Tema 1 y 2 de Macroeconomía PDF

Summary

This document provides an overview of macroeconomics concepts, including the calculation of Gross Domestic Product (GDP) and the differences between nominal and real GDP. It also touches upon the relationship between Gross Domestic Product (GDP) and Gross National Product (GNP).

Full Transcript

TEMA 1 MEDICIÓN DE LA ACTIVIDAD ECONÓMICA 1. EL PIB Y SU MEDICIÓN PIB es la suma del valor de los bienes y servicios finales producidos en una economía en un período de tiempo. SUMA DEL VALOR: El PIB recoge la suma de bienes heterogéneos. Para sumar cosas diferentes homogeneizarlas y esto lo hace...

TEMA 1 MEDICIÓN DE LA ACTIVIDAD ECONÓMICA 1. EL PIB Y SU MEDICIÓN PIB es la suma del valor de los bienes y servicios finales producidos en una economía en un período de tiempo. SUMA DEL VALOR: El PIB recoge la suma de bienes heterogéneos. Para sumar cosas diferentes homogeneizarlas y esto lo hacemos multiplicando producida de cada bien o servicio por su precio. 1. De un año a otro, si Pi=cte y sólo registramos un crecimiento de las cantidades producidas, entonces hablaremos de crecimiento real de la economía. Pi= cte i∆qi > 0 → PIB real / Precios constantes −𝑃2 𝑃𝑟𝑒𝑐𝑖𝑜 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 = = 𝑐𝑡𝑒. 𝑃1 2. Si de un año a otro observamos que Qi = cte. y sólo registramos un crecimiento de los precios de los bienes producidos, entonces hablaremos de crecimiento nominal de la economía. qi= cte / ∆Pi = ∆Pj > 0 → PIB nominal / Precios corrientes −𝑃2 𝑃𝑟𝑒𝑐𝑖𝑜 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 = = 𝑐𝑡𝑒. 𝑃1 3. En una economía, es común que en un año se presenten cambios en las cantidades producidas y en los precios, lo que se conoce como crecimiento nominal. Para determinar cuánto del crecimiento del PIB nominal es resultado del aumento en la producción y cuánto se debe al incremento de precios, es necesario deflactar el PIB nominal. Esto se logra dividiendo el PIB nominal por un índice de precios, denominado deflactor del PIB. qi= cte / ∆Pi = ∆Pj > 0 → Nominal g = growth (tasa de crecimiento) PIB nominal = PIB real * Precios → PIB nominal = PIB real * Df PIB Pasando la formula a su modo de tasa en crecimiento: BIENES Y SERVICIOS FINALES: Producción total = Producción final + Producción intermedia El PIB recoge el valor de los bienes finales. Estos son, bienes que ya están completos y no necesitas transformación adicional para generar la utilidad para la que fueron creados. Los bienes intermedios son bienes que todavía no están "completados" o bienes que han de agregarse a otros para generar un bien final. El PIB mide producción final, no producción total. BIENES Y SERVICIOS PRODUCIDOS EN UNA ECONOMÍA: PIB VS PNB El PIB agrega el valor de los bienes y servicios producidos en un área geográfica, independientemente de cuál sea la nacionalidad de los factores productivos utilizados. Se emplea un criterio de localización geográfica. El PNB agrega el valor de los bienes y servicios producidos por los agentes económicos de un país, independientemente de dónde estén localizados. Se emplea un criterio de nacionalidad. Donde RENt es la Renta Exterior Neta del país: La Rfn(t) es la renta pagada a factores productivos nacionales que colaboran en el proceso productivo en el extranjero. En sentido opuesto, la Rfe(t) es la renta que perciben factores productivos extranjeros por haber colaborado en el proceso productivo en nuestro país. Las rentas del trabajo tienen una importancia bastante reducida, a diferencia de las rentas de capital que constituyen la parte más importante de esa REN(t). Si Rfnt > Rfet → RENt > 0 → PNBt > PIBt : En general, suele suceder que los países que son acreedores netos (por ejemplo, Alemania, Noruega), es decir, lo países que en el pasado han prestado al resto del mundo, suelen tener una REN(t) positiva. Si Rfnt < Rfet → RENt < 0 → PNBt < PIBt : Al igual que antes, los países que son deudores netos suelen tener una REN(t) negativa (por ejemplo, España, Italia). EN UN PERÍODO DE TIEMPO: FLUJOS VS STOCKS El PIB es una variable flujo y, en consecuencia, se mide como el conjunto de bienes y servicios producidos en un período de tiempo, típicamente un año o un trimestre. Las variables stock están referenciadas a un instante de tiempo pero no se genera únicamente en ese periodo de tiempo. RELACIÓN ENTRE VARIABLES DE FLUJO Y VARIABLES DE STOCK: En términos continuos: 𝒅𝑺𝒕𝒐𝒄𝒌𝒕 𝑭𝒍𝒖𝒋𝒐𝒕 = 𝑺𝒕𝒐𝒄𝒌𝒕 = ‫𝒕𝒅𝒔𝒐𝒋𝒖𝒍𝑭 ׬‬ 𝒅𝒕 En términos discretos: 𝑭𝒕 = ∆ 𝑺𝒕𝒐𝒄𝒌𝒕 = 𝑺𝒕 − 𝑺𝒕−𝟏 𝑺𝒕 = σ𝒕−∞ 𝑭𝒕 𝑷𝒕 = σ𝒕−𝟏𝟎𝟎 𝑺𝑽𝒕 SVt = Pt – Pt-1 La deuda pública en un año DP(t) es la suma de los déficits públicos netos incurridos en todos los años anteriores. La DP(t) es una variable stock y los déficits públicos en una variable flujo. Si el stock se obtiene sumando flujos, un flujo se puede obtener a través de la variación de una variable stock. MÉTODOS O VÍAS PARA MEDIR EL PIB: 1. Gasto, demanda o ventas finales netas → Sectores institucionales 2. Producción, oferta o valor añadido → Sectores económicos 3. Renta o Ingreso → Sectores productivos primarios Se trata de medir el mismo concepto, el PIB, poniendo el "termómetro" en distintos momentos del flujo circular de la renta. MÉTODO 1. LA VÍA DEL GASTO, DE LA DEMANDA O DE VENTAS FINALES NETAS: Agregamos las distintas funciones de gasto que realizan los sectores institucionales de la economía. a. Familias, Hogares o Economías Domésticas → Consumo (C ) b. Empresas → Inversión (I ) (a + b): Sector Privado de la Economía → C+I. c. Sector Público (AAPP) → Gasto Público (G ) (a + b + c ): Sectores Residentes → C+I+G. d. Sector No Residente (Sector Exterior) → Exportaciones Netas ( X – M ) (a + b + c + d ): Total Economía → PIB = C+I+G+X-M Si analizamos con más detalle la composición del PIB por la vía del gasto, tenemos que: ▪ Consumo ( C ): ○ Bienes duraderos ○ Bienes no duraderos ○ Servicios. ▪ Inversión ( I ): Formación Bruta De Capital (FBC). o FBCFijo: Inversión en equipamiento productivo empresarial + Inversión residencial (realizada por las familias y mercados primarios). o Variación de existencias. La relación que existe entre la inversión productiva de un periodo y el stock de capital de una economía en ese periodo nos permite poner de manifiesto el vínculo estrecho entre una variable flujo y una variable stock. o Si FBCt > CCFt → INetat > 0 → ∆Kt > 0 o Si FBCt = CCFt → INetat = 0 → ∆Kt = 0 o Si FBCt < CCFt → INetat < 0 → ∆Kt ∆ Activos financieros → S. Operaciones Financieros > 0 ▪ En términos netos, la unidad económica envía financiación. Si ∆ Pasivos financieros < ∆ Activos financieros → S. Operaciones Financieros < 0 ▪ En términos netos, la unidad económica ni da ni recibe financiación. Si ∆ Pasivos financieros = ∆ Activos financieros → S. Operaciones Financieros = 0 S.𝑂.𝑅𝑒𝑎𝑙𝑒𝑠 + 𝑆.𝑂.𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑒𝑟𝑎𝑠 = 0 S.O. Financieras Negativo S.O. Reales Positivo Prestamista Capacidad de financiación Acumulación neta de activos financieros Incremento de su posición acreedora neta S.O. Financieras Positivo S.O. Reales Negativo Prestatario Necesidad de financiación Acumulación neta de pasivos financieros Incremento de su posición deudora neta Las ideas de equilibrio y desequilibrio se pueden expresar a través de identidades contables. Según sea el tipo de economía tendremos. 1. Economía cerrada sin sector público: Y=C+I → Saldo de op. corrientes: S Si S > I: Capacidad de financiación Y-C=I S=I → Saldo de op. De capital: I Si S < I: Necesidad de financiación 2. Economía cerrada con sector público: o Y=C+I+G o Y-TN=C+I+G-TN o Yd-C=I+G-TN o (S-I)+(TN-G) = 0 Si (S-I)>0 → Entonces (TN-G) < 0 Si (S-I) 0 3. Economía abierta con sector público: o Y=C+I+G+X-M o (S-I)+(TN-G)=X-M Si (X-M)>0 → Capacidad de financiación total de la economía Si (X-M) |T - G| → X - M > 0 → Capacidad financiera total economía Si |S - I| < |T - G| → X - M < 0 → Necesidad financiera total economía Si |S - I| = |T - G| → X - M = 0 → Equilibrio Externo En el caso de una economía abierta con sector público su condición de equilibrio se puede presentar: 1. (S-I)+(TN-G)=X-M 2. (SPRIVADO - IPRIVADA) + (SPÚBLICO - IPÚBLICA) = SBCC Supondremos que: (S - I) ~ (SPRIVADO - IPRIVADA) (TN - G) ~ (SPÚBLICO - IPÚBLICA) X - M ~ SBCC = Saldo de la balanza por cta. cte. 3. LA BALANZA DE PAGOS 1. Operaciones corrientes → SBCC 1. Balanza de bienes y servicios → X - M 2. Balanza de rentas primarias → REN 3. Balanza de rentas secundarias → TrfCtes.Netas 2. Operaciones de capital → SBCapital (1)+(2): Operaciones reales → SBCC + SBCapital 3. Operaciones financieras → SBF a. BF_sin reservas (Excluido BdE) → SBFsr i. Inversión directa. ii. Inversión en cartera. iii. Derivados financieros. iv. Otras inversiones. b. Variación de reservas (BdE) +VR i. Reservas ii. Posición neta frente al Eurosistema iii. Otros activos netos. 4. Errores y Omisiones → Eyo La balanza de pagos es un documento contable elaborado siguiendo el principio de partida doble. Por tanto se ha de cumplir que: SBCC + SBK - SBF + Ey0 = 0 En balanza de pagos: SBF = VNA - VNP = Pagos financieros - Ingresos financieros Si SBF > 0 → Pagos financieros > Ingresos financieros → Prestamista. Si SBF < 0 → Pagos financieros < Ingresos financieros → Prestatario. 1. Si SBCC + SBK = 100 → Capacidad de Financiación: - SBF = - 100 → SBF = 100 > 0 → Pagos > Ingresos. Damos financiación, acumulamos activos financieros frente al resto del mundo. 2. Si SBCC + SBK = - 100 → Necesidad de Financiación: -SBF= 100 → SBF = - 100 < 0 → Pagos < Ingresos. Recibimos financiación, acumulamos pasivos financieros frente al resto del mundo. En ocasiones interesa desglosar las operaciones financieras en operaciones distintas de la variación de reservas y la variación de reservas. De esta forma, nos quedaría: 1. Si SBCC + SBK− SBFsr = 100 → Crédito Neto al resto del mundo - VR=−100 → VR =100 > 0 → Pagos > Ingresos Incremento (Compra) de reservas internacionales de divisas. Estamos dando crédito al resto del mundo y lo hacemos incrementando nuestras reservas de divisas. 2. Si SBCC + SBK - SBFsr = -100 → Crédito Neto del resto del mundo. - VR = 100 → VR= -100 < 0 → Pagos < Ingresos. Decremento (Venta) de reservas internacionales de divisas. Necesitamos financiación y lo que hacemos es vender/enajenar nuestras reservas de divisas. TEMA 2: LA DEMANDA AGREGADA DE LA ECONOMÍA 1. EL MERCADO DE BIENES MODELO IS-LM- PC EN UNA ECONOMÍA CERRADO: Estudiando a demanda agregada (DA) nos centraremos en la parte de la ecuación siguiente, IS-LM: IS: Equilibrio en el mercado de bienes (I: Inversión y S: Ahorro) LM: Equilibrio en el mercado financiero (L: Liquidez y M: Suministro de dinero) ISLM es la representación de la demanda agregada. Al tratarse de una economía cerrada, el PIB está formado por la agregación de Consumo Privado, Inversión Privada y Gasto Público. Xt = Mt = 0 → No hay ni exportaciones ni importaciones CONSUMO PRIVADO: Según Keynes el consumo privado viene explicado por: 1. Renta disponible de las familias: Consumo total = Consumo * Renta disponible de las familias Ct = C (Ydt) → Ydt = Yt - Tnt 2. Entre consumo privado y renta disponible existe una relación positiva, es decir, a mayor renta disponible, mayor consumo total. Llamamos propensión marginal a la cantidad que aumenta el Ct (Consumo total ) cuando aumenta la renta (Ydt) 3. Cuando la renta se incrementa en 1 unidad, el consumo total se incrementará en menos de una unidad, ya que por lo general no consumimos toda nuestra renta. 4. El consumo de las familias no depende del tipo de interés de la economía; para Keynes el tipo de interés no tiene una consideración especial dentro del consumo familiar. La función agregada del consumo será: Consumo Total (Ct) = Consumo de subsistencia o esencial (Co) + Propensión marginal (C1) * Renta (Ydt) Donde Co es el consumo autónomo, es decir, aquel que es necesario para toda supervivencia (agua, alimentos básicos...). INVERSIÓN PRIVADA Y GASTO PÚBLICO: Ambas funciones son fijas, siendo It la inversión mínima de reposición y YGt como Gasto Público fijo en un momento de tiempo determinado. Solo tendremos en cuenta el Consumo Público y la Inversión Pública. Por lo tanto : It = Io o inversión mínima y Gt =Go o gasto público fijo. Sabiendo que la demanda agregada viene explicada por el Consumo privado, cuya función final hemos dicho que es Ct = Co + (C1 * Ydt ) y que It = Io y Gt = Go. Sabiendo que Ct + It + Gt = Gasto planeado o deseado: DEt = (Co+ Io +Go – C1Tno) + C1Yt) Gasto planeado o deseado Siendo Ydt = Yt (renta) – Tno (transferencias netas). La fórmula se obtiene a partir de: DE se verá incrementado por variables independientes a la renta: Io + Go (Inversión + Gasto Público) NOTA: DEo > Co Pdte DEt = Pdte Ct = C1 Una economía está en equilibrio cuando Eo : Yt = DEt es decir, en un momento t, coincide la cantidad de bienes y servicios producidos con el gasto en consumo, inversión y gasto público. Cuando el PIB alcanza Yo, todo lo que se produce se vende sin que se produzca acumulación o des acumulación de existencias. SITUACIONES DE DESEQUILIBRIO: 1. En Y1 las empresas producen más de lo que la demanda puede absorber; de esta forma, los productores acumulan existencias de manera indeseada. Para solventar este desequilibrio, las empresas reducirán la producción, cerrarán el empleo, y el gasto deseado por lo que el PIB disminuya desde Y1 hasta Y0, encontrando de nuevo el equilibrio. 2. El punto de equilibrio se muestra en la derecha del punto actual, por lo que las empresas producen menos de lo que el mercado puede absorber; las empresas incrementarán la producción contratando a más gente, el PIB se incrementará y llegará de Y2 a Y0. El gasto deseado DEt de los agentes aumentará. MULTIPLICADOR KEYNESIANO: Sabiendo que el equilibrio se produce cuando Yt = DEt , si desarrollamos la función de Yt a los términos representados con el subíndice o como Co + Io + Go + C1Tno y sustituimos las dependencias de Yt quedando así: C1 – Yt = Co + Io + Go – C1Tno Quedando finalmente que el multiplicador keynesiano representado por mk es: Por ejemplo: En una economía donde la propensión marginal C1 es de 0.8 el mk será de 5. Este multiplicador nos servirá para conocer la repercusión final de un incremento, por ejemplo, en el gasto público. Sabiendo que mk es 5, el gobierno decide invertir 1.000 millones en una carretera; esta generará un impacto total de 5.000 millones. Yt = 5(Co + Io + Go – C1Tno) Dgt = 1.000 millones € Dyt = 5 * Dgt = 5 * 1.000 = 5.000 millones El mk tiene una relación directa con la propensión marginal (Pmar C explica el incremento del consumo dependiente del incremento de la renta, o lo que es lo mismo, cuando la renta aumenta que parte de consumo se realiza). Si la PmarC es 0 la renta aumenta y la gente consume lo mismo (mk =1) por lo que no habrá un impacto multiplicador en la economía de inversión. Debido a los 1.000 millones destinados en la autopista, se contratarán más personas incrementando su renta, lo que estimulará la economía. En el gráfico el PIB de forma directa se incrementa en 1.000 millones, pero el incremento total del PIB que va desde Yo hasta Y1 no está explicado por los 1.000 millones depositados, sino está explicado por un efecto escalera, es decir, esos 1000 * 0.8 (Dgt * C1) harán que se depositen, por ejemplo, 800 mil coches nuevos, lo que hará que las fábricas contraten a más trabajadores y eso hará que esos 800 * 0.8 = 640 mill (Dgt * C12 ) se destinen a otra área, siendo el total de la reparación en la economía el mk * Dgt (la inversión) = 5.000 millones. El incremento del PIB de la economía se ha incrementado a consecuencia del incremento del gasto público, pero este incremento se ha producido por varios efectos: Efecto directo (Dgt): Incremento inicial del gasto para producir la autopista (1.000 millones €) Efecto indirecto ( C1Dgt + (C1)2 Dgt + (C1)3 Dgt + …..+ (C1)n ): Todos los incrementos adicionales posteriores que tienen lugar tras la producción de la autopista. (4.000 millones €) DYt = Dgt + C1dGt + (C1)2 Dgt + (C1)3 Dgt + …..+ (C1)n Dgt Incremento inicial Base del triángulo 1 Base del triángulo 2 Base del triángulo n Finalmente nos queda que el PIB se ha incrementado en 5000 millones. Ahorro = Inversión St = It sabiendo que el Ahorro = Renta Inicial – Transferencias Netas – Consumo Sustitutivo – Propensión (Renta – Transferencias Netas Impuestos) St = Yt – Tt – Co – C1(Yt -Tt) → St = - Co + (1-C1)( Yt -Tt) St = - Co + Pmar S + (Yt – Tnt) Supongamos It = Io (Cantidad dada de inversión) y Tnt = 𝑇𝑜 (Se recauda una cantidad de impuesto): Sustituimos Tno por Go cuando St = It entonces se cumple que Tno = Go. 2. LOS MERCADOS FINANCIEROS Los mercados financieros son espacios donde se intercambian activos financieros. Tendremos en cuenta dos activos financieros cuyos mercados son similares: Dinero (Md) que se utiliza para llevar a cabo transacciones. Bonos (Bd), cuya utilidad es transferir temporalmente el rente entre el presente y futuro a cambio de una rentabilidad, interés o rendimiento. Md será la demanda monetaria y los precios. Se pueden dividir en la suma de tres factores nombrados: fo (ordenada en el origen): Incertidumbre sobre la demanda de dinero, o demanda de dinero por precaución o demanda mínima. f1 (recoge la demanda de dinero en función de la renta): Por eso Yt, a más renta, más demanda. f2 (motivo especulativo): Efecto de las variaciones del tipo de interés en la demanda de dinero. En coeficiente tiene un signo negativo para registrar el coste de oportunidad. Si no invierto ese dinero y lo dejo en, lo pierdo una posible rentabilidad. Fo es una constante y dinero que necesita la gente como precaución, y que f1 depende de la renta y estructuramos con una renta constante. La demanda de dinero estará relacionada con tipo de interés. Renta No Constante : Tiene lugar un incremento de la renta, ∆Yt > 0, más transacciones. A mayor renta, mayor demanda de dinero, se producirá un desplazamiento de la curva hacia el derecho. Tiene lugar una caída de la renta, ∆Yt < 0, menor volumen de transacciones. A menor renta, menor demanda de dinero, se producirá un desplazamiento de la curva hacia la izquierda. La oferta monetaria es la cantidad de dinero real que ofrece en un sistema. Es una variable exógena de Política Monetaria, es decir, es una variable que tiene un valor dado en un instante de tiempo, pero puede cambiar cuando el Banco Central lleve a cabo su política monetaria. 𝑴𝒔 ΔMS > 0 → 𝚫 ( 𝑷 ) > 𝟎 → Política monetaria expansiva 𝑴𝒔 ΔMS < 0 → 𝚫 ( 𝑷 ) < 𝟎 → Política monetaria restrictiva Política Monetaria Expansiva: Política Monetaria Restrictiva: El equilibrio se consigue cuando la cantidad real demandada de dinero es igual a la cantidad real de dinero ofrecida. Para lograr el equilibrio de dinero en movimiento que existe en el sistema con intereses constantes se hará uso de la compra y venta de bonos. Estos movimientos tienen una relación inversa, es decir, cuando sube el precio de los bonos baja el tipo de interés y al contrario cunado baja el precio de los bonos sube el tipo de interés. Situación de Desequilibrio (Exceso De Demanda): Dado el reducido coste de oportunidad, los agentes prefieren retener más liquidez en sus carteras. Por lo que venderán sus bonos masivamente ocasionando que su precio caiga y que por tanto suba el tipo de interés y aumente el coste de oportunidad. Esto se produce hasta que se alcanza el equilibrio. Situación de Desequilibrio (Exceso De Oferta): Dado el elevado coste de oportunidad, los agentes prefieren retener menos liquidez en sus carteras. Por lo que invertirán en bonos, ya que está dando mucha rentabilidad. Al comprar masivamente el precio subirá y el tipo de interés caerá , disminuyendo el coste de oportunidad Esto se produce hasta que se alcanza el equilibrio. Política Monetaria Expansiva: La Política Monetaria Expansiva es el conjunto de operaciones que realiza el Banco Central (BC) con el fin de incrementar la cantidad real de dinero de la economía. Para ello realiza Operaciones de Mercado Abierto en las que compra bonos a los bancos comerciales. El BC compra a los bancos comerciales bonos (en un mercado secundario) y les inyecta liquidez. Esa liquidez es posteriormente prestada a los demás agentes de la economía a través de créditos y préstamos a las familias, empresas e incluso AAPP. De esta forma se incrementa la oferta real de dinero y se reduce el tipo de interés de la economía. 1. Incremento de la cantidad de dinero → ΔMt > 0 2. Reducción de los tipos de interés → Δit < 0 3. Incremento de los precios de los bonos → ΔPtB > 0 Política Monetaria Restrictiva: La Política Monetaria Restrictiva es el conjunto de operaciones que realiza el Banco Central con el fin de reducir la cantidad real de dinero de la economía. Para ello realiza Operaciones de Mercado Abierto en las que vende bonos a los bancos comerciales. El BC vende a los bancos comerciales bonos (en un mercado secundario) y les drena/retira liquidez. Ese drenaje de liquidez se consigue reduciendo a las familias, empresas e incluso AAPP los créditos y préstamos concedidos con anterioridad (se cancelan líneas de crédito anteriores, se congelan los nuevos créditos y préstamos, etc.). De esta forma se reduce la oferta real de dinero y sube el tipo de interés de la economía. 1. Reducción de la cantidad de dinero → ΔMt < 0 2. Incremento de los tipos de interés → Δit > 0 3. Reducción de los precios de los bonos → ΔPtB < 0 3. EL MODELO IS-LM EN UNA ECONOMÍA CERRADA Equilibrio en el Sector Real Equilibrio en el Sector Real (Modelo Renta-Gasto) (Modelo Renta-Gasto) Equilibrio en el sector Equilibrio en el sector financiero financiero (Mercado de dinero) (Mercado de dinero) Modificamos el modelo Renta-Gasto para conseguir que cambios en it (Variable endógena del modelo monetario) tengan efectos sobre el gasto deseado y sobre el nivel de renta de equilibrio. Para ello: 1. Mantenemos la función de consumo del modelo Renta-Gasto: Ct = Co + C1(Yt - Tnt) 2. Modificamos la función de inversión: It = Bo + B1Yt + B2 it Bo es la inversión de reposición (cantidad inversión mínima necesaria para garantizar que en la economía no caiga su stock de capital). B1Yt parte de la inversión que depende del nivel de renta. 𝜕𝐼 𝐵1 = 𝜕𝑌𝑡 > 0 Cuantía que aumenta la inversión privada cuando la renta aumenta en una unidad 𝑡 B2 it parte de la inversión que depende del tipo de interés. 𝜕𝐼 𝐵2 = 𝜕𝑖𝑡 < 0 Cuantía que disminuye la inversión privada cuando tipo de interés aumenta en una unidad. 𝑡 3. Mantenemos la función de gasto público: Gt = Go La nueva función de gasto quedaría → DEt = Ct + It + Gt DEt = Co + C1(Yt -Tnt) + Bo + B1Yt + B2 it + Go Reordenando → DEt = (Co + Bo + Go - C1 Tnt +B2 Ct) + (C1 + B1) Yt Ordenando en el origen varia con el tipo de interés Pendiente Aplicando la condición Eo : Yt = DEt Condición de equilibrio IS 1. LA CONDICIÓN IS: PENDIENTE Y DESPLAZAMIENTOS 1. Pendiente: Al estudiar la pendiente de una función, lo que se pretende es saber cómo varía una variable endógena (Yt) cuando se modifica otra variable endógena (it), manteniendo constante la variable exógena (Gt ;Tnt). Es decir, se está estudiando los desplazamientos a lo largo de la curva, sin que ésta se desplace. 2. Desplazamientos: en este caso estudiamos cómo varía una variable endógena (Yt) cuando modificamos una variable exógena (Gt o Tnt), manteniendo constante la otra variable endógena (it). Es decir, en este caso estamos estudiando cómo se desplaza una curva o ecuación, sin modificar la pendiente de la misma. 1. DESPLAZAMIENTOS: En estos desplazamientos estamos suponiendo que it = cte entonces dit = 0 y en consecuencia el segundo del lado derecho de la igualdad es cero. Dentro del primer sumando lo único que varía es el gasto público Go(*) de forma que nos quedará: Dado que las variaciones del gasto público pueden ser positivas o negativas, en términos del modelo Renta-Gasto tendremos: Si representamos las variaciones del gasto público en la condición de equilibrio IS tendremos: Política fiscal expansiva: ΔSPt < 0 → Deterioro del SP ΔTt < 0 : Disminución de la recaudación impositiva (IRPF, I Soc., IVA). ΔGt > 0 : Incremento del consumo público o la inversión pública. ΔTrsft > 0 : Incremento de las pensiones, subsidios de desempleo e ingreso mínimo vital. Política fiscal restrictiva o contractiva: ΔSPt > 0 → Mejora de SP ΔTt > 0 : Incremento de la recaudación impositiva (IRPF, I Soc., IVA). ΔGt < 0 : Reducción del consumo público o la inversión pública. ΔTrsft < 0 : Reducción de las pensiones, subsidios de desempleo e ingreso mínimo vital. 2. LA CONDICION DE EQULIBRIO LM Tradicional: El tipo de interés es fijo, es decir, la autoridad monetaria modifica la variable exógena (cantidad de dinero) provocando cambios en el valor de la variable endógena (tipo de interés). LM Moderna: Cambian las tornas, la variable exógena es el tipo de interés y la variable endógena es la oferta real de dinero. El BC decide el tipo de interés en función de los niveles esperados de inflación. Si ↑ inflación ↑ tipo de interés. Si ↓ inflación ↓ tipo de interés. LM TRADICIONAL: 𝑀𝑑 Un incremento de renta hace que la demanda de dinero pase de 1 a 2 siendo 𝑃 = 𝑓𝑜 + 𝑓1 + 𝑓2 𝑖𝑡 El interés se mantiene constante Eo* y la oferta de dinero también es constante, ya que no se activan políticas monetarias expansivas, eso hace que los agentes demanden dinero y recurran a la venta masiva de bonos (disminuye el precio) lo que incrementa el interés hacia i1 Se reestructura la demanda frecuencia a E1, cuando se considera una política monetaria expansiva 𝑀𝑜 aumentarán la oferta monetaria despreciando la hacia la derecha, al revés si es contractiva. 𝑃 Paso de Eo a E1 la oferta real de dinero no ha variado. El BC no ha hecho ningún tipo de política monetaria. Si Mo/p permanece constante, también será cierto que la demanda de dinero en Eo y en E1 es la misma. La cantidad demandada de dinero será la misma pero la composición de esa demanda es diferente. En E1 hay más dinero transaccional y menos dinero especulativo. Si la oferta real de dinero es la misma en Eo que en E1, las de liquidez demandas cuantitativamente aunque la composición cualitativa de las mismas sea diferente. Si llevamos los puntos Eo y E1 a un plano (Yt, it) conseguiremos delimitar los puntos que representa a la condición de equilibrio LM En el paso de Eo a E1, nos hemos desplazado a lo largo de la LM manteniendo constante la oferta real de dinero M/p La oferta real de dinero era la variable exógena de Política Monetaria. LM MODERNA: Se modificará el tipo de interés según las necesidades de la economía. Si se está lejos del plano empleo y no hay riesgo de inflación se bajarán los tipos de interés para favorecer a la inversión de las empresas y subir el empleo y los salarios (Política Monetaria Expansiva). Con una alta inflación se subirán los tipos de interés para que las empresas inviertan menos y contengan los precios (Política Monetaria Restrictiva). El BC ejecuta su política monetaria centrándose directamente en el tipo de interés. Elige un tipo de interés objetivo y ajusta la oferta de dinero para mantener ese valor deseado, en lugar de dejar que el tipo de interés se ajuste automáticamente ante cambios en la renta o la demanda de dinero Cuando estamos lejos del pleno empleo y/o no hay riesgos inflacionistas, el BC suele bajar los tipos de interés. Y en pleno empleo y/o hay riesgos inflacionistas, el BC suele subir los tipos de interés. POLITICA FISCAL RESTRICTIVA: El incremento de los impuestos netos reduce la renta disponible de los ciudadanos (dYdt < 0). Esta menor renta disponible hace que el consumo privado caiga, lo cual, a través del multiplicador keynesiano, disminuye la renta de equilibrio para un tipo de interés dado. Esto nos sitúa en el punto E1, donde se produce una recesión al caer el PIB desde Yo hasta E1. La curva IS se desplaza, moviéndose a lo largo de la curva LM desde Eo hasta E1. La subida de los impuestos netos y la caída de la renta disponible contribuyen a un descenso del consumo. La caída de la renta ocasiona un descenso de la inversión privada. Tanto el consumo como la inversión caen. Efectos globales: La Política Fiscal Restrictiva ha provocado una caída del PIB acompañada de una caída del consumo y la inversión privados. POLITICA MONETARIA EXPANSIVA: La LM se desplaza hacia abajo, moviéndose a lo largo de la IS, y el equilibrio se traslada del punto Eo al punto E1. La producción aumenta y el tipo de interés desciende. El menor tipo de interés provoca un aumento de la inversión y, a su vez, un incremento de la demanda y de la producción. Tanto el aumento de la producción como la reducción del tipo de interés provocan un aumento de la inversión. El incremento de la renta conlleva un aumento de la renta disponible y del consumo. Efectos globales: La Política Monetaria Expansiva ha provocado una expansión del PIB con crecimiento del consumo y la inversión privados. POLITICA FISCAL RESTRICTIVA Y POLITICA MONETARIA EXPANSIVA (POLICY MIX) La política fiscal expansiva, con una reducción de los impuestos netos, desplaza la curva IS hacia la derecha. La política monetaria expansiva desplaza la curva LM hacia abajo. En el nuevo equilibrio, E1, la producción es mayor y los tipos de interés son más bajos. Tanto la política fiscal como la monetaria contribuyen al aumento de la producción. La mayor renta y los menores impuestos implica que el consumo también aumenta. La mayor producción y el menor tipo de interés implica asimismo una mayor inversión. Yt = Ct + It + Gt (+) = (+) (+) (=) Si el gobierno reduce el déficit mediante un aumento de T (impuestos) o una reducción de G (gastos públicos), la curva IS desplazaría izquierda, desde Eo hasta E´o, provocando una recesión. Esta puede evitarse si simultáneamente se aplica una política monetaria expansiva con reducción de los tipos de interés. La combinación de ambas políticas permite reducir el déficit, pero sin una recesión. En cuanto a lo que sucede con los componentes del PIB, todo va a depender de cómo se instrumenta la política fiscal. El Yo ≈ Y1 , y la inversión será mayor, dado que han caído los tipos de interés. Si la PF restrictiva se aplica con una reducción del G: Yt = Ct + It + Gt (≈) = (≈) (+) (-) Si la PF restrictiva se aplica con un incremento de T: Yt = Ct + It + Gt (≈) = (-) (+) (≈) Tras la Gran Recesión de 2008 en Europa se planteó la disputa de qué política debía aplicarse primero, la PFRes o la PMExp. Se trataba de determinar si se pasaba de Eo a E1 aplicando en primer lugar la PFRes., lo que generaba recesión, o si se aplicaba en primer lugar la PMExp., lo que generaba inicialmente una ligera expansión. En el fondo, todo se debía a un problema de credibilidad en la aplicación de la PFRestrictiva 4 EL MODELO IS-LM AMPLIADO: LOS TIPOS DE INTERÉS NOMINALES Y REALES El tipo de interés nominal es el fijado por el coste de oportunidad o rentabilidad que podríamos sacar a ese dinero si lo invirtiéramos en otro banco. Su función será 1+ t (interés). Sin embargo, el dinero cambia de valor, no comprabas lo mismo con 1€ en 2001 que ahora por lo que decimos que el interés real será igual al interés nominal, estando este último ajustado para tener en cuenta el cambio 𝑒 de precios o inflación esperada, 𝜋𝑡+1 El interés real (1+rt) es igual al interés nominal (1+it) ajustado a la inflación esperada en el futuro ( 1 + 𝜋𝑒𝑡+1 ) También se puede representar con la ecuación 𝒓𝒕 ≅ 𝒊𝒕 − 𝝅𝒆𝒕+𝟏 donde comprobamos que el interés real es aproximadamente el interés nominal menos la inflación esperada. Las implicaciones que es derivan de esta ecuación son muy importantes y son las siguientes: 1. Cuando la inflación esperada es nula (πet+1 = 0), el interés nominal y el interés real son iguales (it = rt ) 2. Normalmente los países tienen tasas de inflación positivas (πet+1 > 0), por lo que el interés nominal es mayor que el interés real (it > rt ). 3. Si la inflación esperada se mantiene constante (πet+1 = cte), entonces el cambio en el interés real es igual al cambio en el interés nominal (∆it = ∆rt ). Esto implica que si los agentes mantienen sus expectativas de inflación ancladas, un cambio en el tipo de interés nominal por parte del banco central se traduce en un cambio igual en el tipo de interés real, afectando así a las decisiones de consumo e inversión. 4. Si el interés nominal se mantiene constante (it = cte), entonces el cambio en el interés real es igual al cambio negativo en la inflación esperada ( ∆𝑟𝑡 = −∆πet+1 ). Es decir, si el Banco Central mantiene los tipos de interés nominales, los aumentos en la inflación esperada reducen el tipo de interés real de la economía. Las decisiones de consumo e inversión reaccionan en la ecuación IS están determinadas por el tipo de interés real. 5. El tipo de interés nominal puede ser como mínimo 0 (𝑖𝑡 = 0), es decir, no puede ser negativo. En consecuencia, el tipo de interés real más bajo que puede existir en la economía será −πet+1, es decir, cuando el tipo de interés nominal es 0 y la inflación esperada es 𝑟𝑡 = −πet+1. Las primas de riesgo son un condicionante que pone el prestamista de dinero como garantía, es decir, dependen de la persona y de la que le dé dinero. Esa prima de riesgo más elevada u otra menos elevada. De esta forma, cuanto mayor sea el riesgo de impago mayor será la prima de riesgo. Esta prima además estará afectada por la aversión al riesgo de los prestamistas. Si aumenta la aversión al riesgo, los inversores demandaran una prima aún más alta para compensar el riesgo, aunque la probabilidad de impago no haya cambiado. Los países considerados más seguros podrán emitir su deuda pública a un menor tipo de interés mientras que los países con más solo pueden endeudarse si están dispuestos a pagar esa prima de riesgo. El modelo quedará finalmente como: Relación IS: 𝑌𝑡 = 𝐶(𝑌𝑡 − 𝑇𝑛𝑡𝑡 ) + 𝑖(𝑌𝑡 ; 𝑟𝑡 + 𝑃𝑅𝑡 ) + 𝐺𝑡 Relación LM: 𝑟𝑡 = 𝑟𝑜∗ Nominal Real Tipo Oficial o de Intervención 𝑖𝑡 𝑒 𝑟𝑡 = 𝑖𝑡 − 𝜋𝑡+1 Tipo de Interés de Endeudamiento 𝑖𝑡 + 𝑃𝑅𝑡 𝑒 𝑟𝑡 + 𝑃𝑅𝑡 = 𝑖𝑡 + 𝑃𝑅𝑡 − 𝜋𝑡+1 En términos gráficos: Partimos de Eo donde nuestra renta se mueve la intersección de la curva IS con la curva LM. Sabiendo que la curva IS está formada por el Gasto, las transferencias y la Prima de Riesgo. La curva LM está tratada para el tipo de interés real que implícitamente elige el Banco Central. Por razones diversas, la Prima de Riesgo se dispara. Esto hace que el tipo de interés de endeudamiento (rt + PR) se incremente brutalmente provocando una caída de la inversión, de la demanda y de la producción. Por lo que nos desplazamos a E´o, con una renta de Y´o. La respuesta a esta caída del PIB puede ser una política fiscal expansiva o una política monetaria expansiva CASO 1: POLÍTICA FISCAL EXPANSIVA El gobierno puede aumentar el Gasto o reducir los impuestos, este movimiento hará que se estimule el consumo y la inversión ya que los individuos tendrán más renta disponible. Esto hará que E´O se desplace hasta E´´O, que es aproximadamente igual a Eo. Lo mismo pasa con la renta, en este caso pasara a Y´´o que es aproximadamente igual a Yo. CASO 2: POLÍTICA MONETARIA EXPANSIVA. a) País con inflación "alta" (5%): Tiene un tipo de interés nominal del 7%. Partimos de una inflación del 𝜋 𝑒 = 5%, sabiendo que el interés real es del 𝑟𝑡 = 2% y la prima de riesgo en primera instancia se sitúa en un PRo = 3%. 𝑟𝑡 + 𝑃𝑅𝑡 = 𝑖𝑡 + 𝑃𝑅𝑡 − 𝜋 𝑒 → 2% + 1% = 7% + 1% - 5% Si la prima sube en 4pp, tenemos que PR1 = 5% entonces obtenemos la siguiente ecuación 𝑟𝑡 + 𝑃𝑅𝑡 = 𝑖𝑡 + 𝑃𝑅𝑡 − 𝜋 𝑒 → 2% + 5% = 7% + 5% - 5% Lo que sitúa la renta en Y´o muy por debajo de la inicial situada en Yo por lo que como medida reduciremos el interés nominal (it) del 7% hasta el 3% para poder bajar el interés real (rt) al -2% y lograr peliar la subida de la prima de interés quedando la ecuación (-2% + 5% = 3% + 5% - 5%) de este modo volveremos a tener la renta en Y1 = Yo pero con una economía acelerada por la bajada de tipos de interés que fomentará la expansión económica y posiblemente más la inflación. b) País con inflación baja (4,7%) Partimos con una prima PRo = 1%, un interés nominal io = 3%, una inflación 𝜋 𝑒 = 1% y un interés real ro = 2%. Lo que dejaria de ecuación 𝑟𝑡 + 𝑃𝑅𝑡 = 𝑖𝑡 + 𝑃𝑅𝑡 − 𝜋 𝑒 → 2% + 1% = 3% + 1% - 1%. Si la prima asciendo a PR1 = 5% de ecuación quedaría → 2% + 5% = 3% + 5% - 1%) En este caso podemos rebajar el interés nominal como máximo hasta el 0%, quedando el interés real al rt = -1%, quedando la ecuación -1% + 5% = 0% + 5% - 1% Como vemos la subida de la prima situado en la IS desplaza hacia la izquierda el PIB y a pesar de rebajar el interés nominal, Y1 que sería el punto final no llega a situarse en YO que sería la renta de interés por lo que tendríamos un problema de recesión.

Use Quizgecko on...
Browser
Browser