Sistem Energi dan Metabolisme pada Atlet PDF
Document Details
Uploaded by WellWishersBiedermeier3246
UNESA
Cleonara Yanuar Dini
Tags
Summary
This presentation covers energy systems and metabolism in athletes. It details carbohydrate, lipid, and protein metabolism, and how energy is stored. The presentation also touches on the concepts of aerobic and anaerobic energy systems.
Full Transcript
SISTEM ENERGI DAN METABOLISME PADA ATLET CLEONARA YANUAR DINI, S.GZ., M.SC., RD PRODI SI GIZI FIKK UNESA HOW DOES ENERGY SYSTEM CONTRIBUTE TO OUR CITY? WHAT’S MAKE THEM DIFFERENCE? USAIN BOLT ELIUD KIPCHOGE Carbohydrate Metabolism Carbohydrates are broken down...
SISTEM ENERGI DAN METABOLISME PADA ATLET CLEONARA YANUAR DINI, S.GZ., M.SC., RD PRODI SI GIZI FIKK UNESA HOW DOES ENERGY SYSTEM CONTRIBUTE TO OUR CITY? WHAT’S MAKE THEM DIFFERENCE? USAIN BOLT ELIUD KIPCHOGE Carbohydrate Metabolism Carbohydrates are broken down into glucose, which is then used for energy production. Glycolysis Glucose is broken down into pyruvate, producing a small amount of ATP. Citric Acid Cycle Pyruvate is further oxidized, generating more ATP and electron carriers. Electron Transport Chain Electron carriers transfer electrons, driving the production of large amounts of ATP. Lipid Metabolism Fat is a concentrated energy source, broken down into fatty acids and glycerol for energy production. Glycerol Fatty Acids Ketone Bodies Converted to glucose through Undergo beta-oxidation, producing During prolonged fasting, fatty gluconeogenesis, a process that acetyl-CoA that enters the citric acids are converted into ketone creates glucose from non- acid cycle. bodies, an alternative energy carbohydrate sources. source for the brain. Protein Metabolism Protein is broken down into amino acids, which can be used for energy production or for building and repairing tissues. 1 Deamination Amino acids lose their amino group, converting them into intermediates that can enter the energy metabolism pathways. 2 Krebs Cycle These intermediates can then be used in the citric acid cycle, generating ATP. 3 Gluconeogenesis Some amino acids can be converted into glucose, providing an alternative energy source. SISTEM ENERGI ATP-Pcr Glikogen Glukosa Asam Lemak (Triasilgliserol) Protein BAGAIMANA ATP MENGHASILKAN ENERGI? SISTEM FOSFAGEN Sistem fosfagen (ATP-PC) menggunakan simpanan adenosin trifosfat (ATP) dan kreatin fosfat (CP) dengan durasi selama beberapa detik pertama latihan. Proses ini bergantung pada hidrolisis molekul ATP, di mana ikatan dipecah dengan menambahkan molekul air, serta memecah fosfat berenergi tinggi yang disebut kreatin fosfat. Proses regenerasi ATP melalui transfer gugus fosfat terjadi melalui salah satu dari dua reaksi; Kreatin kinase Adenilat kinase ASAM LAKTAT DAN OKSIDATIF Sistem energi asam laktat, yang memanfaatkan karbohidrat melalui glikolisis anaerobik, mampu mempertahankan produksi daya anaerobik yang tinggi, seperti 45 detik untuk lari 400 m. Sistem energi oksidatif, yang menggunakan karbohidrat melalui glikolisis aerobik dan lemak melalui beta oksidasi, dapat mempertahankan kekuatan aerobic untuk endurance yang panjang, selama 130 menit untuk maraton 42,2 km. PRODUKSI ENERGI DARI GLUKOSA (GLIKOLISIS) Glukosa dan glikogen dapat diubah menjadi piruvat melalui tahapan proses glikolisis. Piruvat dapat menjadi laktat melalui enzim laktat dehidrogenase melalui reaksi reversibel. PRODUKSI ENERGI DARI GLUKOSA (SIKLUS ASAM SITRAT DAN RANTAI TRANSPOR ELEKTRON) Siklus asam sitrat dan rantai transpor elektron terjadi di mitokondria Di mitokondria, siklus asam sitrat menghasilkan atom hidrogen selama pemecahan asetil-KoA. Sejumlah besar ATP beregenerasi ketika hidrogen ini teroksidasi melalui proses aerobik transpor elektron-fosforilasi oksidatif (rantai transpor elektron). METABOLISME AEROBIK GLUKOSA GLIKOGEN Glikogen berfungsi sebagai salah satu dari dua bentuk cadangan energi, glikogen untuk jangka pendek dan bentuk lainnya adalah simpanan trigliserida di jaringan adiposa (yaitu, lemak tubuh) untuk penyimpanan jangka panjang. Pada manusia, glikogen dibuat dan disimpan terutama di sel-sel hati dan otot rangka. Di hati, glikogen terkandung 5-6% dari berat hati orang dewasa, dengan berat 1,5 kg, dapat menyimpan sekitar 100–120 gram glikogen. Dalam otot rangka, glikogen ditemukan dalam konsentrasi rendah (1-2% dari massa otot) dan otot rangka orang dewasa dengan berat 70 kg menyimpan sekitar 400 gram glikogen. Glikogenolisis adalah pemecahan glikogen (n) PEMECAHAN menjadi glukosa-1-fosfat dan glikogen (n-1). GLIKOGEN Glikogen dikatabolisme oleh pelepasan (GLIKOGENOLISIS berurutan monomer glukosa melalui ) fosforolisis, oleh enzim glikogen fosforilase Cabang Glikogen akan dipecah oleh enzim debranching KONSENTRASI LAKTAT PASCA LATIHAN Konsentrasi laktat akan meningkat seiring dengan peningkatan tingkat olahraga dan VO2max Lactate threshold akan meningkat seiring dengan peningkatan latihan pada trained/professional athletes KONSENTRASI LAKTAT PADA ATLET SEPEDA SIKLUS CORI Siklus Cori (juga dikenal sebagai siklus asam laktat), dinamai menurut penemunya, Carl Ferdinand Cori dan Gerty Cori, adalah jalur metabolisme di mana laktat yang dihasilkan oleh glikolisis anaerobik di otot diangkut ke hati dan diubah menjadi glukosa, yang kemudian kembali ke otot dan secara siklis dimetabolisme kembali menjadi laktat. ASAM LEMAK/TRIASILGLISEROL Molekul asam lemak berubah menjadi asetil-KoA di mitokondria selama beta (b)-oksidasi. Asetil-KoA untuk masuk langsung ke siklus asam sitrat. Hidrogen yang dilepaskan selama katabolisme asam lemak teroksidasi melalui rantai respirasi dan diubah menjadi energi melalui ATP KONVERSI ENERGI DARI LEMAK PROTEIN Some amino acids are glucogenic; when deaminated, they yield pyruvate, oxaloacetate, or malate—all intermediates for glucose synthesis via gluconeogenesis. Pyruvate, for example, forms when alanine loses its amino group and gains a double bonded oxygen. The gluconeogenic role of some amino acids provides an important component of the Cori cycle to furnish glucose during prolonged exercise. Regular exercise training enhances the liver’s capacity for glucose synthesis from alanine Some amino acids such as glycine are ketogenic; when deaminated, they yield the intermediates acetyl-CoA or acetoacetate. These compounds cannot be used to synthesize glucose; rather, they synthesize to triacylglycerol SIMPANAN ENERGI BAGAIMANA JENIS OLAHRAGA MEMPENGARUHI METABOLISME ENERGI? AEROBIK DAN ANEROBIK KONSUMSI OKSIGEN SELAMA AKTIVITAS FISIK RESPON METABOLIK TERHADAP LATIHAN RESPON METABOLIK METABOLISME KARBOHIDRAT Fuel Supply a. Carbohydrate 1. ↑ GLUT-4 transporter number and concentration; ↓ exercise induced translocation 2. ↓ glucose utilization 3. ↑ Muscle and liver glycogen reserves 4. ↓ Rate of muscle and liver glycogen depletion at absolute submaximal loads, i.e., glycogen-sparing 5. ↑ Velocity of glycogenolysis at maximal work RESPON METABOLIK METABOLISME LEMAK DAN PROTEIN b. Fat 1. ↑ Mobilization, transportation, and beta-oxidation of free fatty acids 2. ↑ Fat storage adjacent to mitochondria 3. ↑ Utilization of fat as fuel at the same absolute and the same relative workloads c. Protein (1)↑ Ability to utilize the BCAA leucine as fuel (2) ↑ Gluconeogenesis from alanine RESPON METABOLIK AKTIVITAS ENZIM Enzyme Activity 1. ↑ Selected glycolytic enzyme activity: glycogen phosphorylase and probably phosphofructokinase 2. ↓ LDH activity with some conversion from the skeletal muscle to cardiac muscle form with endurance training but ↑ with strength/sprint training 3. ↑ Activity of the malate-aspartate shuttle enzymes but not the glycerol-phosphate shuttle enzymes 4. ↑ Number and size of mitochondria 5. ↑ Activity of most, but not all, of the enzymes of beta-oxidation, the Krebs cycle, electron transport, and oxidative phosphorylation due to greater mitochondrial protein amount O2 Utilization 1. ↑ VO2 max with aerobic RESPON endurance training but not METABOLIK with dynamic resistance training PENGGUNAAN OKSIGEN 2. ↑ Myoglobin concentration 3. ↓ Oxygen deficit 4. ↓ Oxygen drift RESPON METABOLIK KARDIOVASKULAR Cardiac output reflects the functional capacity of the cardiovascular system. Heart rate and stroke volume determine the heart’s output capacity expressed: Cardiac output = Heart rate x stroke volume. Cardiac output increases proportionally with effort intensity, starting from approximately 5 L/min at rest to a maximum of 20-25 L/min in untrained, college age men and 35 to 40 L/min in elite male endurance athletes. RESPON METABOLIK JANTUNG This hypertrophic growth follows two typical patterns of growth determined by the geometric relationship between ventricular internal diameter (LVD) and ventricular wall thickness, or relative wall thickness (RWT): (1) a concomitant increase in ventricular wall thickness and LVD (eccentric), usually driven by volume overload; (2) a disproportionate increase in wall thickness compared to LVD (concentric), driven by pressure overload. Typically, eccentric or concentric growth due exercise (Physiologic) is limited to a 12%–15% increase in overall heart weight and does not progress to heart failure. RESPON METABOLIK OTOT With aerobic training, the number of Endurance athletes have relatively capillaries around each muscle fiber normal-sized muscle fibers, with a may increase by 20–30%. tendency toward enlargement of the The phenomenon favors the slow twitch fibers. Conversely, weightlifters and other exchange of gases and nutrients power athletes show definite between the blood and the active enlargement in both fiber types, muscle. particularly fast-twitch fibers, which may exceed by 45% those of endurance After aerobic training, there is also an athletes or sedentary persons of the increase in the number and size of same age. Strength and power training induce mitochondria. enlargement of the fiber’s contractile As a consequence, a trained muscle apparatus—specifically the actin and myosin filaments—and total glycogen has an increased capacity to oxidize content. FAs. RESPON METABOLIK OTOT https://doi.org/10.1016/j.nutres.2019.06.006 RESPON METABOLIK PADA MITOKONDRI A TERIMA KASIH