Steel Beam Design Calculations PDF

Document Details

ReadyChicago

Uploaded by ReadyChicago

Tags

steel beam design structural engineering bending stress mechanics of materials

Summary

This document shows calculations related to steel beam design for various conditions, covering topics such as bending stress, section modulus, moment of inertia, and radius of gyration. It includes examples of calculations for different beam configurations and provides formulas for different load cases, allowing engineers to determine appropriate beam dimension and properties for structural applications.

Full Transcript

BENDING STRESS The stresses caused by the bending moment are known as bending or flexure stresses, and the relation between these stresses and bending moment is expressed by the flexure. A ) LATERALLY SUPPORTED BEAMS fb= M/S fb=bending stress S=section modulus M= bending moment 1....

BENDING STRESS The stresses caused by the bending moment are known as bending or flexure stresses, and the relation between these stresses and bending moment is expressed by the flexure. A ) LATERALLY SUPPORTED BEAMS fb= M/S fb=bending stress S=section modulus M= bending moment 1. Compact sections Fb = 0.66Fy Fb= allowable bending stress Fy= yield stress, unit tensile stress Flange width-thickness ratio: 𝒃𝒇 πŸπŸ•πŸŽ ≀ πŸπ’•π’‡ βˆšπ‘­π’š bf= flange width, mm tf = flange thickness, mm Web depth- thickness ratio: 𝒅 πŸπŸ”πŸ–πŸŽ ≀ π’•π’˜ βˆšπ‘­π’€ d= depth, mm tw= web thickness, mm 2.Non – compact section: Fb= 0.60 Fy Flange width –thickness ratio: 𝒃𝒇 πŸπŸ•πŸŽ β‰₯ πŸπ’•π’‡ βˆšπ‘­π’š 3. Partially Compact Section: 𝒃𝒇 Fb=Fy[0.79-0.000762 πŸπ’•π’‡ π‘­π’š Flange width-thickness ratio: 𝒃𝒇 πŸπŸ•πŸŽ 𝒃𝒇 πŸπŸ“πŸŽ πŸπ’•π’‡ > βˆšπ‘­π’š < πŸπ’•π’‡ βˆšπ‘­π’š When Lb Lu πŸπŸ‘πŸ–πŸŽπŸŽ Lu= 𝒅 use Fb=0.60 Fy π‘­π’š 𝒃𝒇𝒕𝒇 3. When Lb >Lc and Lb< Lu 𝒃𝒇 Use Fb =Fy [0.79 – 0.00076 βˆšπ‘­π’š πŸπ’•π’‡ B) LATERALLY UNSUPPORTED BEAMS 1. When L > Lc L> Lu πŸ•πŸŽπŸ‘πŸŽπŸŽπ‘ͺ𝒃 𝑳𝒓 πŸ‘πŸ“πŸπŸŽπŸŽπŸŽπŸŽπ‘ͺ𝒃 π‘­π’š < 𝒓𝑻< π‘­π’š 𝑳 𝟐 π‘­π’š 𝟐 𝒓𝑻 Fb=[ - πŸ‘ 𝟏𝟎.πŸ“πŸ“ π’™πŸπŸŽβΆπ‘ͺ𝒃 ] Fy πŸ–πŸ‘πŸŽπŸŽπŸŽπ‘ͺ𝒃 Fb = 𝑳𝒅 𝒃𝒇 𝒕𝒇 Use biggest value of Fb but should be < 0.60 Fy 2. L > Lc L> Lu πŸ•πŸŽπŸ‘πŸŽπŸŽπŸŽ π‘ͺ𝒃 𝑳 πŸ‘πŸ“πŸπŸŽπŸŽπŸŽπŸŽ π‘ͺ𝒃 < < π‘­π’š 𝒓𝒕 π‘­π’š πŸπŸπŸ•πŸŽ 𝒙 𝟏𝟎³ Fb= 𝑳 ( )Β² 𝒓𝑻 πŸ–πŸ‘πŸŽπŸŽπŸŽ π‘ͺ𝒃 Fb = 𝑳𝒅 𝒃𝒇 𝒕𝒇 Use biggest value of Fb but should be < 0.60Fy π‘°π’š rt = 𝑨 𝟏 𝟏 A = Af + πŸ” Aw A= bf tf + πŸ” h tw 𝒉 𝒕𝒇 𝒃𝒇³ ( π’•π’˜)Β³ 𝑰 πŸ‘ I = 𝟏𝟐 + 𝟏𝟐 rt = 𝑨 I =Iy ( approximately ) 𝟏.πŸŽπŸ“ π‘΄πŸ π‘΄πŸ Cb= 1.75 + π‘΄πŸ + 0.30 ( π‘΄πŸ )Β² Cb = 2.3 max. value Cb= bending coefficient dependent on moment gradient A W 775 x 287 steel beam has the following dimensions: H= 775mm total beam depth tw= 19mm web thickness b= 360mm flange width tf= 32mm flange thickness a)Determine the moment of inertia with respect to the X-axis. b)Determine the section modulus with respect to x-axis. c)Determine the radius of gyration with respect to x-axis. d)Determine the moment of inertia with respect to the y-axis. e)Determine the section modulus with respect to y-axis. f)Determine the radius of gyration with respect to y-axis. a) Moment of Inertia to the X-axis 2 𝒃𝒅³ Ix= βˆ‘( π‘°π’ˆ + 𝑨𝒅 ) I= 𝟏𝟐 πŸ‘πŸ”πŸŽ ( πŸ•πŸ“πŸ“ )Β³ πŸ‘πŸ’πŸ ( πŸ”πŸ—πŸ)Β³ Ix = 𝟏𝟐 – 𝟏𝟐 Ix = 3,535,289, 124 mm⁴ b) Section Modulus to the X –axis 𝑰𝒙 Sx= π‘ͺ𝒙 πŸ‘,πŸ“πŸ‘πŸ“,πŸπŸ–πŸ—πŸπŸπŸ’ Sx = = 9,365,004 mmΒ³ πŸ‘πŸ•πŸ•.πŸ“ c) Radius of Gyration to the X-axis 𝑰𝒙 πŸ‘,πŸ“πŸ‘πŸ“,πŸπŸ–πŸ—,πŸπŸπŸ’ rt = = = 97,743 mm 𝑨𝒕 πŸ‘πŸ”πŸπŸ”πŸ— a) Moment of inertia to the Y-axis 𝒅𝒃³ Iy = βˆ‘( π‘°π’ˆ + 𝑨𝒅2 ) Iy = 𝟏𝟐 πŸ•πŸ“πŸ“ (πŸ‘πŸ”πŸŽ)Β³ (πŸ”πŸ—πŸ)(πŸ‘πŸ’πŸ)Β³ Iy = - 𝟏𝟐 𝟏𝟐 Iy = 652,155,974 mm⁴ b) Section modulus to the Y-axis π‘°π’š πŸ”πŸ“πŸ,πŸπŸ“πŸ“,πŸ—πŸ•πŸ’ Sy = = = 3, 623,088 mmΒ³ π‘ͺπ’š πŸπŸ–πŸŽ c) Radius of gyration to the Y-axis π‘°π’š πŸ”πŸ“πŸ,πŸπŸ“πŸ“,πŸ—πŸ•πŸ’ ry= 𝑨𝒕 = πŸ‘πŸ”,πŸπŸ”πŸ— = 18,031 mm A section of steel wide flange as shown, it laterally supported. The yield strength is Fy= 250 Mpa. Determine the allowablbe bending stress and if it is a compact or non-compact section. Solution: 𝒅 πŸπŸ”πŸ–πŸŽ If < Compact Section Use: Fb= 0.66FY π’•π’˜ π‘­π’š d= 755mm tw=19 mm πŸ•πŸ“πŸ“ πŸπŸ”πŸ–πŸŽ < πŸπŸ— πŸπŸ“πŸŽ 39.74 < 106.25 Use Fb= 0.66(250) Fb= 165 Mpa A 10 m. beam simply supported at the end carries auniformly distributed load of 16 Kn/m over its entire length. 16 Kn/m 10 m Which of the following give the lightest W shape beam that will not exceed a flexural stress of 120 Mpa ? a. W 610 x 82 Sx = 1870 x 10 mmΒ³ A = 10400 mmΒ² Ο‰ = 81.9 kg/m b. W530 x 85 Sx = 1810 x 10 mmΒ³ A = 10800 mmΒ² Ο‰ = 84.4 kg/m c. W 460 x 82 Sx = 1610 x 10 mmΒ³ A = 10400 mmΒ² Ο‰ = 81.9 kg/m d. W = 360 x 79 Sx = 1280 x 10 mmΒ³ A = 10100 mmΒ² Ο‰ = 79.3 kg/m 16.828 10 Β² M= = 210.35kn.m 8 M= 200 kn.m 210.35 π‘₯ 10⁢ S= 𝑀 120 S= S = 1,752,916 mmΒ³ 𝑓 200 π‘₯ 10⁢ S= 1,753 x 10Β³< 1810 x 10Β³ mmΒ³ S= Safe 120 S = 1667 x 10Β³ Actual max. stress in beam: Try W 530 x 85 𝑀 f= Sx = 1810 x 10Β³ 𝑆 Ο‰ = 84.4 kg/m 210.35 π‘₯ 10⁢ f= wt of beam =84.4 ( 9.81) 1810 π‘₯ 10Β³ f = 116.22 Mpa Wt of beam = 827.96 say 828 N/m

Use Quizgecko on...
Browser
Browser