Traitement du Signal PDF - Cours 1ère Année Télécommunication

Summary

Ce cours de Traitement du Signal, destiné aux étudiants de 1ère année de Télécommunication, explore les fondements de l'analyse spectrale, des séries de Fourier, ainsi que les concepts de convolution et d'échantillonnage. Le document aborde également les phénomènes physiques liés à la transmission des signaux.

Full Transcript

COURS TRAITEMENT DU SIGNAL Cours 1ère Année : Télécommunication TEL1 Frédéric LAUNAY le 12/11/2007 Département R&T – IUT de Poitiers site de Chatellerault...

COURS TRAITEMENT DU SIGNAL Cours 1ère Année : Télécommunication TEL1 Frédéric LAUNAY le 12/11/2007 Département R&T – IUT de Poitiers site de Chatellerault 1 Traitement du signal Le traitement du signal est devenu une science incontournable de nos jours : Toutes applications de mesures, de traitement d’information mettent en œuvre des techniques de traitement sur le signal pour extraire l’information désirée. Initialement destiné à extraire le signal dans un bruit lors de mesures (capteurs), le traitement du signal est largement appliqué en Télécommunication dans des applications diverses et variées. Nous pouvons citer : - la protection d’information contre le bruit telles que les techniques pour réduire le Taux d’erreur ou pour contrer les effets du canal (technique d’égalisation) - le développement d’applications électroniques et l’évolution aisée vers de nouvelles fonctionnalités telles que le filtrage sélectif, la mise en place de techniques variées de modulation/démodulation, … L’objectif principal de ce cours est la caractérisation d’un signal dans le domaine temporel et fréquentiel pour aboutir à des modèles mathématiques. La description mathématique des signaux permet de concevoir et de caractériser des systèmes de traitement de l'information. Le bruit représentera tout « signal » ou phénomène perturbateur Nous avons découpé ce cours en quatre chapitres, le premier chapitre est une sensibilisation à la décomposition d’un signal en série de Fourier. Aucune notion mathématique ne sera abordée dans ce premier module, l’intuition physique étant mise en avant pour appréhender les phénomènes. Dans le deuxième chapitre, nous allons classifier les signaux et définir des notions de puissances. Nous aborderons les phénomènes aléatoires et des signaux dits déterministe. Dans le troisième chapitre, nous aborderons des concepts plus mathématiques de la série de Fourier, de la transformée de Fourier. Un rappel sera fait avec le deuxième chapitre dans la mesure des signaux (Moyenne, puissance et variance). Enfin dans le 4ème chapitre, nous aborderons des applications d’échantillonnage, de filtrage et de convolution. Bien que des formules mathématiques seront développées dans ce chapitre, nous insisterons sur les représentations physiques. Les mathématiques appuieront les concepts abordés dans ce cours. 2 Chapitre 1 : Traitement du signal : Intuition Physique Informations générales 1h30 de cours 1h30 de TD : TD n°1 Descriptions du chapitre Approche intuitive sur la représentation temporelle et fréquentielle Définition de l’analyse spectrale Vibration d’une corde, longueur d’onde et fondamentale 3 « L’étude approfondie de la nature est la source la plus féconde des découvertes mathématiques » « [... ] L’analyse mathématique est aussi étendue que la nature elle-même [... ] Son attribut principal est la clarté [... ] Elle [... ] semble être une faculté de la raison humaine, destinée à suppléer à la brièveté de la vie et à l’imperfection des sens ». (Discours préliminaire à la théorie analytique de la chaleur par Joseph FOURIER). I. Introduction Avant de commencer le cours sur le traitement du signal, il est opportun de définir la notion de signal, telle que vous la trouverez sur Wikipédia et autres dictionnaires « Un signal est un message simplifié et généralement codé. Il existe sous forme d'objets ayant des formes particulières. Les signaux lumineux sont employés depuis la nuit des temps par les hommes pour communiquer entre eux à distance. Le signal électrique est une des formes les plus récentes de signal. Un signal dans le domaine informatique et de la communication inter- processus. On a l’habitude de représenter un signal par une fonction continue dans le temps et de visualiser le signal sur un oscilloscope ou un appareil représentant la variation d’amplitude d’un phénomène en fonction du temps (cardiogramme, sismographe, microphone, …). » I-1) Observations des phénomènes nous entourant Pour simplifier l’étude nous allons prendre l’exemple d’une seule corde (rmq : La production des sons à partir des cordes a été étudiée depuis Pythagore (vers 582 - 507 av.J.-C.) : en pinçant une corde, la vibration de la corde est transmise à l'air environnant, et l'air transmet la vibration de proche en proche jusqu'à votre oreille qui reçoit la vibration du début un peu transformée, mais encore reconnaissable. Tous ces phénomènes de transmission de "proche en proche" sont dus aux phénomènes d'onde : Avant (il y a une bosse) : Après (la bosse est plus loin) : Figure 1 : Evolution de l’onde en fonction de la distance On peut noter le même phénomène en lançant un caillou dans de l’eau. On observe des ronds qui augmentent de taille. Dans ce cas-là, c'est la hauteur de l'eau à un endroit qui change la hauteur de l'eau à côté de cet endroit. Dans le cas de l'air c'est la pression de l'air à un endroit qui change la pression de l'air à côté de cet endroit. 4 I-2 Exemple de la corde d’une guitare. Si on fait vibrer une corde suffisamment tendue (souvent en nylon ou en acier), elle fait aussi vibrer l'air qui se trouve à côté et produit un son. Mais ce son est très faible. C'est pour ça que les instruments à cordes ont des résonateurs (table d’harmonie). La corde d’une guitare est attachée aux deux extrémités, lorsqu’on écarte la corde à vide, la déformation de la corde forme une onde entre les deux extrémités (un fuseau). Figure 2 : Représentation d’un fuseau, variation de l’amplitude de l’onde sur une corde fixée aux deux extrémités Sur le graphe ci-dessus, la corde présente deux noeuds (à ses extrémités) et un ventre appelée fuseau. Pour obtenir une telle vibration, revenons sur la guitare : Figure 3 : Elément d’une guitare La tête : Elle supporte les chevilles sur lesquelles sont fixées une des extrémité des cordes, permettant ainsi de régler la tension des cordes. Le manche : Il est composé de frettes (ou sillets), petites barrettes de métal ou de bois qui servent à obtenir la longueur précise de la corde vibrante entre sillet de chevalet et la frette pincée. Le chevalet transmet les vibrations de la corde vibrante à la table d'harmonie. Il doit pouvoir retransmettre à la table, sans trop de déformations, le contenu fréquentiel que lui communique la corde. 5 La table d'harmonie est la surface supérieure de la caisse. Celle-ci est percée d'une ouïe, appelée rosace" dans le cas de la guitare. Cette rosace permet la projection du son, contenu dans la caisse de résonance, hors de l'instrument. Par conséquent, la vibration d’une corde de guitare produit un son 1. On obtient des sons plus ou moins graves : Selon l'épaisseur de la corde : Les cordes épaisses produisent un son grave. Les cordes fines, un son aigu. C'est pour ça que les instruments à cordes ont souvent plusieurs cordes de différentes épaisseurs. Chacune d'elles produit une note différente. Selon la longueur de la corde : Une corde dont la longueur est le double d'une autre, produit un son doublement plus grave. Si la première corde produit un do, par exemple, la deuxième produit un do une octave plus grave. Rmq : Les instruments à cordes ont souvent plusieurs cordes de la même longueur ! Sur la guitare, ainsi que sur tous les instruments de la famille du violon, les musiciens appuient sur le manche avec leurs doigts et réduisent la longueur de la corde. De cette façon, elle sonne comme si elle était plus courte et produit un son plus aigu. Selon la tension de la corde : Plus de tension est synonyme de plus aigu, ainsi plus la corde est tendue et plus le son émis sera aigu. Les musiciens peuvent régler la tension des cordes de leurs guitares, grâce aux clefs (chevilles). Quand on pince une corde, celle-ci vibre avec une vitesse V = F µ où F est la force de tension de la corde en Newton et µ est la masse de la corde par unité de longueur. I-3 Vibration : Les ondes stationnaires Dans la corde, les ondes sont stationnaires. Les ondes stationnaires s'établissent si la longueur L de la corde est un multiple de la demi longueur d'onde λ. La longueur L étant fixée (corde non pincée ou entre la frette pincée et le sillet de chevalet), on crée un son dont la longueur d’onde λ est proportionnelle à la longueur L. Or, la fréquence est inversement proportionnelle à la longueur d’onde selon la formule suivante (à retenir) dans le cas général: c λ = Tc = f c est la célérité en m/s. Dans le cas de la corde, on parlera plutôt de célérité des ondes méca-nique ce qui correspond à la vitesse de vibration mécanique V. La formule devient alors : V λ = f Pour la guitare, le mouvement des cordes est représenté par un seul fuseau dont les deux noeuds sont le chevalet et la frette choisie par le doigt du guitariste. Mais, il peut se produire plusieurs fuseaux lorsque la corde est pincée. 1 http://www.capcanal.com/couleurs/pages/son_cordes.htm 6 Donc quand vous faites frétiller la corde, il y a des ondes stationnaires qui se forment dedans. Chaque onde est caractérisée par un entier qui dit combien elle a de ventres. Enfin, chaque onde sonne différemment à votre oreille, parce qu'elles n'ont pas la même fréquence. Effet de la fréquence ? Plus une onde est petite, plus elle vibre vite. On va même être plus précis : si l'onde est 2 fois plus petite, alors la fréquence (nombre de battements par seconde, on parle ici de fréquence bien plus grande que le nombre de battement de coeur par seconde qui est de l'ordre de 1) est 2 fois plus grande. Reprenez l’équation précédente et vérifier cela. Donc, l'onde ayant deux ventres va être deux fois plus aiguë que l'onde ayant un ventre. On va mettre ça en symboles mathématiques. On note f la fréquence de l'onde la plus grande, celle qui a un seul ventre. Cette fréquence f s'appelle la fondamentale. Alors l'onde à deux ventres va avoir pour fréquence 2 f la, et plus généralement, l'onde ayant n ventres va avoir pour fréquence n fois f la. Avec une corde à 110 battements par secondes, on aura des ondes de fréquences 110, 220, 330, 440 etc. Pourquoi on n’entend qu’une seule note ? En effet, on entend la fondamentale, et les harmoniques viennent donner un aspect, en quelque sorte habiller la fréquence fondamentale, ce qui donne un timbre au son. Ainsi, la différence entre un son de flûte et un son de guitare jouant la même note n'est autre que la composition en harmonique. Comme en cuisine : une pincée d'harmonique x2, un brin de noix d'harmonique x3... On assimile les harmoniques à la fondamentale parce que généralement elles sont faibles (trop faibles pour être des notes à part entière), mais aussi parce qu'elles sont synchronisées, en temps et en intensité avec la fondamentale. La fondamentale et les harmoniques La fondamentale, vous savez c'est la fréquence la plus basse, et toutes les autres fréquences ce sont des harmoniques, qui sont des multiples entiers de la fréquence fondamentale. D'ailleurs l'harmonique x1 est en fait la fondamentale. Tiens, je vous disais qu'une onde avec 2 ventres a une fréquence 2 fois plus grande qu'une onde ayant 1 seul ventre. Maintenant si on prend une corde deux fois plus courte que la première mais à part ça pareil que l'autre, même matériau et même tension (en effet plus la corde est tendue plus la note est aiguë) et qu'on se demande quelle est la fréquence de l'onde ayant un seul ventre dans la petite corde, on obtient quoi ? On obtient ça : 7 II. Théorie du traitement du signal : Série de Fourier Jusqu’à présent, nous avons vu qu’un son ou une vibration entre deux points provoquait un son dont la fréquence était inversement proportionnelle à la longueur du fuseau. On note L la longueur de la corde, comme il n’y a qu’un seul fuseau, la demi longueur d’onde λ/2=L donc la fréquence résonnante est défini par f=V/(2L), V étant la célérité. Question : Sachant que la longueur d’un corde de guitare est de L=642 mm, que vaut la fréquence libre de la première corde si celle-ci est défini par une vitesse de vibration est de 106m/s On a représenté le signal le long de la corde (donc en fonction de la distance), et on a montré que le signal présentait un nœud. On s’aperçoit que la représentation ci-dessus met en avant plusieurs fuseaux d’amplitudes différentes. En fait, lorsqu’on fait vibrer la corde, a un instant donné, l’amplitude de celle-ci est maximale puis décroît, s’annule, devient minimale puis s’accroît, … Nous représentons ci-dessous l’évolution du son générée par une lame de diapason en fonction de la distance pour différents instants. Figure 4 : Evolution de l’amplitude de l’onde en fonction de la distance à différents instants Maintenant, regardons l’évolution de l’onde à une distance d fixée en fonction du temps : 8 Figure 5 : Evolution de l’amplitude de l’onde à une distance d en fonction du temps/réponse fréquentielle Dans le cas ou l’atténuation est nulle, voici la réponse temporelle et fréquentielle des signaux observées via un microphone sur un oscilloscope et un analyseur de spectre. Figure 6 : Représentation à l’oscillo et à l’Analyseur de spectre de deux sons Le diapason présente un signal sinusoïdal de fréquence 317,4 Hz que l’on observe facilement sur l’oscilloscope. On voit de plus sur l’analyseur de spectre un signal à 634Hz. Le signal temporel généré par la guitare et mesuré par le microphone est plus complexe. Il est périodique tous les 2 carreaux et demi soit 1,25 ms environ. L’analyseur de spectre montre en effet une fréquence fondamentale de 769 Hz = 1/ (1,3 ms) et des harmoniques. II-1 Analyseur de spectre Un analyseur de spectre est un appareil de mesure, qui représente un signal en fonction de sa fréquence. Alors qu’un oscilloscope représente l’amplitude d’un signal en fonction du temps, l’analyseur de spectre représente l’amplitude d’un signal en fonction de sa fréquence. EDF nous fournit un signal à 50 Hz, si on observe l’évolution de la tension en fonction du temps nous observerions le signal suivant 9 Figure 7 : Représentation à l’oscilloscope de la tension secteur Il s’agit d’un signal à 50 Hz, c'est-à-dire un signal dont la seule amplitude non nulle est à 50 Hz. Si on représente dans le domaine fréquentiel (mesure sous l’analyseur de spectre), nous observerions le signal suivant : Amplitude 220 V Fréquence 50 Hz Sur la figure suivante, nous observerons la trace temporelle et fréquence d’un signal composée de trois sinusoïdes : Amplitude Fréquence Amplitude Fréquence Amplitude Fréquence Amplitude Fréquence 200 Hz 400 Hz 600 Hz Figure 8 : Représentation temporelle et spectrale d’un signal composé de trois fréquences 10 Dans le cas précédent, le signal à 200 Hz est appelée la fondamentale, les fréquences à 400 Hz et 600 Hz sont les harmoniques. La fréquence des harmoniques est toujours une multiple de la fréquence du fondamentale. Ainsi, l’analyseur de spectre représente l’amplitude et chaque fréquence existante dans le signal à mesurer. Le signal étudié est donc constitué d’une somme de signaux sinusoïdaux dont l’amplitude et les fréquences sont déterminées par l’analyseur de spectre. La représentation spectrale et temporelle donne les mêmes informations. La représentation spectrale représente un signal en fonction de la fréquence (analyseur de spectre) alors que la représentation temporelle représente le même signal en fonction du temps (oscilloscope). La représentation spectrale donne l’amplitude de toutes les fréquences présentes dans le signal temporel, on peut ainsi écrire le signal temporel comme une sommation de signaux sinusoïdaux. Application de cours : TD n°1 11 Chapitre 2 : Traitement du signal : Classification des signaux Informations générales 3h00 de cours 1h30 de TD Descriptions du chapitre Classification des signaux : déterministes (périodique ou non) ou aléatoires (stationnaire ou non) Rappels de signaux périodiques et propriétés Définitions et propriétés de signaux usuels : porte, rampe, échelon, impulsion. Puissance et énergie d’un signal 12 I. Introduction Les premières applications du traitement du signal étaient dédiées à l’extraction d’un signal dans un milieu bruité. Pour ce faire, il était nécessaire d’avoir des connaissances a priori sur le signal à mesurer et sur la nature du bruit. On définit deux classes principales de signaux : - Signal déterministe : il s’agit d’un signal dont on peut représenter l’évolution grâce à une fonction mathématique. On peut citer le signal sinusoïdal, rampe, échelon, impulsion ou dirac, … Un signal déterministe peut être périodique ou non périodique. - Signal aléatoire est un signal dont on ne peut deviner l’évolution. Néanmoins, tout signal aléatoire peut être caractérisé mathématiquement, mais aucune fonction mathématique ne permet de prédire l’évolution du signal à l’instant donné. Un signal aléatoire peut être stationnaire ou non stationnaire. En règle générale tout signal réel est aléatoire, car tout signal est entaché de bruit. Mais, attention : un signal aléatoire n’est pas un bruit et un bruit peut être déterministe. En effet, si vous souhaitez transmettre des données par le CPL, alors le bruit le plus élevé est généré par le secteur 50 Hz (donc un signal déterministe) et l’information que vous transmettez est forcément aléatoire (sinon vous pourriez la générer au récepteur par la fonction mathématique). Cette nuance est importante, on simplifie trop souvent signal aléatoire et bruit. II. Signaux déterministe II.1 Exemples de signaux déterministes Rappel : un signal temporel est déterministe s’il est défini par une équation mathématique. Ainsi, la connaissance de cette fonction permet de prédire la valeur du signal à tout moment : il s’agit d’un signal certain, prévisible. Parmi les signaux déterministes les plus connus, on peut citer les signaux périodiques tels que : - le sinus à la fréquence fp : Vsin(2πfpt) de période Tp=1/fp. - le triangle : tri(t) = V0-V|t-t0| périodisé tous les Tp - le carré : rect(t)= VM sur une demi période Tp et Vm sur l’autre demi période Définition : Un signal déterministe, représenté par sa fonction f est dit périodique de période Tp si f(t)=f(t+Tp). Propriété : Tout signal périodique de période Tp présente une fréquence fondamentale à la fréquence fp=1/Tp. 13 Tout signal déterministe n’est pas obligatoirement périodique, on peut citer à titre d’exemple : - Impulsion de dirac, notée δ - Echelon ou fonction de Heavyside Γ - Fenêtre ou porte Rmq : On peut écrire : ПT(t)=Γ(t-T/2)-Γ(t+T/2) Facultatif : L’impulsion de Dirac est un signal particulier et on va l’étudier dans un premier temps comme la limite d’une fonction ∆ε(t) en 0. L’impulsion de dirac est définie comme la limite d’une des fonctions ci-dessus lorsque le paramètre ε tend vers 0. Donc : δ (t ) = lim ε −>0 ∆ ε (t ) ∞ ∫ δ (t )dt = 1 −∞ 14 Rmq : L’étude de l’impulsion de Dirac est issue de la théorie des distributions, que nous n’étudierons pas (il serait plus rigoureux de dire que δ n’existe qu’au sens des distributions et n’est pas une fonction puisque cet élément est infini en 0 et nul ailleurs). Fin de la partie Facultative Par convention on représente δ(t-t1) par une flèche d’unité 1 (correspondant à l’aire du dirac, comme représenté sur le tableau des fonctions). On se réfèrera à l’Annexe A pour une description plus exhaustives de fonctions. II-2 Moyenne et puissance d’un signal déterministe périodique Par définition, un signal déterministe est un signal connu, c'est-à-dire dont on connaît la fonction. Soit u, la fonction du signal déterministe (ex : u(t) = 1+ sin(2πf0t). On définit : La Moyenne : par l’intégrale de la fonction sur une période (d’où la nécessité d’un signal périodique). T 1 T ∫0 m= u (t ) dt La puissance P ou valeur efficace Seff: par l’intégrale de la fonction au carré T 1 2 S eff = P = ∫ u (t )dt 2 T 0 II-3 Cas général : Puissance et Energie d’un signal déterministe non nécessairement périodique Soit un signal quelconque U traversant une résistance R. En appliquant la loi d’Ohm, on mesure le courant par i=U/R. La puissance est exprimée en Watt correspond à l’Energie fournie (Joule) à la résistance sur une durée d’une seconde (1 Watt = 1 Joule/seconde). Rmq : 1 Watt heure = 1 watt pendant une heure = 3600 joules. L’énergie instantanée est le produit du courant et de la tension, soit E(t)=u(t).i(t). Dans le cas de la résistance, l’énergie INSTANTANEE E(t) = u²(t)/R. En traitement du signal, quand aucune information n’est donnée sur R, on normalise la résistance à 1 Ohm, donc l’énergie instantanée s’écrit E(t)=u²(t). En général, on calcule l’Energie sur un laps de temps ∆T=t2-t1 par : Energie: t2 E= ∫u 2 (t )dt t1 15 Puissance moyenne : t 1 2 2 ∆ T t∫1 P= u (t )dt Energie totale : ∞ E= ∫u 2 (t )dt −∞ Puissance moyenne totale : T 1 2 2 T− > ∞ T ∫ P = lim u (t )dt − T 2 T T 1 2 2 1 Rmq : Dans le cas d’un signal périodique, on retrouve P = lim T−>∞ T ∫ u (t ) dt = P = ∫ u 2 (t )dt T 0 −T 2 III. Signaux aléatoires III-1 Exemples et définitions Rappel : un signal est dit aléatoire si la connaissance du signal à l'instant t ne permet pas de préjuger de la valeur à l'instant t+∆t. Bien qu’aléatoire, le signal est modélisé par ses caractéristiques statistiques. Un signal aléatoire peut être stationnaire ou non stationnaire. Il est stationnaire si ses caractéristiques aléatoires ne sont pas modifiés au cours du temps. Nous allons illustrer cela par des exemples concrets. 1er exemple : Lancer de dé Lorsqu’on lance un dé 6 faces, on a 1/6 d’obtenir un ‘6’. La probabilité est de 1/6 pour chaque expérience (on parle de probabilité uniforme p). Soit m, les différentes valeurs du dé ( m prend pour valeur {1, 2, 3, 4, 5, 6}). Si on calcule la moyenne des lancés obtenus, on va sommer chaque valeur de dé, et diviser le tout par le nombre de lancer. En moyenne, on obtient : 1 N m= ∑ mk. pk N k= 1 ou ∑ signifie somme, N est le nombre de lancer, mk est le résultat et pk=1/6 la probabilité. 2ème exemple : Bruit de mesure (Bruit gaussien). 16 Lors de l’acquisition, le signal est affecté d’un bruit de mesure : On s’aperçoit que le signal passe plus souvent par 0 que par 2.7 volt. Si on trace le nombre de fois que le signal passe par une amplitude donnée (comme si on projetait le signal sur l’axe vertical), on obtient l’histogramme (la fonction de densité) du signal. Densité de fonction La courbe densité de fonction représente en ordonnée la probabilité d’avoir un bruit (dans cet exemple, on a choisi d’illustrer par un bruit de mesure) dont l’amplitude est donnée en ordonnée. On s’aperçoit qu’il y a très peu de chance d’avoir un bruit d’amplitude 4 V. On constate aussi que le signal est autant positif que négatif, donc que la valeur moyenne est nulle. Le signal présenté ci-dessus est appelé bruit blanc, il s’agit d’un signal gaussien (cf cours de mathématique). III-2 Propriétés Soit un signal aléatoire, définit par sa fonction de probabilité p(x) et des valeurs x que peut prendre ce signal. Dans l’exemple de bruit, x représente l’amplitude du bruit et p(x) la probabilité associée (l’ordonnée). On définit la moyenne ou l’espérance mathématique par 17 ∞ m= ∫ xp( x)dx −∞ On définit la variance par : ∞ ∫ ( x − m) 2 V= p ( x)dx −∞ m étant la moyenne, on mesure l’écart au carré de la variation du signal par rapport à la moyenne. Il s’agit donc du carré de l’écart type. Application : Correction des copies, on calcule la moyenne de la classe et l’écart type c'est-à-dire à la différence moyenne des notes des élèves par rapport à la moyenne de la classe. Dans le cas d’un bruit de mesure, la variance est égale à la puissance du signal. ATTENTION : Nous supposons des conditions bien particulières pour lesquelles on peut admettre que la variance d’un signal aléatoire est égale à la puissance. Ceci est loin d’être vrai et évident pour tout types de signaux aléatoires. IV. Unités de puissance Que le signal soit déterministe ou aléatoire, nous avons défini le terme de Puissance. La puissance calculée consiste, dans les deux cas à mesurer l’amplitude au carrée du signal. La puissance s’exprime en Watt, il s’agit d’une tension au carré sur une résistance de 1 Ohm. Pour des raisons de simplicité de calcul, on introduit des notions de dBW. 1 dBW = 10 * log10(1 Watt) La règle de conversion est la suivante : PdB ,W = 10 * log10 ( PW ) , où PdB,W représente la puissance en dBW et PW la puissance en Watt, log10 est le logarithme en base 10. Cette règle de conversion est très simple et sera utilisée pour faciliter les calculs mais, avant chaque calcul faites bien attentions aux valeurs utilisées (Volt, Watt, dB, …). ATTENTION : La notation dBw n’existe pas, on parle de dB, en faisant référence à des Watts lorsqu’on parle de puissances. Néanmoins, le terme de dB est sans unité (ni Watt, ni Volt, il s’agit plutôt d’un gain). Le dB est utilisé pour spécifier un rapport de Puissance ou de tension (donc pas d’unité). Quand on parle d’un gain en puissance de 3dB cela signifie que la puissance est multipliée par 2 (sans unité). Donc si le signal d’entrée à une puissance de 3 dB (ce qui représente 2 Watts), et que l’on amplifie le signal par un gain de 3 dB (on l’amplifie par un rapport de 2 sans unité), le signal en sortie de l’amplificateur a une puissance de 6 dB (soit 4 Watts). 18 Exemple d’application. On suppose une ligne téléphonique qui atténue le signal de moitié tous les kms. Le signal émis par le centrale téléphonique est de 1 Watt, quelle est la puissance reçue au bout de 8 kms ? Réponse : Au bout d’un kilomètre, on mesure ½ Watt, au bout de 2 kms, on mesure ¼ watt, donc au bout de 8 kms on mesure 1/28. Si on raisonne en dB, on perd 10*log10(0.5) soit 3dB par kilomètre (on gagne -3 dB ou on perd 3 dB). Par conséquent, l’atténuation au bout de 8 kms est de 24 dB. Le centrale émettait 1 Watt soit 0 dB (10*log10(1)) par conséquent, on mesure -24dB au bout de 8 km. On sait aussi que la puissance P est proportionnelle à la tension au carré (résistance normalisée). Donc, PdB = 10 * log10 ( PW ) = 10 * log10 (V Volt ) = 20 * log10 (V ). Attention à ne pas 2 confondre Passage de dB en dBm. Dans le cadre des télécoms, l’amplitude des signaux est très faible. On introduit alors l’unité dBm pour se référer à des tensions en mV, et des puissances en mW PdBm = 10 * log10 ( PmW ). Les dBm font références à des mW. Exercice d’application : Démontrer que PdB=PdBm- 30 dB Application. Soit un signal de puissance 5 dBm, on l’amplifie par un rapport de 3 dB (notez encore le terme dB sans unité et non dBm), on récupère un signal de 5dBm+3 dB = 8 dBm. V. Pour résumer, une classification des signaux Les signaux physiques ont une existence réelle, et la mesure d’un signal physique peut se représenter par une fonction s(t) qui varie au cours du temps. Ce signal qui a une existence propre possède les caractéristiques suivantes : - Energie bornée - Amplitude bornée - Continu temporellement - Causal s(t)=0 si t0) - Spectre borné En théorie, pour simplifier les calculs on introduit des signaux qui ont l’une ou plusieurs caractéristiques suivantes : 19 - Energie infinie - Discontinuité - Non causal - Spectre infini - Valeurs complexes Nous verrons au chapitre 2 l’introduction de signaux qui n’existent pas physiquement (ex : Dirac) et le spectre de signaux complexes prenant en compte les fréquences négatives. On peut ainsi définir différents modes de classification : - représentation temporelle des signaux - caractéristique énergétique - représentation spectrale - continu ou discret V.1) Représentation temporelle des signaux : Signaux déterministes ou certains : Défini par un modèle mathématique - périodique (réels ou complexes) - non périodique (pseudo périodique, transitoire, chaotique) Signaux aléatoires : évolution imprévisible mais description mathématique connu - Signaux stationnaires (signaux ergodiques ou non ergodiques) lorsque la valeur moyenne est indépendant du temps. Ils sont dit ergodiques s’il est identique de faire une moyenne statistique à un instant donnée sur plusieurs échantillons ou une moyenne temporelle suffisamment longue sur un seul de ces essais. - Signaux non stationnaires V.2) classification énergétique La puissance électrique instantanée fournie à une résistance R est définie par p(t)=u(t).i(t). L’Energie dissipée sur un intervalle [t1,t2] avec t1 2.Fmax. C’est la condition de SHANNON. 50

Use Quizgecko on...
Browser
Browser