Rishit Matrices Notes PDF
Document Details
Uploaded by Deleted User
Tags
Summary
These notes cover eigen values and eigenvectors for matrices, providing examples and explanations of properties. The document explores various matrix calculations based on examples.
Full Transcript
# Module - 3 ## Eigen Values & Eigen Vectors **Given a square matrix Amxn** - **Characteristic polynomial:** - f(x) = det (A-λI) - **Characteristic equation:** - det (A-λI)=0 - **The n roots of the characteristic equation are called eigen values:** - λ = λ₁, λ₂, λ₃, .... λₙ **Example** -...
# Module - 3 ## Eigen Values & Eigen Vectors **Given a square matrix Amxn** - **Characteristic polynomial:** - f(x) = det (A-λI) - **Characteristic equation:** - det (A-λI)=0 - **The n roots of the characteristic equation are called eigen values:** - λ = λ₁, λ₂, λ₃, .... λₙ **Example** - Let the matrix be A = [1 2] [3 4] - A - λI = [1 2] - λ [1 0] [3 4] [0 1] - A - λI = [1-λ 2] [3 4-λ] - f(λ) = det (A - λI) - f(λ) = (1-λ) (4-λ) - 8 - f(λ) = 3 - 4λ + λ² - 8 - f(λ) = λ² -4λ - 5 (Characteristic Polynomial) - char eq: λ² - 4λ - 5 = 0 - (λ - 5) (λ + 1) = 0 - λ = 5, -1 (Eigen values) **Example** B = 5A⁴ - 7A³ + 2A - 3A¹ - Eigen values of B = 5(1)⁴ - 7(1)³ + 2(1) - 3(1)¹ - 1 = 5(2)⁴ - 7(2)³ + 2(2) - 3(2)¹ - 1 = 5(3)⁴ - 7(3)³ + 2(3) - 3(3)¹ - 1 = -3, 26.5, 221 **Example** A = [-2 2 -3] [2 -1 -6] [-1 -2 6] - λ³ - (-1)² + (-12 - 3 - 6)λ - 45 = 0 - λ³ + λ² - 21λ - 45 = 0 - λ = 5, -3, 7/3 - By prop 1 - 5 + (-3) + 7/3 = -1 - 7/3 = -3 - Eigenvalues of A are 5, -3, -3 - B=A³ - 5A² + 3A - SI - Eigenvalues of B = 5³ - 5(5)² + 3(5) - 5 = (-3)³ - 5(-3)² + 3(-3) - 5 = (-3)³ - 5(-3)² + 3(-3) - 5 = -101 - 86 - 86 **Example** A= [2 0] [2 2] - A - λI = [2 0] - λ[1 0] [2 2] [0 1] - A - λI = [2 - λ 0] [2 2 - λ] - f(λ) = det (A - λI) - f(λ) = (2 - λ) (2 - λ) - 0 - f(λ) = 4 - ... A is a lower triangular matrix - λ = 2, 2 - det A = 4 - eigenvalue of Adj A = 1/4, 1/4 - = 2/2, 2/2 - = 2, 2 **Example** A=[ 1 0 -1 ] [ 1 2 2 ] [2 2 3] - 2³ - 6λ² + { 2 * 2 * 3 + 1 * 1 * 1 + 1 * 1 * 2 } λ - det A = 0 - 2³ - 6λ² + 11λ - 6 = 0 - λ = 1, 2, 3 **Properties** - **Sum of eigenvalues = trace A** - **Product of eigenvalues = det A** - **If A is a 2x2 matrix** - char eq is λ² - (trace A)λ + det A = 0 - **If A is a 3x3 matrix** - char eq is λ³ - (trace A)λ² +(c₁₁ + c₂₂ + c₃₃)λ - det A = 0 - **If A is a diagonal matrix, an upper triangular matrix, or a lower triangular matrix, then the diagonal elements are the eigenvalues of A.** - **If λ is an eigenvalue of A, then g(λ) is an eigenvalue of g(A)** - **Eigen values of Adj A are det (A)/λ** **Example** - A = [ 1 0 -1 ] [ 1 2 2] [2 2 3] - λ = 1, 2, 3 - λ = 1 - (A - λI)x = 0 - [ 0 0 -1 ] x₁ = 0 - [ 1 1 2 ] x₂ = 0 - [ 2 2 2 ] x₃ = 0 - By Cramer's Rule, - x₁ = x₂ = - x₃ - x = t (1, -1, 0) is eigenvector for λ = 1 - λ = 2 - (A - λI)x = 0 - [ -1 0 -1 ] x₁ = 0 - [ 1 0 2 ] x₂ = 0 - [ 2 2 1 ] x₃ = 0 - By Cramer's Rule, - x₁ = - 2x₃ - x = t (-2, 1, 1) is eigenvector for λ = 2 - λ = -1 - x = t [-2] is eigenvector of A for λ=-1 - A = [ 2 0 ] [ 2 2 ] - λ = 2, 2 - for λ = 2, - [ 0 0 ] = 0 - [ 2 0 ] x1 = 0 - x = t [ 0 ] t ≠0 is an eigenvector for λ = 2 **Eigenvectors of A:** - A non-zero row column vector X is called the eigenvector of A corresponding to eigenvalue λ. **Example** - A = [ 1 4] [ 2 -1] - λ = 5, -1 - for λ = 5 - (A - λI)x = 0 - [ -4 4 ] x₁ = 0 - [ 2 -6 ] x₂ = 0 - -4x₁ + 4x₂ = 0 & 2x₁ - 6x₂ = 0 - x₁ = x₂ - x = t [1] t ≠ 0 is an eigenvector of A for λ = 5 - for λ = -1 - (A - λI)x = 0 - [ 2 4 ] x₁ = 0 - [ 2 0 ] x₂ = 0 - 2x₁ + 4x₂ = 0 & 2x₁ + 4x₂ = 0 - - By Cramer's Rule, - x₁ = - x₂ = - x₃ - x = t (-1, -2, 1) is eigenvector for λ = -3 **Example** - A = [ 1 0 -1] [ 1 2 2] [ 2 2 3] - λ = 1, 2, 3 - for λ = 1 - (A - λI)x = 0 - [ 0 0 -1 ] x₁ = 0 - [ 1 1 2 ] x₂ = 0 - [ 2 2 2 ] x₃ = 0 - By Cramer's Rule, - x₁ = - x₂ = -x₃ - x = t (-1, -1, 2) is eigenvector for λ = 3 - A = [-2 2 -3] [ 2 -1 -6] [-1 -2 6] - λ = 5, -3, 7/3 - for λ = 5 - [ -7 2 -3 ] x₁ = 0 - [ 2 -6 -6] x₂ = 0 - [ -1 -2 -5] x₃ = 0 **Diagonalizable Matrices:** - Algebraic multiplicity of λ= no of times the eigen value appears as a root - Geometric multiplicity of λ= no of linearly independent eigenvectors found for eigen value λ - **If AM=GM λ of A then A is called Diagonalizable.** - **If A is diagonalizable, there exists diagonal matrix D & diagonalizing matrix P such that D=P⁻¹AP** - **NOTE:** A matrix with distinct eigen values is always diagonalizable **Example** - A = [ 1 4 -2 ] [ -2 4 -2 ] [ -2 4 2] - λ³ - 4λ² + 6λ - 6 = 0 - AM = 2, GM = 2 - D = [9 0 0] [ 0 18 0] [ 0 0 18] - P = [ -2 -1 1] [ 0 1 2] [ 1 2 0] - Since AM=GM λ of A - A is diagonalizable. **Example** - λ = 9, 18, 18 - for λ = 9 - (A - λI)x = 0 - [ 0 4 -2] x₁ = 0 - [ 4 5 2] x₂ = 0 - [ -2 2 8] x₃ = 0 - By Cramer's Rule - x₁ = - x₂ = - x₃ - x = t [-2] AM = 1, GM = 1 [ -1 ] [ 1 ] - for λ = 18 - (A - λI)x = 0 - [ -4 4 -2] x₁ = 0 - [ 4 -4 -2] x₂ = 0 - [ -2 2 8 ] x₃ = 0 **Example** - A = [ 1 0 -1] [ 1 2 2] [ 2 2 3] - λ = 1, 2, 3 - for λ = 1 - (A - λI)x = 0 - [ 0 0 -1 ] x₁ = 0 - [ 1 1 2 ] x₂ = 0 - [ 2 2 2 ] x₃ = 0 - D = [ 1 0 0 ] [ 0 2 0 ] [ 0 0 3 ] - P = [ 1 2 -1 ] [ -1 -1 1] [0 -2 2] - A = [13 5 -2] [ 3 7 2] [ 5 4 7] - λ³ - 27λ² + 9λ - 729 = 0 - λ = 9, 9, 9 - for λ = 9, - [ 4 5 -2] x₁ = 0 - [ 3 2 -8] x₂ = 0 - [ 5 4 -2 ] x₃ = 0 **Example** - A = [ 1 -2 0 ] [ 1 2 2] [ 1 2 3] - λ³ - 6λ² + (2 + 3 + 4)λ - 4 = 0 - λ³ - 6λ² + 9λ - 4 = 0 - λ = 4, 1, 1 - 4 + 1 + 1 = 6 - λ = 4, 1, 1 - for λ = 4 - (A - λI)x = 0 - [ -3 -2 0] x₁ = 0 - [ 1 -2 2] x₂ = 0 - [ 1 -2 -1] x₃ = 0 - By Cramer's Rule, - x₁ = -x₂ = - x₃ - x = t [ -2 ] AM = 1, GM = 1 [ 3 ] [ 4 ] - for λ = 1 - (A - λI)x = 0 - [ 0 -2 0] x₁ = 0 - [ 1 -1 2] x₂ = 0 - [ 1 -2 2 ] x₃ = 0 - By Cramer's Rule, - x₁ = - x₂ = -x₃ - x = t [-2] AM = 2, GM = 1 [ 0 ] [ 1 ] - ... A is not diagonalizable. **Example** - A = [1 3 7] [ 4 2 3] [ 1 1 2] - λ³ - 4λ² - 20λ - 35 = 0 - By Cayley Hamilton Theorem, - A³ - 4A² - 20A- 35I = 0 - f(A) = (A² - 4A² - 20A - 35I) (AHA) + (-A + 2A + I) - f(A) = - A² + 2A +I - f(A) = -20 [-23] +2 [ 1 3 7 ] + [1 0 0 ] [ 10 22 31 ] [ 4 2 3 ] [ 0 1 0 ] [ 19 9 14 ] [ 1 1 2 ] [ 0 0 1 ] - f(A) = [-17 -17 -4] [ -7 -17 31] [ -8 - 5 -11] - x₁ = - x₂ = - x₃ - x = t [- 2] AM = 3, GM = 1 [ 1] [ 2] - ... A is not diagonalizable. **Cayley Hamilton Theorem** - Every square matrix satisfies its own characteristic equation - A = [ 1 2 ] [ 2 3] - λ² - 4λ - 5 = 0 - By Cayley Hamilton Theorem, - A² - 4A - 5I = 0 **Example** - f(A) = A⁴ - 5A³ + 12A² + 3A -7I - A - 4A - SI = A⁴ - 5A³ + 12A² + 3A -7I - ...f(A) = 50 [ 1 0] + 58 [ 1 0] [ 2 1 ] [ 0 1 ] - ...f(A) = [ 108 208 ] [ 100 208 ] - By C-H, A² - 4A - SI = 0 - A¹(A² - 4A - SI) = A¹ x 0 - A¹ - 4A - 5A¹ = 0 - A¹ - 1 = (A - 4I) - A¹ = 1 (A - 4I) **Example** - A = [ -1 2 3 ] [ -1 1 0 ] [ 3 1 0 ] - λ³ - 6λ² + 10λ - 3 = 0 - By Cayley Hamilton Theorem, - A³ - 6A² + 10A - 3I = 0 - A³ = 6A² - 10A + 3I - A⁴ = 6(6A² - 10A + 3I) - 10A² + 3A - A⁴ = 26 A² - 57A + 118I - A² - 6A + 10I - 3A - I = 0 - A - I = 1 (A² - 6A + 10I) - A⁻¹ = 1/3 (A - 6I + 10A⁻¹) - = 1/3 (A - 6I + 10 (A² - 6A + 10I)) - A⁻¹ = 1/9 (10 A² - 19 A + 82 I) **Functions of a Square Matrix** - f(A) = pA + qI → 2x2 - f(A) = pA² + qA + rI → 3x3 **Example** - A = [ 4 7 ] [ 1 3 ] - λ² - 12λ + 11 = 0 - λ² - 11λ - λ + 11 = 0 - (λ - 11) (λ - 1) = 0 - λ = 1, 11 - A¹⁰⁰ = pA + qI - λ¹⁰⁰ = pλ + q - in λ = 11, 11¹⁰⁰ = p (11) + q - p + q = 1 - in λ = 11, 11¹⁰⁰ = p (11) + q - 11¹⁰⁰ = 11p + q - 11¹⁰⁰ - 1 = 10p - p = (11¹⁰⁰ - 1)/10 - p + q = 1 - q = 1 - (11¹⁰⁰ - 1)/10 - = - 11¹⁰⁰ + 11 / 10 - e¹ᵗ = p + q - = - pI + q - e¹ᵗ + e⁻¹ᵗ = 2q - = 2cos(t) - e¹ᵗ - e⁻¹ᵗ = 2pi - = 2sin(t) - eᵗᴬ = sin (t)A + cos (t)I - = sin (t) [0 0] + cos(t) [ 1 0 ] [ 1 0 ] [ 0 1 ] - = sin (t) [ 0 cos(t) ] [ sin (t) cos (t) ] - eᵃᵗ⁸ = [ 1 0] [ 0 -1] - eᵃᵗ⁸ = A - A¹⁰⁰ = (11¹⁰⁰ - 1)/10 [ 4 7 ] + (-11¹⁰⁰ + 11)/10 [ 1 0] [ 1 3 ] [ 0 1] - = ((11¹⁰⁰ - 1)/10 [ 4 7 ] [ 1 3] - = (11¹⁰⁰ - 1)/10 [ 4 7 ] + (11¹⁰⁰ - 1)/10 [ 1 0] [ 1 3 ] [ 0 1 ] - = (11¹⁰⁰ - 1)/10 [ 3 * 11 + 7 ] [ 10 ] [ 7 * 11 - 1] - = (11¹⁰⁰ - 1)/10 [ 3 * 11 + 7 ] [ 10 ] [ 7 * 11 - 1] - A = [ π/2 0 ] [ 0 3π/2 ] - λ² - 2πλ + 3π² = 0 - λ = π, 3π/2 - ... Upper triangular - sin A = pA + qI - sin λ = pλ + q - in λ = π, sin π = p(π) + q - 0 = pπ + q - in λ = 3π/2, sin 3π/2 = p (3π/2) + q - -1 = 3π/2 + q - 3π/2 + q = - 1 - P = 3 / π - 3π/2 + q = - 1 - q = - 1 - 3π/2 - sin A = -2A + 3πI - = -2 [ π/2 0 ] + 3π [ 1 0 ] [ 0 3π/2 ] [ 0 1 ] - = [ -π 0 ] + [ 3π 0 ] [ 0 - 3π ] [0 3π ] - = [ -2π 0] [ 0 -2π] - = [ 0 0 ] [ -2 -2π ] - = [ 0 0] [ 0 -2 ] - A = [ 0 1 ] [ -1 0 ] - λ² - 0λ + 1 = 0 - λ² +1 = 0 - λ = ±i - eᵗᴬ = pA + qI - e¹ᵗ = pλ + q - (e¹ᵗ - 1) (e⁻¹ᵗ - 1) = 0 - e¹ᵗ + e⁻¹ᵗ - e¹ᵗ - e⁻¹ᵗ + 1 = 0 - = 0 - e¹ᵗ + e⁻¹ᵗ - 1 = 0 - 2cos(t) -1 = 0 - cos(t) = 1/2 - t=± π/3 **Example** - A = [ 3 4 -1 ] [ 5 -2 1 ] [ 2 1 3 ] - λ³ - 6λ² + 9λ - 4 = 0 - λ³ - 6λ² + 9λ - 4 = 0 - λ = 2, 1, 1 - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A = [ 3 4 -1 ] [ 5 -2 1] [ 2 1 3] - λ³ - 6λ² + 9λ - 4 = 0 - λ³ - 6λ² + 9λ - 4 = 0 - λ = 2, 1, 1 - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ = 1/5 [ 2 4 -1 ] [ 1 3 -1 ] [ -1 -1 2 ] - A⁻¹ =