Transition and Inner Transition Elements PDF
Document Details
Uploaded by Deleted User
Saraswati Academy Bhuinj
Tags
Summary
These are notes about transition and inner transition elements, covering their electronic configurations, properties, and oxidation states.
Full Transcript
# 8. Transition and Innertransition Elements ## Transition and Innertransition Elements The transition elements belong to the d-block in the periodic table. - Transition metals have incomplete d-orbitals (they give color with incomplete d-orbital). - They exhibit properties between those of s an...
# 8. Transition and Innertransition Elements ## Transition and Innertransition Elements The transition elements belong to the d-block in the periodic table. - Transition metals have incomplete d-orbitals (they give color with incomplete d-orbital). - They exhibit properties between those of s and p-block elements. Transition elements are placed in the periodic table in groups 3 to 12 and 4 periods (n = 4 to 7). (n-1)d orbitals are filled. The general electronic configuration is (n-1)d<sup>1-10</sup> ns<sup>1-2</sup> ### 3d to 6d elements | Group | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|---|---|---|---|---|---|---|---|---|---| | d-series | | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 3d | | | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | | | | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | | 4d | | | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | | 5d | f-block | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | | | | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | | 6d | | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | | | | Ac | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | ### Electronic configuration of d-block elements - 3d = [Ar] 3d<sup>1-10</sup> 4s<sup>1-2</sup> - 4d = [Kr] 4d<sup>1-10</sup> 5s<sup>1-2</sup> - 5d = [Xe] 5d<sup>1-10</sup> 6s<sup>1-2</sup> - 6d = [Rn] 6d<sup>1-10</sup> 7s<sup>1-2</sup> ## Electronic configuration of 3d series | Element | Excepted configuration | Observed configuration | |---|---|---| | 21Sc | [Ar] 3d<sup>1</sup> 4s<sup>2</sup> | [Ar] 3d<sup>1</sup> 4s<sup>2</sup> | | 22Ti | [Ar] 3d<sup>2</sup> 4s<sup>2</sup> | [Ar] 3d<sup>2</sup> 4s<sup>2</sup> | | 23V | [Ar] 3d<sup>3</sup> 4s<sup>2</sup> | [Ar] 3d<sup>3</sup> 4s<sup>2</sup> | | 24Cr | [Ar] 3d<sup>4</sup> 4s<sup>2</sup> | *[Ar] 3d<sup>5</sup> 4s<sup>1</sup> | | 25Mn | [Ar] 3d<sup>5</sup> 4s<sup>2</sup> | [Ar] 3d<sup>5</sup> 4s<sup>2</sup> | | 26Fe | [Ar] 3d<sup>6</sup> 4s<sup>2</sup> | [Ar] 3d<sup>6</sup> 4s<sup>2</sup> | | 27Co | [Ar] 3d<sup>7</sup> 4s<sup>2</sup> | [Ar] 3d<sup>7</sup> 4s<sup>2</sup> | | 28Ni | [Ar] 3d<sup>8</sup> 4s<sup>2</sup> | [Ar] 3d<sup>8</sup> 4s<sup>2</sup> | | 29Cu | [Ar] 3d<sup>9</sup> 4s<sup>2</sup> | *[Ar] 3d<sup>10</sup> 4s<sup>1</sup> | | 30Zn | [Ar] 3d<sup>10</sup> 4s<sup>2</sup> | [Ar] 3d<sup>10</sup> 4s<sup>2</sup> | ### Electronic configuration of chromium and copper (2M) #### Chromium (Cr): - Excepted configuration = [Ar] 3d<sup>4</sup> 4s<sup>2</sup> - Observed configuration = [Ar] 3d<sup>5</sup> 4s<sup>1</sup> - According to stability, the half-filled orbital is more stable, therefore, 1 electron of 4s is shifted to the 3d orbital/subshell #### Copper (Cu): - Excepted configuration = [Ar] 3d<sup>9</sup> 4s<sup>2</sup> - Observed configuration = [Ar] 3d<sup>10</sup> 4s<sup>1</sup> - According to stability, the fully filled orbital is more stable, therefore, 1 electron of 4s is shifted to the 3d subshell - **Oxidation States (OS) of first transition series** - The loss of 4s and 3d electrons leads to the formation of ions. - The oxidation states for the first transition series are: - M -1e<sup>-</sup> -> M<sup>+1</sup> - M<sup>+1</sup> -1e<sup>-</sup> -> M<sup>+2</sup> - M<sup>+2</sup> -1e<sup>-</sup> -> M<sup>+3</sup> - M<sup>+3</sup> -1e<sup>-</sup> -> M<sup>+4</sup> - M<sup>+4</sup> -1e<sup>-</sup> -> M<sup>+5</sup> - M<sup>+5</sup> -1e<sup>-</sup> -> M<sup>+6</sup> - M<sup>+6</sup> -1e<sup>-</sup> -> M<sup>+7</sup> - **IE1 < IE2 < IE3 < IE4** - The oxidation states of 3d series are usually +2 and +3 with exceptions. - The oxidation states +1, +4, +5, +6 and +7 generally occur. - **Common oxidation states** for some elements are: - **Copper (Cu)** = +1, +2 - Common OS is +2 - **Element| Expected configuration | e<sup>-</sup> representation|** - **21Sc|[Ar] 3d<sup>1</sup> 4s<sup>2</sup>|↑** - **22Ti|[Ar] 3d<sup>2</sup> 4s<sup>2</sup>|↑↑** - **23V|[Ar] 3d<sup>3</sup> 4s<sup>2</sup>|↑↑↑** - **24Cr|[Ar] 3d<sup>5</sup> 4s<sup>1</sup>|↑↑↑↑ ↑** - **25Mn|[Ar] 3d<sup>5</sup> 4s<sup>2</sup>|↑↑↑↑↑↑** - **26Fe|[Ar] 3d<sup>6</sup> 4s<sup>2</sup>|↑↑↑↑↑↑↑↑** - **27Co|[Ar] 3d<sup>7</sup> 4s<sup>2</sup>|↑↑↑↑↑↑↑↑↑↑** - **28Ni|[Ar] 3d<sup>8</sup> 4s<sup>2</sup>|↑↑↑↑↑↑↑↑↑↑↑↑** - **29Cu|[Ar] 3d<sup>10</sup> 4s<sup>1</sup>|↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑** - **30Zn|[Ar] 3d<sup>10</sup> 4s<sup>2</sup>|↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑** - Ionic radii of transition elements decrease from left to right. - There are two trends in ionic radii: - Elements having the same OS. - Various OS of the same element. - Elements having the same OS: - The ionic radii decrease from left to right due to the increase in atomic radii. - OS of the same element: - Different OS of the same element show different trends. - With a higher OS, the Zeff increases, so the ionic radii decrease. - **Ionization Enthalpy**: - The ionization enthalpy of transition elements is intermediate between those of s and p-block elements. - Transition elements are less electropositive than group 1 & 2. - Generally, in lower OS, they will form ionic bonds and in higher OS they will form covalent bonds. - The ionization enthalpy increases because the Zeff increases. - **IE1 < IE2 < IE3 < IE4** - 5d > 4d > 3d ## Physical Properties of First Transition Elements: All transition elements are metals and show characteristic properties like metals: - They are hard. - They are malleable and ductile. - Can form alloys with different metals. - Good conductors of heat and electricity (except for Zn, Cd, Hg). - They have high MP and BP. ## Trends in atomic properties for the 1st transition series (3d): - **Atomic/Ionic Radii:** - The atomic radii of the elements of the transition series decreases from left to right, because of the increase in Zeff. - **Ionization Enthalpy:** - The ionization enthalpy of transition elements increase from left to right due to: - Increase in Zeff. - Decrease in atomic size. - There are some exceptions depending on the specific element. - **Metallic Character:** - The metallic character decreases gradually from left to right because of the increase in Zeff, due to the increasing nuclear attraction and the electrons being held more tightly. - Since they have incomplete d-orbitals, the vacant d-orbitals attract electrons. ## Color of Transition Elements: - A substance will appear colored if it absorbs a portion of visible light and it depends on the wavelength of absorption in the visible region in the electromagnetic spectrum. - Ions and covalent compounds formed by transition element are colored because: - Presence of unpaired d-orbitals. - d-d transitions. - The nature of the ligand attached to the metal ion. - Geometry of the complex. | Element | e<sup>-</sup> configuration | Ions | Ions e<sup>-</sup> configuration | No of unpaired e<sup>-</sup> | Color | |---|---|---|---|---|---| | 21Sc | 3d<sup>1</sup> 4s<sup>2</sup> | Sc<sup>3+</sup> | 3d<sup>0</sup> | 0 | Colorless | | 22Ti | 3d<sup>2</sup> 4s<sup>2</sup> | Ti<sup>3+</sup> | 3d<sup>1</sup> | 1 | Purple | | | | Ti<sup>4+</sup> | 3d<sup>0</sup> | 0 | Colorless | | 23V | 3d<sup>3</sup> 4s<sup>2</sup> | V<sup>3+</sup> | 3d<sup>2</sup> | 2 | Green | | 24Cr | 3d<sup>5</sup> 4s<sup>1</sup> | Cr<sup>3+</sup> | 3d<sup>3</sup> | 3 | Violet | | | | Cr<sup>6+</sup> | 3d<sup>0</sup> | 0 | | | 25Mn | 3d<sup>5</sup> 4s<sup>2</sup> | Mn<sup>2+</sup> | 3d<sup>5</sup> | 5 | light pink | | | | Mn<sup>3+</sup> | 3d<sup>4</sup> | 4 | Violet | | 26Fe | 3d<sup>6</sup> 4s<sup>2</sup> | Fe<sup>2+</sup> | 3d<sup>6</sup> | 4 | Pale green | | | | Fe<sup>3+</sup> | 3d<sup>5</sup> | 5 | Yellow | | 27Co | 3d<sup>7</sup> 4s<sup>2</sup> | Co<sup>2+</sup> | 3d<sup>7</sup> | 3 | Pink | | 28Ni | 3d<sup>8</sup> 4s<sup>2</sup> | Ni<sup>2+</sup> | 3d<sup>8</sup> | 2 | Green | | 29Cu | 3d<sup>10</sup> 4s<sup>1</sup> | Cu<sup>+</sup> | 3d<sup>10</sup> | 0 | Blue | | | | Cu<sup>2+</sup> | 3d<sup>9</sup> | 1 | Blue | | 30Zn | 3d<sup>10</sup> 4s<sup>2</sup> | Zn<sup>2+</sup> | 3d<sup>10</sup> | 0 | Colorless | - The color of the compound depends on the ligand and also on the geometry of the complex. - For example, when **cobalt chloride (CoCl<sub>2</sub>)** is dissolved in water, it gives a pink solution of **[Co(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>** which has an octahedral geometry. But when this solution is treated with concentrated HCl, it gives a deep blue solution of **[CoCl<sub>4</sub>]<sup>2-</sup>** which has a tetrahedral geometry. - **[Co(H<sub>2</sub>O)<sub>6</sub>]**<sup>2+</sup> + 4Cl<sup>-</sup> -> **[CoCl<sub>4</sub>]**<sup>2-</sup> + 6H<sub>2</sub>O - Octahedral -> Tetrahedral - Pink -> Deep blue - The color of the compound depends on the nature of the ligand and the geometry of the complex. - The color depends on the ligand & geometry of the complex. ## Catalytic Properties: - Transition metals and their compounds exhibit good catalytic properties. - They can be homogeneous or heterogeneous catalysts. - **Examples:** Fe, Co, Ni, Pd, Pt are used as catalysts. ### Two types of catalysis: - **Homogeneous catalysis:** - The metal ions precipitate by forming unstable intermediates in the reaction. - **Heterogeneous catalysis:** - The metal provides a surface of action for the reaction. ### Examples of catalytic action: - **MnO<sub>2</sub>** acts as a catalyst for the decomposition of KClO<sup>3</sup> - **Fe** is used as a catalyst in the Haber process of ammonia production. - **Co/Th alloy** is used as a catalyst in the Fischer Tropsch process, which is used for the synthesis of gasoline. - **Ni** is used in the reduction of alkenes. - **Pt** is used in the contact process of H<sub>2</sub>SO<sub>4</sub> where SO<sub>2</sub> is converted to SO<sup>3</sup>. - 2SO<sub>2</sub> + O<sub>2</sub> -> 2SO<sub>3</sub> - **Fe-Cr catalyst** is used in the reaction of CO and steam (H<sub>2</sub>O) to produce CO<sub>2</sub> and H<sub>2</sub> at 500<sup>o</sup>C. - CO + H<sub>2</sub>O -> CO<sub>2</sub> + H<sub>2</sub> ## Formation of **Interstitial Compounds** - Small atoms like H, C, or N are trapped in the interstitial spaces within the crystal lattice. - These interstitial spaces are usually found in transition metals. - Interstitial compounds can be formed when small atoms like carbon, hydrogen, boron, or nitrogen occupy the interstitial sites in the crystal lattice of a metal. - These compounds are different from alloys because they do not involve the formation of new chemical bonds. - **Interstitial compounds** are important in the metallurgical industry for their properties like hardness, high melting points, high strength, and resistance to corrosion. - **Examples:** - The carbides, hydrides, and nitrides of transition metals. - **Iron** forms interstitial compounds with carbon. - **Steel** is an example of an interstitial compound of carbon in iron. - **Cast iron and steel** are examples of interstitial compounds of carbon in iron. - **Tungsten Carbide** is very hard. ## Properties of Interstitial Compounds: - Hard - Good conductors of heat and electricity. - Chemical properties are similar to the parent metal. - Have higher melting points than the pure metal. - Have lower densities than the pure metal. - Metallic carbides are chemically inert and extremely hard like diamond. - Hydrides of transition metals can be used as powerful reducing agents. ## Formation of Alloys: - Alloys are obtained by combining two or more metals or a metal with a non-metal. - Alloys are generally homogeneous mixtures with metallic properties. - **Two types of alloys:** - **Ferrous alloys:** Contain iron as the primary component. - Examples: Nickel steel, stainless steel, chromium steel. - **Non-ferrous alloys:** Do not contain iron as the primary component. - Examples: Brass (Cu & Zn), bronze (Cu & Sn), nichrome (Ni & Cr). ## Uses of Alloys: - **Bronze**: - It is tough, strong, and corrosion resistant. - It is used for making statues, medals, trophies. - **Cupra-Nickel**: - It is used for making machinery parts, marine ships, boats. - **Stainless Steel**: - It is used for making house articles and ultra-high speed aircraft. - **Nichrome**: - It is used in the ration of 80:20 and has been developed specifically for gas turbine engines. - **Titanium**: - It is used for high-temperature articles and ultra-high-speed flights and fireproof articles. ## Compounds of **Mn** and **Cr**: KMnO<sub>4</sub> & K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> - **Preparation of KMnO<sub>4</sub>** - It is prepared by chemical oxidation. - Manganese dioxide (MnO<sub>2</sub>) is heated strongly with KOH and oxidizing agent potassium chlorate (KClO<sub>3</sub>), to form dark green potassium manganate (K<sub>2</sub>MnO<sub>4</sub>). - 3MnO<sub>2</sub> + 6KOH + KClO<sub>3</sub> → 3K<sub>2</sub>MnO<sub>4</sub> + KCl + 3H<sub>2</sub>O - In neutral or acidic medium, potassium manganate is disproportionated to KMnO<sub>4</sub> and MnO<sub>2</sub>. - **KMnO<sub>4</sub> & K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>** both are strong oxidizing agents. ## Oxidation: - Oxidation is the addition of oxygen (O<sub>2</sub>) or the removal of hydrogen (H<sub>2</sub>) or the loss of electrons. - **Oxidation of KMnO<sub>4</sub>**: - **In acidic medium:** - KMnO<sub>4</sub> acts as an oxidizing agent and oxidizes iodide ions (I<sup>-</sup>) to iodine (I<sub>2</sub>). - 2KMnO<sub>4</sub> + 10I<sup>-</sup> + 16H<sup>+</sup> → 2Mn<sup>2+</sup> + 8H<sub>2</sub>O + I<sub>2</sub> - KMnO<sub>4</sub> oxidizes Fe<sup>2+</sup> to Fe<sup>3+</sup>. - 2KMnO<sub>4</sub> + 5Fe<sup>2+</sup> + 8H<sup>+</sup> → 5Fe<sup>3+</sup> + 2Mn<sup>2+</sup> + 4H<sub>2</sub>O - KMnO<sub>4</sub> oxidizes H<sub>2</sub>S to S. - 2KMnO<sub>4</sub> + 5H<sub>2</sub>S + 6H<sup>+</sup> → 2Mn<sup>2+</sup> + 5S + 8H<sub>2</sub>O - KMnO<sub>4</sub> oxidizes oxalic acid to CO<sub>2</sub>. - 2KMnO<sub>4</sub> + 5C<sub>2</sub>H<sub>2</sub>O<sub>4</sub> + 6H→ 2Mn<sup>2+</sup> + 10CO<sub>2</sub> + 8H<sub>2</sub>O - **In neutral or weakly basic condition:** - KMnO4 oxidizes iodide ions to iodate ions (IO<sub>3</sub><sup>-</sup>). - 2KMnO<sub>4</sub> + H<sub>2</sub>O + 2I<sup>-</sup> → 2MnO<sub>2</sub> + 2OH<sup>-</sup> + IO<sub>3</sub><sup>-</sup> - **In alkaline solutions:** - KMnO<sub>4</sub> is electrolyzed, MnO<sub>2</sub> is formed. - 2KMnO<sub>4</sub> + H<sub>2</sub>O + 2e<sup>-</sup> → 2MnO<sub>2</sub> + 2KOH - KMnO<sub>4</sub> crystals are deep purple black. ## Uses of KMnO<sub>4</sub>: - It is a powerful oxidizing agent used in various chemical reactions and applications. - As an antiseptic - In unsaturation test in laboratory. - In volumetric analysis for reducing agents. - In qualitative analysis for detecting halides. - As a powerful oxidizing agent in laboratory and industry. ## K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> (Potassium Dichromate): - **Preparation of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>**: - In industrial production, cromite ore (FeOCr<sub>2</sub>O<sub>3</sub>) is heated with anhydrous sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) and flux of lime in furnaces. - 4(FeOCr<sub>2</sub>O<sub>3</sub>) + 8Na<sub>2</sub>CO<sub>3</sub> + 7O<sub>2</sub> → 8Na<sub>2</sub>CrO<sub>4</sub> + 2Fe<sub>2</sub>O<sub>3</sub> + 8CO<sub>2</sub> - Sodium chromate (Na<sub>2</sub>CrO<sub>4</sub>) is extracted with water and treated with concentrated H<sub>2</sub>SO<sub>4</sub> to get sodium dichromate. - 2Na<sub>2</sub>CrO<sub>4</sub> + H<sub>2</sub>SO<sub>4</sub> → Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + 2NaCl + Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>. H<sub>2</sub>O - Addition of potassium dichromate and potassium chloride gives an orange-red color. - Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + 2KCI → K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + 2NaCl - **Chemical reactions of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>**: - Oxidation of I<sup>-</sup> from an aqueous solution of KI by acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> gives I<sub>2</sub>. - K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + 6KI + 7H<sub>2</sub>SO<sub>4</sub>→ 2K<sub>2</sub>SO<sub>4</sub> + Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> + 7H<sub>2</sub>O + 3I<sub>2</sub> - H<sub>2</sub>S is oxidized to pale yellow ppt of sulfur. - K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + 4H<sub>2</sub>SO<sub>4</sub> + 3H<sub>2</sub>S → K<sub>2</sub>SO<sub>4</sub> + Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> + 7H<sub>2</sub>O + 3S ## Chemical Properties of d-block Elements: - They are electropositive metals. - They exhibit variable valencies and form colored salts and complexes. - They are good reducing agents. - They form insoluble oxides and hydroxides. - Fe, Co, Cu, Mo and Zn are biologically important metals. ## Catalysis in Biological Reactions: - The oxidation states of 3d, 4d, and 5d elements are affected due to different properties. - Mo(VI), W(VI) - 4d -> More stable - Cr(VI), Mn(VII) - 3d -> Less stable - The highest OS for the first row is +7 (Mn<sup>7+</sup>) - The highest OS for the 2<sup>nd</sup> row is +8 (CrO<sub>4</sub><sup>2-</sup> & OsO<sub>4</sub>) ## Extraction of d-metals: - Most metals are found in the earth’s crust in the form of their salts, such as carbonates, sulfates, sulfides, and oxides. - A few metals are non-reactive and found in the free state in earth’s crust. - **Examples:** Gold, Silver, Platinum. ## Minerals: - A naturally occurring solid found in the earth's crust containing inorganic salts, silicones, metals, etc. is called a mineral. ## Ores: - The mineral which contains a high percentage of a metal and from which the metal can be economically extracted is called an ore. - Ores are usually found in the earth's crust and are mined for their valuable mineral content. - ** List of some ores of some transition elements: ** - **Iron:** Hematite/Hematite - **Copper:** Chalcopyrite, Chalcocite - **Zinc:** Zinc blende - **Others:** Many transition metals have their own ores. ## Metallurgy: - The commercial extraction of metals from their ores is known as metallurgy. - There are different types of metallurgy: - **Pyrometallurgy:** - The ore is reduced to metal at a high temperature using a reducing agent like C, H<sub>2</sub>, or Al. - **Examples:** Extraction of iron from its oxides. - **Hydrometallurgy:** - Metal is extracted from a suitable aqueous solution of its salts using a suitable reducing agent. - **Electrometallurgy:** - Metal is extracted by electrolytic reduction of molten(fused) metallic compounds. ## Extraction of Iron from Hematite using Blast Furnaces: - **Hematite:** Fe<sub>2</sub>O<sub>3</sub> + SiO<sub>2</sub> + Al<sub>2</sub>O<sub>3</sub> + Phosphate + sand, mud and other impurities - The impurities are called gangue. - **Raw Material:** - Hematite (Fe<sub>2</sub>O<sub>3</sub>) oxide. - Coke - Carbon - Limestone - CaCO<sub>3</sub> - **Processes used in Blast Furnaces:** - **Concentration:** The ore is crushed and washed to remove impurities. - **Roasting:** The concentrated ore is heated in air to remove moisture, volatile impurities, and convert sulfides to oxides. - **Reduction:** The roasted ore is reduced to iron metal by using coke as a reducing agent in the blast furnace. - **Melting:** The reduced iron is melted and collected at the bottom of the blast furnace. - **Blast Furnaces::** - Height = 25 m, Diameter(d) = 5 to 10 m. ## Reactions in Blast Furnaces: - **Zone of Combustion:** - Coke burns with O<sub>2</sub> in the air. - C + O<sub>2</sub> -> CO<sub>2</sub> + Heat - **Zone of Reduction:** - CO<sub>2</sub> is reduced to CO. - CO<sub>2</sub> + C -> 2CO - Iron oxides are reduced to iron by CO and C - Fe<sub>2</sub>O<sub>3</sub> + 3CO -> 2Fe + 3CO<sub>2</sub> - FeO + C -> Fe + CO - **Zone of Slag Formation:** - The gangue reacts with limestone to form slag. - CaCO3 + SiO<sub>2</sub> -> CaSiO<sub>3</sub> + CO<sub>2</sub> - The slag is molten and floats on the molten iron. - It is collected separately and used as building material. ## Inner Transition Elements: - Lanthanide and Actinide series (f-block elements). ### Lanthanide series: | Element | Symbol | Excepted configuration | Observed configuration | |---|---|---|---| | Lanthanum | La | [Xe] 5d<sup>1</sup> 6s<sup>2</sup> | [Xe] 5d<sup>1</sup> 6s<sup>2</sup> | | Cerium | Ce | [Xe] 4f<sup>1</sup> 5d<sup>1</sup> 6s<sup>2</sup> | [Xe] 4f<sup>1</sup> 5d<sup>1</sup> 6s<sup>2</sup> | | Praseodymium | Pr | [Xe] 4f<sup>3</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>3</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Neodymium | Nd | [Xe] 4f<sup>4</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>4</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Promethium | Pm | [Xe] 4f<sup>5</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>5</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Samarium | Sm | [Xe] 4f<sup>6</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>6</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Europium | Eu | [Xe] 4f<sup>7</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>7</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Gadolinium | Gd | [Xe] 4f<sup>7</sup> 5d<sup>1</sup> 6s<sup>2</sup> | [Xe] 4f<sup>7</sup> 5d<sup>1</sup> 6s<sup>2</sup> | | Terbium | Tb | [Xe] 4f<sup>9</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>9</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Dysprosium | Dy | [Xe] 4f<sup>10</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>10</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Holmium | Ho | [Xe] 4f<sup>11</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>11</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Erbium | Er | [Xe] 4f<sup>12</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>12</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Thulium | Tm | [Xe] 4f<sup>13</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>13</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | -Ytterbium | Yb | [Xe] 4f<sup>14</sup> 5d<sup>0</sup> 6s<sup>2</sup> | [Xe] 4f<sup>14</sup> 5d<sup>0</sup> 6s<sup>2</sup> | | Lutetium | Lu | [Xe] 4f<sup>14</sup> 5d<sup>1</sup> 6s<sup>2</sup> | [Xe] 4f<sup>14</sup> 5d<sup>1</sup> 6s<sup>2</sup> | ### Actinide series: | Element | Symbol | Excepted configuration | Observed configuration | |---|---|---|---| | Actinium | Ac | [Rn] 5f<sup>0</sup> 6d<sup>1</sup> 7s<sup>2</sup> | [Rn] 5f<sup>0</sup> 6d<sup>1</sup> 7s<sup>2</sup> | | Thorium | Th | [Rn] 5f<sup>0</sup> 6d<sup>2</sup> 7s<sup>2</sup> | [Rn] 5f<sup>0</sup> 6d<sup>2</sup> 7s<sup>2</sup> | | Protactinium | Pa | [Rn] 5f<sup>2</sup> 6d<sup>1</sup> 7s<sup>2</sup> | [Rn] 5f<sup>2</sup> 6d<sup>1</sup> 7s<sup>2</sup> | | Uranium | U | [Rn] 5f<sup>3</sup> 6d<sup>1</sup> 7s<sup>2</sup> | [Rn] 5f<sup>3</sup> 6d<sup>1</sup> 7s<sup>2</sup> | | Neptunium | Np | [Rn] 5f<sup>4</sup> 6d<sup>1</sup> 7s<sup>2</sup> | [Rn] 5f<sup>4</sup> 6d<sup>1</sup> 7s<sup>2</sup> | | Plutonium | Pu | [Rn] 5f<sup>6</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>6</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Americium | Am | [Rn] 5f<sup>7</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>7</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Curium | Cm | [Rn] 5f<sup>7</sup> 6d<sup>1</sup> 7s<sup>2</sup> | [Rn] 5f<sup>7</sup> 6d<sup>1</sup> 7s<sup>2</sup> | | Berkelium | Bk | [Rn] 5f<sup>9</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>9</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Californium | Cf | [Rn] 5f<sup>10</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>10</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Einsteinium | Es | [Rn] 5f<sup>11</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>11</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Fermium | Fm | [Rn] 5f<sup>12</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>12</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Mendelevium | Md | [Rn] 5f<sup>13</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>13</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Nobelium | No | [Rn] 5f<sup>1</sup><sup>4</sup> 6d<sup>0</sup> 7s<sup>2</sup> | [Rn] 5f<sup>1</sup><sup>4</sup> 6d<sup>0</sup> 7s<sup>2</sup> | | Lawrencium | Lr | [Rn] 5f<sup>1</sup><sup>4</sup> 6d<sup>1</sup> 7s<sup>2</sup> | [Rn] 5f<sup>1</sup><sup>4</sup> 6d<sup>1</sup> 7s<sup>2</sup> | ## F block Elements: * F-block elements are those where the f-block gets filled by electrons. * They are placed separately in the periodic table at the bottom * This orbital subset of f lies inside the d-orbital. * These elements occur in period 6 and 7. * They are called **inner transition elements.** ## Aufbau Principle: * This principle explains the filling of orbitals in the periodic table. * The orbitals are filled in the increasing order of the sum of the principal quantum number (n) and the azimuthal quantum number (l). * For example, 4s (n+l = 4+0 = 4), 3d (n+l = 3 + 2 = 5). ## Lanthanide Contraction: - The overall atom's atomic and ionic radii decrease from La to Lu. - This is known as lanthanide contraction. - The decrease in atomic size across the lanthanide series from La to Lu is known as lanthanide contraction. - It is caused by the poor shielding effect of the 4f electrons. ## Ionization Enthalpy of Lanthanides