = 𝜷 is 1 A [𝐽𝑛+1 (∝)]2 2 B [𝐽𝑛+1 (∝)]2 1 C [𝐽 (∝)]2 2 π‘›βˆ’1 D None. Answer Marks 1.5 Unit V Id Question The value of 𝑱1 (𝒙) is 2 A π½βˆ’1 (π‘₯) π‘‘π‘Žπ‘›π‘₯ 2 B π½βˆ’1 (π‘₯) 𝑠𝑖𝑛π‘₯ 2 C π½βˆ’1 (π‘₯) π‘π‘œπ‘‘π‘₯ 2 D None. Answer Marks 1.5 Unit V Id Question π‘±βˆ’5 (𝒙) is equal to 2 A 2 √( ) {( 3βˆ’π‘₯ 2 3 ) π‘π‘œπ‘ π‘₯ + π‘₯ 𝑠𝑖𝑛π‘₯} πœ‹π‘₯ π‘₯2 B 2 √( ) { ( 3+π‘₯ 2 3 ) π‘π‘œπ‘ π‘₯ + π‘₯ 𝑠𝑖𝑛π‘₯} πœ‹π‘₯ π‘₯2 C 2 √( ) {( 3βˆ’π‘₯ 2 3 ) 𝑠𝑖𝑛π‘₯ βˆ’ π‘₯ π‘π‘œπ‘ π‘₯} πœ‹π‘₯ π‘₯2 D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝑱 (𝒙) 𝒅𝒙 0 is equal to A 𝐽1 (π‘₯) B βˆ’π½1 (π‘₯) C 𝐽0 (π‘₯) D None. Answer Marks 1.5 Unit V Id Question 𝑱5 (𝒙) is equal to 2 A 2 √( ) {( 3βˆ’π‘₯ 2 3 ) 𝑠𝑖𝑛π‘₯ βˆ’ π‘₯ π‘π‘œπ‘ π‘₯} πœ‹π‘₯ π‘₯2 B 2 √( ) {( 3βˆ’π‘₯ 2 3 ) 𝑠𝑖𝑛π‘₯ + π‘₯ π‘π‘œπ‘ π‘₯} πœ‹π‘₯ π‘₯2 C 2 √( ) {( 3βˆ’π‘₯ 2 1 ) 𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯} πœ‹π‘₯ π‘₯2 π‘₯ D None. Answer Marks 1.5 Unit V Id Question 𝑱3 (𝒙) is equal to 2 A 2 √( ) {( 𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯)} πœ‹π‘₯ π‘₯ B 2 √( ) {( 𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯)} πœ‹π‘₯ π‘₯ C 2 √( ) {( π‘π‘œπ‘ π‘₯ βˆ’ 𝑠𝑖𝑛π‘₯)} πœ‹π‘₯ π‘₯ D None. Answer Marks 1.5 Unit V Id Question π‘±βˆ’3 (𝒙) is equal to 2 A 2 √( ) {(βˆ’ π‘π‘œπ‘ π‘₯ βˆ’ 𝑠𝑖𝑛π‘₯)} πœ‹π‘₯ π‘₯ B 2 √( ) {( π‘π‘œπ‘ π‘₯ βˆ’ 𝑠𝑖𝑛π‘₯)} πœ‹π‘₯ π‘₯ C 2 √( ) {( 𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯)} πœ‹π‘₯ π‘₯ D None. Answer Marks 1.5 Unit V Id Question 𝑱4 (𝒙) is equal to A 48 8 24 ( 3 βˆ’ ) 𝐽1 (π‘₯) βˆ’ ( 2 βˆ’ 1) 𝐽0 (π‘₯) π‘₯ π‘₯ π‘₯ 48 8 24 B (π‘₯ 3 βˆ’ π‘₯) 𝐽1 (π‘₯) + (π‘₯ 2 βˆ’ 1) 𝐽0 (π‘₯) C 48 8 24 ( 3 βˆ’ ) 𝐽0 (π‘₯) βˆ’ ( 2 βˆ’ 1) 𝐽1 (π‘₯) π‘₯ π‘₯ π‘₯ D None. Answer Marks 1.5 Unit V Id Question 4 𝑱𝒏 ΚΊ (𝒙) is equal to A π½π‘›βˆ’2 (π‘₯) βˆ’ 2𝐽𝑛 (π‘₯) + 𝐽𝑛+2 (π‘₯) B π½π‘›βˆ’2 (π‘₯) + 2𝐽𝑛 (π‘₯) + 𝐽𝑛+2 (π‘₯) C π½π‘›βˆ’2 (π‘₯) + 2𝐽𝑛 (π‘₯) βˆ’ 𝐽𝑛+2 (π‘₯) D None. Answer Marks 1.5 Unit V Id 𝑑 Question 𝑑π‘₯ [π‘₯ 𝐽1 (π‘₯)] is equal to A π‘₯ 𝐽0 (π‘₯) B 𝐽0 (π‘₯) C 𝐽1 (π‘₯) D None. Answer Marks 1.5 Unit V Id 𝒅 Question 𝒅𝒙 [𝒙𝒏 𝑱𝒏 (𝒂𝒙)] is equal to A π‘Ž π‘₯ 𝑛 π½π‘›βˆ’1 (π‘Žπ‘₯) B π‘Ž π‘₯ βˆ’π‘› π½π‘›βˆ’1 (π‘Žπ‘₯) C π‘Ž π‘₯ 𝑛 𝐽𝑛+1 (π‘₯) D None. Answer Marks 1.5 Unit V Id Question 𝑱1 ΚΊ (𝒙) is equal to A 1 𝐽1 (π‘₯) βˆ’ 𝐽2 (π‘₯) π‘₯ B 1 𝐽1 (π‘₯) + 𝐽2 (π‘₯) π‘₯ C 𝐽1 (π‘₯) βˆ’ 𝐽2 (π‘₯) D None. Answer Marks 1.5 Unit V Id Question Which of the following functions is an analytic function A f(z) = zΜ… B f(z) = sinz C f(z) = Im(z) D None. Answer Marks 1.5 Unit VI Id Question The function f(z) = |z|2 is analytic at A everywhere B no where C origin D None Answer Marks 1.5 Unit VI Id Question If f(z)= u + iv is an analytic function , then f β€²(z) is equal to πœ•u πœ•v A πœ•x βˆ’ i πœ•x B πœ•u πœ•v +i πœ•x πœ•x πœ•u πœ•v C πœ•x βˆ’ i πœ•y D None Answer Marks 1.5 Unit VI Id Question If the function u = ax3 + bx2 y + cxy 2 + dy3 is to be harmonic, if A c = 3d and b = 3a B c = βˆ’3a and b = βˆ’3d C c = 3a and b = 3d D None Answer Marks 1.5 Unit VI Id Question If the function 2x + x2 +∝ y2 is to be harmonic , then the value of ∝ will be A -1 B 1 C 2 D None Answer Marks 1.5 Unit VI Id Question The transformation w = az+b cz+d , where ad βˆ’ bc β‰ 0 represents a transformation called A Magnification and rotation B Bilinear C Inversion D None Answer Marks 1.5 Unit VI Id Question The transformation w = cz represents a transformation called A Magnification and rotation B Translation C Inversion D None Answer Marks 1.5 Unit VI Id Question The analytic function f(z) = zzβˆ’1 2 +1 has singularities at A 1& βˆ’ 1 B i & βˆ’ i. C 1& βˆ’ i D None Answer Marks 1.5 Unit VI Id Question The value of m for the function u = 2x βˆ’ x2 + my2 to be harmonic is A 0 B 1 C 2 D None Answer Marks 1.5 Unit VI Id Question A function u( x, y) is said to be harmonic if πœ•2 u πœ•2 u A + πœ•y2 = 0 πœ•x2 πœ•u πœ•u B πœ•x + πœ•y = 0 πœ•2 u πœ•2 u C βˆ’ πœ•x2 = 0 πœ•x2 D None Answer Marks 1.5 Unit VI Id Question Which of the following is a bilinear transformation 2z+1 A w = 4z+2 2z+1 B w = 4zβˆ’2 C w=z D None Answer Marks 1.5 Unit VI Id Question The transformation w = z + Ξ± is known as A Magnification and rotation B Translation C Inversion D None Answer Marks 1.5 Unit VI Id Question If real part of function f(z) constant, then f(z) is A Analytic function B Nowhere analytic function C Entire function D None Answer Marks 1.5 Unit VI Id Question The Cauchy - Riemann equations for f(z) = u(x, y) + iv(x, y) to be analytic are πœ•2 u πœ•2 u πœ•2 v πœ•2 v A 2 + 2 = 0; 2 + 2 = 0 πœ•x πœ•y πœ•x πœ•y B πœ•u πœ•v πœ•u πœ•v =βˆ’ ; =βˆ’ πœ•x πœ•y πœ•y πœ•x πœ•u πœ•v πœ•u πœ•v C πœ•x = πœ•y ; πœ•y = βˆ’ πœ•x D None Answer Marks 1.5 Unit VI Id Question If f(z) = u + iv is analyticin polar form, then πœ•u πœ•r is πœ•v A πœ•Ρ² B πœ•v r πœ•Ρ² C 1 πœ•v r πœ•Ρ² D None Answer Marks 1.5 Unit VI Id Question Which of the following is true : A Re(z1 βˆ’ z2 ) = Re(z1 ) βˆ’ Re(z2 ) B Re(z1 z2 ) = Re(z1 )Re(z2 ) C |z1 βˆ’ z2 | = |z1 | βˆ’ |z2 | D None Answer Marks 1.5 Unit VI Id Question f(z) = zΜ… is differentiable A Nowhere B only at z = 0 C Everywhere D None. Answer Marks 1.5 Unit VI Id Question The polar form of Cauchy - Riemann equations are πœ•u 1 πœ•v πœ•u πœ•v A πœ•Ρ² = ; r πœ•r πœ•r = r πœ•Ρ² πœ•u πœ•v πœ•u 1 πœ•v B πœ•Ρ² = r πœ•Ρ² ; πœ•r = r πœ•Ρ² πœ•u 1 πœ•v πœ•u πœ•v C πœ•r = ; r πœ•Ρ² πœ•Ρ² = βˆ’r πœ•r D None. Answer Marks 1.5 Unit VI Id Question f(z) = ex (cosy βˆ’ isiny)is A analytic B Not analytic Analytic when z = 0 C D None. Answer Marks 1.5 Unit VI Id Question The harmonic conjugate of u(x, y) = ey cosx is A βˆ’ey cosy + c B βˆ’ey sinx + c C ey sinx + c D None. Answer Marks 1.5 Unit VI Id Question Function u is said to be harmonic if and only if A uxx + uyy = 0 B uxx βˆ’ uyy = 0 C ux + uy = 0 D None. Answer Marks 1.5 Unit VI Id Question If u and v are harmonic functions then f(z)= u+iv is A Analytic function B Need not be analytic function C Analytic function only at z=0 D None. Answer Marks 1.5 Unit VI Id Question If eax cosy is harmonic ,then a = A i B 0 C -1 D None. Answer Marks 1.5 Unit VI Id Question The function f(z) = |z| is a nonconstant A Nowhere analytic function B analytic function only at z = 0 C Everywhere analytic function D None. Answer Marks 1.5 Unit VI Id Question f(z) = |zΜ…|2 is differentiable A nowhere B only at z = 0 C everywhere D None. Answer Marks 1.5 Unit VI

Use Quizgecko on...
Browser
Browser